Group Magic Labeling of Multiple Cycles

K.Kavitha
Research scholar, Bharathiar University, Coimbatore. Assistant Professor, Bharathi Women's College, Chennai, India.

K.Thirusangu Associate Professor, S.I.V.E.T. College, Chennai, India.

Abstract

Let $G=(V, E)$ be a connected simple graph. For any nontrivial additive abelian group A , let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$. A function f: $\mathrm{E}(\mathrm{G}) \rightarrow \mathrm{A}^{*}$ is called a labeling of G . Any such labeling induces a map $\mathrm{f}^{+}: V(\mathrm{G}) \rightarrow \mathrm{A}$, defined by $\mathrm{f}^{+}(\mathrm{v})=\sum \mathrm{f}(\mathrm{uv})$, where the sum is over all $u v \in E(G)$. If there exist a labeling f whose induced map on $V(G)$ is a constant map, we say that f is an A-magic labeling of G and that G is an A-magic graph. In this paper we obtained the group magic labeling of cycles with a common vertex, a chain of three cycles and even number of times even cycles in a chain.

Key words

A-magic labeling, Group magic, cycles with a common vertex, chain of cycles.

1. INTRODUCTION

Labeling of graphs is a special area in Graph Theory. A detailed study has been done in [1]. Originally Sedlacek has defined magic graph as a graph whose edges are labeled with distinct non- negative integers such that the sum of the labels of the edges incident to a particular vertex is the same for all vertices. If those labels are from a non trivial additive abelian group A, then graph is said to be Group magic graph or Amagic. A-magic graph is introduced by J sedlacek. Recently A- magic graphs are studied and investigated in the literature [2,3,4,5,6].

An A-magic graph G is said to be Z_{k}-magic graph if we choose the group A as Z_{k} - the group of integers mod k. These Z_{k} - magic graphs are referred as k - magic graphs. Baskar Babujee, L.Shobana [7] have shown few graphs like cycle graphs, complete, bistar, ladder, etc. are Z_{3}-magic. A detail study about zero-sum magic graphs and their null sets was done by Ebrahim salehi in [8].

It was proved in [9] that wheels, fans, cycles with a P_{k} chord, books are group magic. In [10] it was proved that wheels can be labeled with at most n distinct labels, where n is the number of vertices. In [11] the graph $B\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, the k copies of C_{nj} with a common edge or path is labeled. In [12] a biregular graph is defined and group magic labeling of few biregular graphs have been dealt with. In [13] the group magic labeling of two or more cycles with a common vertex is derived. As an extension of this result in this paper the group magic labeling of a chain of three cycles and even number of times even cycles in a chain are considered.

2. DEFINITIONS

2.1 Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected simple graph. For any non-trivial additive abelian group A , let $\mathrm{A}^{*}=\mathrm{A}-\{0\}$. A function $f: E(G) \rightarrow A^{*}$ is called a labeling of G. Any such labeling induces a map $\mathrm{f}^{+}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{A}$, defined by $f^{+}(v)=\sum_{u v \in E(G)} f(u, v)$ If there exists a labeling f which
induces a constant label c on $\mathrm{V}(\mathrm{G})$, we say that f is an A-magic labeling and that G is an A-magic graph with index c.
2.2 A A-magic graph G is said to be Z_{k}-magic graph if we choose the group A as Z_{k} - the group of integers $\bmod \mathrm{k}$. These Z_{k} - magic graphs are referred as k - magic graphs.
2.3 A graph $G=(V ; E)$ is called fully magic if it is A-magic for every abelian group A. For example, every regular graph is fully magic.
2.4 A graph $G=(V, E)$ is called non-magic if for every abelian group A ; the graph is not A-magic.
The most obvious class of non-magic graphs is $\mathrm{P}_{\mathrm{n}}(\mathrm{n} \geq$ 3); the path of order n. As a result, any graph with a pendant path of length $\mathrm{n} \geq 3$ would be non-magic [7].
2.5 A k-magic graph G is said to be k-zero-sum (or just zero sum) if there is a magic labeling of G in Z_{k} that induces a vertex labeling with sum zero.
$2.6 \mathrm{~B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ denotes the graph with k cycles $\mathrm{C}_{\mathrm{j}}(\mathrm{j} \geq 3)$ of size n_{j} in which all C_{j} 's $(\mathrm{j}=1,2, \ldots \mathrm{k})$ have a common vertex.
2.7 The chain of cycles $C\left(n_{1}, n_{2}, \ldots n_{k}\right)$ denotes the graph of k cycles $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{k}}$ of sizes $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}$ such that for $\mathrm{i}=1,2, . . \mathrm{k}-1, \mathrm{C}_{\mathrm{i}}$ and $\mathrm{C}_{\mathrm{i}+1}$ have a common vertex.

