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ABSTRACT
Low complexity and reconfigurability are reported to be the key
features in a software defined radio (SDR). To obtain these features,
a reconfigurable architecture based on frequency response masking
(FRM) technique can be used for the implementation of the chan-
nel filters in the SDR. The frequency response masking approach is
proved to be a good candidate for the realization of a sharp digital
finite impulse response (FIR) filter with low complexity. To reduce
the complexity and power consumption for hardware realization, a
design method which makes the channel filters totally multiplier-
less is proposed in this paper. Continuous filter coefficients are first
converted to finite precision coefficients using signed power of two
(SPT) space to obtain a multiplier-less filter. The representation of
the FRM filter coefficients in the SPT space can degrade the filter
performance. This calls for the use of a suitable optimization tech-
nique. The classical gradient based optimization techniques can-
not be deployed here, because the search space consists of inte-
gers. In this context, meta-heuristic algorithm is a good choice as it
can be tailor made to suit the problem under consideration. They
are especially useful in finding near optimal solutions in multi-
modal, multidimensional space. Several meta-heuristic algorithms
are modified in this paper to be used for the discrete optimization.
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1. INTRODUCTION
For applications like software defined radio (SDR) [1], a tech-
nology which provides multi-band, multi-standard and multi-
service is required. Low complexity and reconfigurability are es-
sential features of the channel filters in SDR. The channelizer in
the SDR receiver extracts non-uniform sub-bands from the input
signal [2]. Since the channelizer operates at the highest sampling
rate, channel filters need to be implemented with less complexity
and should consume less power. Frequency Response Masking
(FRM) is a method to implement filters with less complexity and
sharp transition width [3]. The complexity reduction of the fil-
ters implemented using FRM method is due to the large number
of zero valued multiplier coefficients. A reconfigurable architec-
ture based on FRM is reported in [4]-[7] in which non uniform
channels are extracted from the same prototype filter using dif-
ferent interpolation factors and masking filters for each channel.
A modification of this approach using multiple stage FRM for
the prototype filter and multiple level of masking filters when

their orders are high is reported [8], which reduces the complex-
ity of the channel filters further. The sub-filters of the FRM filter
are designed using Remez Exchange algorithm [9].

In this paper, a further reduction in the complexity is proposed,
whereby the filter representation becomes totally multiplier-less.
This is achieved by converting the infinite precision filter coef-
ficients into finite precision coefficients using signed power-of-
two (SPT) space. The SPT system allows the multiplications to
be replaced by shift and add operations [10]. Since the multipli-
ers are the major power and area consuming components of a
filter, this results in low power hardware realizable digital filters.
Canonic Signed Digit (CSD) representation is a special case of
the SPT space, which uses both additions and subtractions [11].
Because of this, only a minimum number of non-zero SPT terms
is needed to represent a decimal number.

When the continuous filter coefficients are rounded using finite
number of bits in the CSD space, the performance of the filter
degrades. So, efficient optimization techniques in the discrete
space are required to improve the performance of the CSD rep-
resented filters. Since, here, the search space contains integers,
meta-heuristic algorithms have to be used instead of classical
gradient based optimization techniques. If the parameters are
properly selected, these algorithms will result in a global solu-
tion.

A ternary coded genetic algorithm based on the look up table
for the optimization of FRM channel filters is presented in [8].
When ternary coded filter coefficients are used, the various oper-
ations of the optimization algorithm may result in non canon-
ical bit strings. So, suitable restoration algorithms are needed
to convert them into canonical bit strings [12]. Integer coded
GA, in which the integer indices of the look up table entries
are used to get the solution, is proposed in [13]. Integer coded
Artificial Bee Colony (ABC) algorithm [14] is used for the opti-
mization of multiplier-less transmultiplexer by Manoj and Eliz-
abeth [15]. A modified integer coded ABC and integer coded
Differential Evolution (DE) algorithm for the design of CSD en-
coded FRM filter are presented by Manju and Elizabeth [16]. In
this paper, multiplier-less reconfigurable channel filters are im-
plemented using various meta-heuristic algorithms like, Differ-
ential Evolution(DE), Harmony Search Algorithm (HSA) [17],
Gravitational Search Algorithm (GSA) [18] and Artificial Bee
Colony Algorithm (ABC). Such an approach is not reported in
the literature so far. All the optimization algorithms in this work
use integer coded filter coefficients. A comparative study of the
performance of the multiplier-less channel filters in terms of the
pass-band ripple and stop-band attenuation for various optimiza-
tion techniques, is presented in this paper.

The paper is organized as follows. Section 2 gives an overview
of the FRM approach. Section 3 discusses Reconfigurable Fil-
ters Based on FRM. Section 4 provides a brief description of
the CSD representation. Section 5 gives a brief overview of vari-
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Fig. 1. Basic FRM Filter Architecture

ous meta-heuristic optimization techniques ABC, DE, HSA and
GSA. The problem statement is discussed in Section 6. Section
7 gives the design of the continuous coefficient and CSD repre-
sented channel filters. In Section 8, the design of multiplier-less
channel filters using various meta-heuristic algorithms is illus-
trated. The results and discussions are presented in Section 9.
Section 10 concludes the paper.