3. OBSERVATION [1]

By labeling the edges of even cycle as α, the vertex sum is 2α or if their edges are labeled as $\alpha_{1} \& \alpha_{2}$ alternatively then the vertex sum is $\alpha_{1}+\alpha_{2}$. But the edges of odd cycles can only be labeled as α with the index sum 2α.

4. MAIN RESULTS

4.1 Theorem

The graph of two cycles C_{1} and C_{2} with a common vertex is group magic when both cycles are either odd or even.

Proof:

G is the graph of 2 cycles C_{1} and C_{2} with a common vertex. Let u be the common vertex. The vertices which are adjacent with u of the two cycles C_{1} and C_{2} be u_{1}, v_{1} and u_{2}, v_{2} respectively. If the edges $\mathrm{uu}_{1}, \mathrm{uv}_{1}, \mathrm{uu}_{2}$, and uv_{2} are labeled as $\alpha_{1}, \alpha_{2}, \alpha_{3} \& \alpha_{4}$, the α 's are chosen from A^{*} such that the edge labels are nonzero, then the vertex sum at u is $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$. To get this vertex sum at each of the other vertices we have to label the edges of cycle C_{1} as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and α_{1} alternatively from the edge which is adjacent with u_{1}. Similarly the edges of the cycle C_{2} are labeled as $\alpha_{1}+\alpha_{2}+\alpha_{4}$ and α_{3} alternatively from the edge which is adjacent with u_{2}. This labeling gives the vertex sum as $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ at all vertices except at v_{1} and v_{2}.

Case 1: Both C_{1} and C_{2} are odd cycles.
If C_{1} and C_{2} are odd cycles the edge which is adjacent with uv_{1} gets the label as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and the edge which is incident with $u v_{2}$ gets the label as $\alpha_{1}+\alpha_{2}+\alpha_{4}$. So at v_{1} and v_{2} the magic condition requires
$\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}=\alpha_{2}$, and $\alpha_{3}=\alpha_{4}$.
Thus when the cycles C_{1} and C_{2} are odd, the edges incident with u of $\mathrm{C}_{\mathrm{i}}(\mathrm{i}=1,2)$ are labeled as $\alpha_{\mathrm{i}}(\mathrm{i}=1,2)$ the remaining edges of C_{1} are labeled as $\alpha_{1}+2 \alpha_{2}$ and α_{1} alternatively while those of C_{2} labeled as $2 \alpha_{1}+\alpha_{2}$ and α_{2} alternatively. This labeling gives the vertex sum $2\left(\alpha_{1}+\alpha_{2}\right)$.

Fig 2
Case 2: Both C_{1} and C_{2} are even
If C_{1} and C_{2} are even cycles the edge which is adjacent with uv_{1} gets the label as α_{1} and the edge which is adjacent with uv_{2} gets the label as α_{3}. So at v_{1} and v_{2} the magic condition requires
$\alpha_{1}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{3}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}+\alpha_{2}=0$, and $\alpha_{3}+\alpha_{4}=0$
This leads to the vertex sum as zero.
Hence when the cycles C_{1} and C_{2} are even, by the above discussion G is zero sum magic.

Case 3: Either C_{1} or C_{2} is odd
Suppose C_{1} is odd and C_{2} is even, the edge which is adjacent with $u v_{1}$ gets the label as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and the edge which is adjacent with uv_{2} gets the label as α_{3}.
So at v_{1} and v_{2} the magic condition requires
$\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
$\alpha_{3}+\alpha_{4}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$
Hence $\alpha_{1}=\alpha_{2}$, and $\alpha_{1}+\alpha_{2}=0$.
Which in turn $\alpha_{1}=0$ which is impossible.
This result can be extended to $\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$.

4.2 Theorem

$\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ for $\mathrm{k} \geq 3$ is group magic.

Proof :

Denote the common vertex in $B_{V}\left(n_{1}, n_{2}, \ldots n_{k}\right)$ as u and the vertices of C_{j} which are adjacent to u as u_{j} and v_{j} for every $j=$ $1,2, \ldots \mathrm{k}$.

Case 1:Among C_{j} 's $(j=1,2, \ldots k)$ at least two are even cycles. For our convenience let us take $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{s}}$ are the odd cycles and the remaining k -s cycles are even. In each C_{j}, label the edges $u u_{j}$ and $u v_{j}$ as $\alpha_{2 j-1}$ and $\alpha_{2 j}$. At u the vertex sum is $\sum_{i=1}^{2 k} \alpha_{i}$. Choose α^{\prime} s from A* such that the edge labels are nonzero.

In C_{1} the remaining edges are labeled $\sum_{i=1}^{2 k} \alpha_{i}-\alpha_{1}$ and α_{1} alternatively from the edge which is incident with u_{1}. At v_{1} the magic condition requires
$\sum_{i=1}^{2 k} \alpha_{i}-\alpha_{1}+\alpha_{2}=\sum_{i=1}^{2 k} \alpha_{i}$.
That is $\alpha_{1}=\alpha_{2}$
Similarly we can do for the cycles C_{j} for $\mathrm{j}=2, \ldots, \mathrm{~s}$.
we have $\alpha_{2 j-1}=\alpha_{2 j}$ for $j=2, \ldots s$.
In each C_{j} for $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$, the remaining edges are labeled $\sum_{i=1}^{2 k} \alpha_{i}-\alpha_{2 j-1}$ and $\alpha_{2 j-1}$ alternatively from the edge which is incident with u_{j}. At v_{j} the magic condition requires
$\alpha_{2 j-1}+\alpha_{2 j}=\sum_{i=1}^{2 k} \alpha_{i}$.
That is $\sum_{i=1, i \neq 2 j-1, i \neq 2 j}^{2 k} \alpha_{i}=0$ for each $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$
These k-s equations can be written as,
$2 \sum_{i=1}^{s} \alpha_{2 i-1}+\sum_{i=s+1, i \neq j}^{k}\left(\alpha_{2 i-1}+\alpha_{2 i}\right)=0$
Taking $\mathrm{M}=-2 \sum_{i=1}^{s} \alpha_{2 i-1}$
Equation (1) gives
$\sum_{i=s+1, i \neq j}^{k}\left(\alpha_{2 i-1}+\alpha_{2 i}\right)=\mathrm{M}$
From these k-s equations we get $\alpha_{2 j-1}+\alpha_{2 j}=\alpha_{2 i-1}+\alpha_{2 i}$ for every i and $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$.
Substituting in (1) we get for each $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$
$2 \sum_{i=1}^{s} \alpha_{2 i-1}+(k-s-1)\left(\alpha_{2 j-1}+\alpha_{2 j}\right)=0$
That is $\alpha_{2 j-1}+\alpha_{2 j}=\frac{1}{k-s-1} \mathrm{M}$
Provided k-s $\neq 1$, that is $\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ contains at least two even cycles.

Thus choosing α_{j} for $\mathrm{j}=\mathrm{s}+1, \mathrm{~s}+2, \ldots \mathrm{k}$ in such a way that it satisfies (2) will give the group magic labeling with the vertex sum

$$
\begin{align*}
& \sum_{i=1}^{2 k} \alpha_{i}=-\mathrm{M}+(\mathrm{k}-\mathrm{s})\left(\alpha_{2 \mathrm{j}-1}+\alpha_{2 \mathrm{j}}\right) \\
&=-\mathrm{M}+\frac{k-s}{k-s-1} \mathrm{M} \\
&= \frac{1}{k-s-1} \mathrm{M} \tag{3}
\end{align*}
$$

If all the cycles are even then M takes the value zero. So $B_{V}\left(n_{1}, n_{2}, \ldots n_{k}\right)$ is zero sum magic when all n 's are even.

Case 2: Among C_{j} 's $(j=1,2, \ldots k)$ only one C_{j} is even cycle.
Let C_{k} be the even cycle. Label the edges u_{j} and u_{j} as α_{j} $(\mathrm{j}=1,2, \ldots \mathrm{k}-1)$ and the remaining edges of those C_{j} 's are labeled $\mathrm{T}-\alpha_{\mathrm{j}}$ and α_{j} alternatively, where T is the vertex sum.
Label the edges u_{k} and uv_{k} as α_{k} and $\alpha_{\mathrm{k}^{\prime}}$. Here the vertex sum is
$\mathrm{T}=2 \sum_{i=1}^{k-1} \alpha_{i}+\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}$
Since C_{k} is even cycle, the remaining edges of C_{k} are labeled as $\mathrm{T}-\alpha_{k}$ and α_{k} alternatively from the edge which is incident with u_{k}. At v_{k} the magic condition requires

$$
\begin{equation*}
\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}}=2 \sum_{i=1}^{k-1} \alpha_{i}+\alpha_{\mathrm{k}}+\alpha_{\mathrm{k}^{\prime}} \tag{4}
\end{equation*}
$$

Shows $\quad \sum_{i=1}^{k-1} \alpha_{i}=0$
Thus choosing α_{j} for $\mathrm{j}=1,2, \ldots \mathrm{k}-1$ in such a way that it satisfies (4) will give the group magic labeling with the vertex sum $T=\alpha_{k}+\alpha_{k^{\prime}}$. Here $k>2$. If $k=2$ the condition (4) shows $\alpha_{1}=$ 0 which is impossible. This one is derived in case 3 of theorem 4.1.

Case 3: All C ${ }_{j}$'s $(j=1,2, \ldots k)$ are odd.
Label the edges uu_{j} and uv_{j} as $\alpha_{\mathrm{j}}(\mathrm{j}=1,2, \ldots \mathrm{k})$ and the remaining edges of C_{j} are labeled alternatively as $2 \sum_{i=1}^{k} \alpha_{i^{-}} \alpha_{\mathrm{j}}$ and α_{j}. This labeling induces a vertex $\operatorname{sum} 2 \sum_{i=1}^{k} \alpha_{i}$.

4.3 Illustrations

For case 1
Consider $\mathrm{k}=4$ and $\mathrm{s}=2$ and choose the edge labels $\alpha_{1}=\alpha_{2}=1, \alpha_{3}$ $=\alpha_{4}=2$, then $\mathrm{M}=-2(1+2)=-6$ and $\mathrm{k}-\mathrm{s}-1=1$

Now choose $\alpha_{5}, \alpha_{6}, \alpha_{7}$, and α_{8} such that $\alpha_{5}+\alpha_{6}=-6$ and $\alpha_{7}+\alpha_{8}=-6$, here the vertex sum is -6 .

For case 2
Let $\mathrm{k}=4$ and $\mathrm{s}=1$

Fig 4

4.4 Corollary

$\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ for $\mathrm{k} \geq 3$ is h - magic for $\mathrm{h}>\mathrm{k}$ where k is the maximum of all edge labels.

4.5 Theorem

The chain of three cycles $C\left(n_{1}, n_{2}, n_{3}\right)$ is group magic.

Proof:

Consider 3 cycles $\mathrm{C}_{1}, \mathrm{C}_{2}$, and C_{3}. Let u^{\prime} be the vertex common to C_{1} and C_{2} and the vertex common to C_{2} and C_{3} be $u^{\prime \prime}$. Let the vertices adjacent to u^{\prime} in C_{1} be $\mathrm{u}_{1}, \mathrm{v}_{1}$, those in C_{2} be $\mathrm{u}_{2}, \mathrm{v}_{2}$ and the vertices adjacent to $\mathrm{u}^{\prime \prime}$ in C_{2} be $\mathrm{u}_{2^{\prime}}, \mathrm{v}_{2}{ }^{\prime}$, those in C_{3} be $\mathrm{u}_{3}, \mathrm{v}_{3}$.

We label the edges $u^{\prime} u_{1}, u^{\prime} v_{1}, u^{\prime} u_{2}$ and $u^{\prime} v_{2}$ as $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and α_{4} respectively. Choose α^{\prime} s from A* such that the edge labels are nonzero.

To get the vertex sum as $\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$ at the vertices of C_{1} we label the other edges of C_{1} as $\alpha_{2}+\alpha_{3}+\alpha_{4}$ and α_{1} alternatively from the edge which is adjacent with $u^{\prime} u_{1}$.

Result:1

If C_{1} is odd cycle the edge incident with v_{1} will receive the label as $\alpha_{2}+\alpha_{3}+\alpha_{4}$. To satisfy the magic condition at v_{1} we require
$\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$.
Hence $\alpha_{2}=\alpha_{1}$. Here the vertex sum is $2 \alpha_{1}+\alpha_{3}+\alpha_{4}$.

Result : 2

If C_{1} is even, the edge incident with v_{1} will receive the label as α_{1}.

The magic condition requires
$\alpha_{1}+\alpha_{2}=\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}$.
Hence $\alpha_{3}+\alpha_{4}=0$
This shows the edges $u^{\prime} u_{2}$ and $u^{\prime} v_{2}$ in C_{2} receives labels α_{3} and $-\alpha_{3}$. Here the vertex sum is $\alpha_{1}+\alpha_{2}$.

The above discussed results also hold for the cycle C_{3}. In C_{2} there are 2 paths joining u^{\prime} and $\mathrm{u}^{\prime \prime}$. Let them be P and Q . Now we see the labeling of G in the following cases.

Case 1: C_{2} even C_{1} and C_{3} are odd
By the result (1) the edges $u^{\prime \prime} u_{3}$ and $u^{\prime \prime} v_{3}$ in C_{3} receives the same label α_{1}.

To get the vertex sum at the vertices of C_{2} as $2 \alpha_{1}+\alpha_{3}+\alpha_{4}$, along P the edges of C_{2} can be labeled as $2 \alpha_{1}+\alpha_{4}$ and α_{3} alternatively from the edge which is incident with u_{2} and along Q the edges of C_{2} labeled as $2 \alpha_{1}+\alpha_{3}$ and α_{4} alternatively from the edge which is incident with v_{2}.
As C_{2} is even, both P and Q contain either odd or even number of edges. If both P and Q contain odd number of edges, along $P, u_{2}{ }^{\prime} u^{\prime \prime}$ and along $Q, v_{2}{ }^{\prime} u^{\prime \prime}$ gets the label as α_{3} and α_{4}. The remaining edges in C_{3} receive $\alpha_{1}+\alpha_{3}+\alpha_{4}$ and α_{1} alternatively. This labeling gives the vertex sum $2 \alpha_{1}+\alpha_{3}+\alpha_{4}$.
As P and Q are the paths joining u^{\prime} and $\mathrm{u}^{\prime \prime}$ and since G is a simple graph both P and Q cannot contain exactly one edge. So C_{2} must contain more than four edges. Refer figure 6.

If both P and Q contain even number of edges, along $\mathrm{P}, \mathrm{u}_{2}{ }^{\prime} \mathrm{u}^{\prime \prime}$ and along $\mathrm{Q}, \mathrm{v}_{2} \mathrm{u}^{\prime \prime}$ gets the label as $2 \alpha_{1}+\alpha_{4}$ and $2 \alpha_{1}+\alpha_{3}$.

To attain the magic condition at $u^{\prime \prime}$, the edges of C_{3} which are incident with $u^{\prime \prime}$ must take the label as $-\alpha_{1}$ and $-\alpha_{1}$. The remaining edges in C_{3} receive $3 \alpha_{1}+\alpha_{3}+\alpha_{4}$ and $-\alpha_{1}$ alternatively.

In this case also the vertex sum is $2 \alpha_{1}+\alpha_{3}+\alpha_{4}$. Refer figure 7 .
Case 2 : All C_{1}, C_{2} and C_{3} are even.
From result (2) $\alpha_{4}=-\alpha_{3}$. If both P and Q contain odd number of edges, along $P, u_{2}{ }^{\prime} u^{\prime \prime}$ and along $Q, v_{2}{ }^{\prime} u^{\prime \prime}$ gets the label as α_{3} and $-\alpha_{3}$. Here α_{3} should be chosen in such a way that $\alpha_{3} \neq$
$\alpha_{1}+\alpha_{2}$. The edges of C_{1} and C_{3} receive the labels α_{1} and α_{2} alternatively. Here the vertex sum is $\alpha_{1}+\alpha_{2}$. Refer figure 8 .

If both P and Q contain even number of edges, along $P, u_{2}{ }^{\prime} u^{\prime \prime}$ and along $\mathrm{Q}, \mathrm{v}_{2} \mathrm{u}^{\prime \prime}$ gets the label as $\alpha_{1}+\alpha_{2}-\alpha_{3}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$. Since C_{3} is even from result (2) we have $\alpha_{1}+\alpha_{2}-\alpha_{3}=-\left(\alpha_{1}+\alpha_{2}+\alpha_{3}\right)$.

This shows $\alpha_{1}+\alpha_{2}=0$. In this case the graph is zero sum magic.

Case 3: C_{2} even and either C_{1} or C_{3} is odd.
Suppose C_{1} is even from the result (2) $\alpha_{4}=-\alpha_{3}$. If both P and Q contain odd number of edges, along $\mathrm{P}, \mathrm{u}_{2} \mathrm{u}^{\prime \prime}$ and along Q , $v_{2}{ }^{\prime} u^{\prime \prime}$ gets the label as α_{3} and $-\alpha_{3}$. To attain the magic condition at $u^{\prime \prime}$, the edges of C_{3} which are incident with $u^{\prime \prime}$ must take the label as α_{1} and α_{2}. Since C_{3} is odd by the result (1) we have $\alpha_{2}=\alpha_{1}$. Hence the edges of C_{2} along P receive labels $2 \alpha_{1}-\alpha_{3}$ and α_{3} alternatively from the edge which is incident with u_{2} and those along Q receives $2 \alpha_{1}+\alpha_{3}$ and $-\alpha_{3}$ alternatively from the edge which is incident with v_{2}. Here α_{3} should be chosen in such a way that $\alpha_{3} \neq 2 \alpha_{1}$. The remaining edges in C_{3} receive α_{1}. This labeling gives the vertex sum $2 \alpha_{1}$. Refer figure 9 .
If both P and Q contain even number of edges, discussing as before in this case also the vertex sum is $2 \alpha_{1}$. Refer figure 10 .

Case 4: All C_{1}, C_{2} and C_{3} are odd.
By the result (1) the edges in C_{1} which are incident with u^{\prime} receives the same label α_{1}. Since C_{2} is odd either P or Q contains odd number of edges. Suppose P contain odd number of edges, the edge in P which is incident with $\mathrm{u}^{\prime \prime}$ receives α_{3}. The edge in Q which is incident with $\mathrm{u}^{\prime \prime}$ receives $2 \alpha_{1}+\alpha_{3}$. The magic condition at $u^{\prime \prime}$ requires the labels of edges of C_{3} incident with $\mathrm{u}^{\prime \prime}$ as α_{4} and $-\alpha_{3}$. Since C_{3} is odd from result (1) we have $\alpha_{4}=-\alpha_{3}$. In this case the vertex sum is $2 \alpha_{1}$ and α_{3} should be chosen in such a way that $\alpha_{3} \neq 2 \alpha_{1}$. Suppose Q contain odd number of edges, same result derived from the similar argument. Refer figure 11.

Case 5: C_{2} is odd and both C_{1} and C_{3} are even
Since C_{1} is even, from the result (2) $\alpha_{4}=-\alpha_{3}$. If P contains odd number of edges, the edge in P which is incident with $\mathrm{u}^{\prime \prime}$ receives α_{3}. The edge in Q which is incident with $u^{\prime \prime}$ receives $\alpha_{1}+\alpha_{2}+\alpha_{3}$. Since C_{3} is even from result (2) we have $\alpha_{1}+\alpha_{2}+\alpha_{3}=-\alpha_{3}$.
Shows $\alpha_{3}=-\left(\alpha_{1}+\alpha_{2}\right) / 2$.
Hence choosing α_{3} as $-\left(\alpha_{1}+\alpha_{2}\right) / 2$ the labeling is possible and it gives the vertex sum $\alpha_{1}+\alpha_{2}$. Suppose Q contain odd number of edges, same result derived from the similar argument.

Case 6: $\mathrm{C}_{1}, \mathrm{C}_{2}$ are odd and C_{3} even
By the result (1) the edges in C_{1} which are incident with u^{\prime} receives the same label α_{1}. If P contains odd number of edges, the edge in P which is incident with $\mathrm{u}^{\prime \prime}$ receives α_{3}. The edge in Q which is incident with $\mathrm{u}^{\prime \prime}$ receives $2 \alpha_{1}+\alpha_{3}$. Since C_{3} is even from result (2) we have
$2 \alpha_{1}+\alpha_{3}=-\alpha_{3}$.
And therefore $\alpha_{3}=-\alpha_{1}$.
Hence choosing α_{3} as $-\alpha_{1}$ labeling is possible and it gives the vertex sum $\alpha_{1}+\alpha_{4}$.

4.6 Illustrations

Case 1

Fig 7

Case 2

Fig 8
Case 3

Fig 10
Case 4

Fig 11

4.7 Corollary

G is h - magic for $\mathrm{h}>\mathrm{k}$ where k is the maximum of all edge labels.

4.8 Theorem

The chain of cycles $C\left(n_{1}, n_{2}, \ldots n_{k}\right)$ is zero sum magic when k and all C_{j} 's are even.

Proof:

The case $\mathrm{k}=2$ is in the case- 2 of theorem 4.1.
For $\mathrm{i}=1,2, \ldots, \mathrm{k}-1$, let u_{i} be the vertex common to C_{i} and $\mathrm{C}_{(\mathrm{i}+1)}$ and let P_{i} and Q_{i} are the paths joining u_{i} and $u_{(i+1)}$.

Consider $C\left(n_{1}, n_{2}, \ldots n_{k}\right)$ for $k=4$. The labeling of the graph is discussed as in theorem 4.5. From result (2) of theorem-4.5 the edges of C_{1} which are incident with u_{1} gets the labels α_{1}
and α_{2} and the edges of P_{1} and Q_{1} which are incident with u_{1} gets labels α_{3} and $-\alpha_{3}$. Since all cycles are even, for $i=1,2$ and 3 both P_{i} and Q_{i} contains either even or odd number of edges.

Consider both P_{i} and Q_{i} contains even number of edges. In C_{2} if the edge of P_{1} and Q_{1} gets the label α_{3} and $-\alpha_{3}$ then the edge of P_{1} and Q_{1} which is incident with u_{2} gets the label $\alpha_{1}+\alpha_{2}-\alpha_{3}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$. To get the vertex sum at u_{2} as $\alpha_{1}+\alpha_{2}$, the edges of C_{3} incident with u_{2} gets $-\alpha_{1}$ and $-\alpha_{2}$. The edges of C_{3} which are incident with u_{3} receive the label $2 \alpha_{1}+\alpha_{2}$ and $\alpha_{1}+2 \alpha_{2}$. As C_{4} is even from result (2), $2 \alpha_{1}+\alpha_{2}+\alpha_{1}+2 \alpha_{2}=0$. This proves the vertex sum as zero.

Consider both P_{i} and Q_{i} contains odd number of edges. In C_{2} if the edge of P_{1} and Q_{1} gets the label α_{3} and - α_{3} then the edge of P_{1} and Q_{1} which is incident with u_{2} also gets the label α_{3} and $-\alpha_{3}$ respectively. To get the vertex sum at u_{2} as $\alpha_{1}+\alpha_{2}$, the edges of C_{3} incident with u_{2} gets α_{1} and α_{2}. The edges of C_{3} which are incident with u_{3} receive the label α_{1} and α_{2}. As C_{4} is even from result (2), $\alpha_{1}+\alpha_{2}=0$. This proves the vertex sum as zero.

Suppose both P_{1} and Q_{1} contains even number of edges and both P_{2} and Q_{2} contains odd number of edges. Discussing the edge labels as above the edge of P_{1} and Q_{1} which is incident with u_{2} gets the label $\alpha_{1}+\alpha_{2}-\alpha_{3}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$. To get the vertex sum at u_{2} as $\alpha_{1}+\alpha_{2}$, the edges of C_{3} incident with u_{2} gets $-\alpha_{1}$ and $-\alpha_{2}$. The edges of C_{3} which are incident with u_{3} receive the label $-\alpha_{1}$ and $-\alpha_{2}$.
Similarly we can prove for any even number k, the labeling of the graph $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ as discussed in the above two cases will give the vertex sum as zero.

4.9 Theorem

Let $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ be a chain of k cycles C_{j} with k is odd and all C_{j} 's are even. For $\mathrm{i}=1,2, \ldots \mathrm{k}-2$, let P_{i} 's and Q_{i} 's are the paths in the cycle $\mathrm{C}_{(i+1)}$ connecting the vertices u_{i} and $\mathrm{u}_{(i+1)}$ where the vertex u_{i} is common to C_{i} and $\mathrm{C}_{(\mathrm{i}+1)}$ and the vertex $\mathrm{u}_{(i+1)}$ is common to $\mathrm{C}_{(i+1)}$ and $\mathrm{C}_{(i+2) \text {. If P's and Q's contains }}$ odd number of edges then $C\left(n_{1}, n_{2}, \ldots n_{k}\right)$ is group magic and if P's and Q's contains even number of edges then $C\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ is zero sum magic.

Proof:

As the end cycle C_{1} is even by result (1) of theorem 4.5 the edges of C_{1} which are incident with u_{1} gets the labels α_{1} and α_{2} and the edges of P_{1} and Q_{1} which are incident with u_{1} gets labels α_{3} and $-\alpha_{3}$. Since all cycles are even, for $\mathrm{i}=1,2, \ldots, \mathrm{k}-2$, both P_{i} and Q_{i} contains either even or odd number of edges.

Consider all P_{i} 's and Q_{i} 's contains odd number of edges. The edges of P_{1} and Q_{1} incident with u_{2} get the labels α_{3} and - α_{3} and the edges of P_{2} and Q_{2} incident with u_{2} gets the labels α_{1} and α_{2}. Since P_{2} and Q_{2} contains odd number of edges, the edges of P_{2} and Q_{2} incident with u_{3} get the labels α_{1} and α_{2} and the edges of P_{3} and Q_{3} incident with u_{3} gets the labels α_{3} and $-\alpha_{3}$. Continuing in the same way it can be observed that the edges of $\mathrm{P}_{\mathrm{k}-1}$ and $\mathrm{Q}_{\mathrm{k}-1}$ incident with $\mathrm{u}_{\mathrm{k}-1}$ gets the labels α_{3} and $-\alpha_{3}$ and the edges of C_{k} incident with $u_{(k-1)}$ gets the labels α_{1} and α_{2} since k is odd. Thus at all vertices the vertex sum is $\alpha_{1}+\alpha_{2}$.

Consider all P_{i} 's and Q_{i} 's contains even number of edges. The edges of P_{1} and Q_{1} incident with u_{2} get the labels $\alpha_{1}+\alpha_{2}-\alpha_{3}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$ and the edges of P_{2} and Q_{2} incident with u_{2} gets the labels $-\alpha_{1}$ and $-\alpha_{2}$. Since P_{2} and Q_{2} contains even number of edges, the edges of P_{2} and Q_{2} incident with u_{3} get the labels $2 \alpha_{1}+\alpha_{2}$ and $\alpha_{1}+2 \alpha_{2}$ and the edges of P_{3} and Q_{3} incident with u_{3} gets the labels $-2 \alpha_{1}$ and $-2 \alpha_{2}$. Continuing in the same way it
can be observed that the edges of $\mathrm{P}_{\mathrm{k}-1}$ and $\mathrm{Q}_{\mathrm{k}-1}$ incident with $\mathrm{u}_{\mathrm{k}-1}$ gets the labels ($\left.\mathrm{k}-2\right) \alpha_{1}+\alpha_{2}$ and $\alpha_{1}+(\mathrm{k}-2) \alpha_{2}$ since k is odd. Since C_{k} is even from result (2) of theorem 4.5, we have $(k-2) \alpha_{1}+\alpha_{2}+\alpha_{1}+(k-2) \alpha_{2}=0$.
This shows the vertex sum $\alpha_{1}+\alpha_{2}$ is zero.

5. CONCLUSION AND FUTURE WORK

In theorems 4.1 and 4.2 it was derived that in group magic labeling of $\mathrm{B}_{\mathrm{V}}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ the vertex sum contains as many distinct labels as many odd cycles. The vertex sum is zero when all cycles are even. The chain of cycles $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ is group magic when there are odd number of cycles in $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ also the path connecting the common vertices have odd number of edges. The chain of cycles $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ is zero sum magic when there are even number of even cycles in $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ and also in the case that there are odd number of cycles in $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ and the path connecting the common vertices have even number of edges. We further work to derive the group magic labeling to the chain of cycles $\mathrm{C}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots \mathrm{n}_{\mathrm{k}}\right)$ in the remaining cases.

6. REFERENCES

[1] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, Fourteenth edition, November 17, 2011.
[2] E.Salehi, P.Bennett, "Integer-Magic Spectra of Caterpillars", J. Combin. Math. Combin. Comput., 61 (2007), 65-71.
[3] C. Shiu, Richard M.Low, "Group magicness of complete n- partite graphs"
[4] Baskar Babujee, L.Shobana, "On Z_{3}. magic graphs", Proceedings of the International Conference on mathematics and computer science,131-136.
[5] Ebrahim salehi ,"Zero-sum magic graphs and their null sets", ARS combinatorial 82(2007),41-53
[6] E. Salehi, "Integer-Magic Spectra of Cycle Related Graphs", Iranian J. Math. Sci Inform., 2 (2006), 53-63.
[7] K.Kavitha, R.Sattanathan, "Group magicness of some special graphs", Proceedings of the International Conference on Mathematical Methods and Computation,24-25 July,2009.pp.152-157.
[8] K.Kavitha, R.Sattanathan, "Construction of group magic labeling of multiple copies of cycles with different sizes", International Journal of Algorithms, Computing And Mathematics, Vol 3,No.2,May 2010,1-9
[9] K.Kavitha , R.Sattanathan, "Group magic labeling in biregular graphs" IJAM, Volume 23 No. 6, 2010 ISSN 1311-1728,1103-1116
[10] K.Kavitha, K.Thirusangu, "Group magic labeling of two or more cycles with a common vertex" International conference on Bioinformatics, Computational biology 23-25 July, 2012 (yet to be published).