2. REVIEW OF FRM APPROACH
Let H(z) be the transfer function of the desired FIR low pass
filter with pass-band and stop-band edge frequencies fp and fs
respectively. FRM FIR filter is composed of a band edge shaping
filter Ha(z), masking filter HMa(z) and complementary mask-
ing filter HMc(z). The complementary filter Hc(z) of Ha(z)
can be expressed as given below

Hc(z) = z
−(N−1)

2 −Ha(z) (1)

Ha(z) and Hc(z) are interpolated with a factor M and are cas-
caded with the masking filters HMa(z) and HMc(z) respec-
tively. Thus, the transfer function of the overall FIR FRM filter
H(z) [3] is given by

H(z) = Ha(z
M )HMa(z) +Hc(z

M )HMc(z) (2)

The structure of the FRM FIR filter is given in Fig.1 [3]. The
design steps for the sub-filters are given below [3]:

m = bfp ∗Mc fap = fpM−m fas = fsM−m (3)

fmap = fp fmas =
m+ 1− fas

M

fmcp =
m− fap
M

fmcs = fs

(4)

where bxc denotes the largest integer less than x, M is the in-
terpolating factor, fp and fs respectively are the pass-band and
stop-band frequencies of the final filter H(z). fap and fas are the
pass-band and stop-band frequencies respectively of the proto-
type filter Ha(z). fmap and fmcp are the pass-band frequencies
and fmas and fmcs are the stop-band frequencies of the masking
filtersHMa(z) andHMc(z) respectively. The transition width of
the overall filter H(z) is 1

M
times the transition width of Ha(z)

i.e. (fas−fap)

M
. The frequency responses of each filter are given

in Fig.2 [3].

3. RECONFIGURABLE FILTERS BASED ON
FRM

The reconfigurable filter structure given in [4]-[7] is based on
the FRM technique, where, different channel filters with non-
uniform bandwidths are derived from the same prototype filter.
Different interpolation factors and masking filters are used to de-
rive the different channel filters from the same prototype filter.
For example, two channel filters with pass-band frequencies fp1
and fp2 and stop-band frequencies fs1 and fs2 respectively need
to be designed. Let the pass-band and stop-band frequencies of
the prototype filter be fap and fas respectively. For this, two

Fig. 2. Frequency response illustration of FRM approach

Fig. 3. The structure of the two channel reconfigurable filters

interpolation factors M1 and M2 are to be found using the fol-
lowing equations [4]-[7]:

fap = fp1M1 − bfp1M1c = fp2M2 − bfp2M2c (5)
fas = fs1M1 − bfs1M1c = fs2M2 − bfs2M2c (6)

The masking filters for each channel can be designed using Eq.
4. The structure of the two channel reconfigurable filters is given
in Fig.3 [4].HMa1 andHMc1 are the masking filters for channel
1 andHMa2 andHMc2 are the masking filters for channel 2.M1

and M2 are the interpolation factors for channel 1 and channel 2
respectively.

4. CANONIC SIGNED DIGIT
REPRESENTATION (CSD)

Any FIR filter can be represented as

y(n) =

N−1∑
k=0

h(k)x(n− k) (7)

where N is the length of the FIR filter, h(k) are the filter coef-
ficients and x(n) is the input signal. The implementation of the
continuous coefficient FIR filter consists of multipliers, which
are the main power consuming components. If the filter coeffi-
cients are represented in the SPT space, multipliers can be re-
placed by shifters and adders. The number of non-zero bits in
the filter coefficient representation decides the number of partial
product additions and hence the adders. So the number of adders
can be reduced by reducing the number of non-zero bits in the
filter coefficients. CSD representation is a unique representation
of the filter coefficients with minimum number of non-zero bits
[10]-[11]. A fractional number q is represented in CSD format
as [11].

q =

W∑
i=1

ci2
R−i (8)

where ci = {-1, 1, 0} and W is the word length of the CSD num-
ber. No adjacent bits in the CSD representation can be non-zero
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i.e. ci ∗ ci−1 = 0, where ci is the ith bit in the CSD representa-
tion.

5. OVERVIEW OF OPTIMIZATION
ALGORITHMS

Since, in this work, the performance of the CSD represented
channel filters is optimized, the search space consists of inte-
gers. So classical gradient based optimization algorithms cannot
be used. The meta-heuristic algorithms are found to be suitable
for optimization problems in which the search space contains
integers. This section gives an overview about meta-heuristic al-
gorithms like DE, ABC, GSA and HSA algorithms.

5.1 Differential Evolution (DE)
The DE algorithm is a simple evolutionary algorithm and is in-
troduced by R. Storn and K. V. Price [19]. Here, a new offspring
is generated by adjusting the existing vectors using a scaled dif-
ferential operator. DE is a simple and fast converging algorithm
and has only few control parameters. The main steps of the DE
algorithm include Mutation, Recombination and Selection and
are explained in Section 8.1.

5.2 Harmony Search Algorithm (HSA)
Inspired by the music improvisation scheme, Z. Geem intro-
duced the Harmony Search Algorithm [17], [20] for the opti-
mization of mathematical problems. In the music improvisation
scheme, each musician plays a note within the possible range
which together makes one harmony vector. If all the pitches
make a good harmony decided by an aesthetic standard, that
experience is stored in the musician’s memory. The possibility
to make a good harmony is increased next time. When a mu-
sician improvises one pitch, he follows any one of three rules
[17]: (1) playing any one pitch from his memory, (2) playing an
adjacent pitch of the pitch stored in his memory, and (3) play-
ing a totally random pitch from the possible range. Similarly, in
the HSA, when each decision variable chooses a value, it fol-
lows any one of the three rules [17]: (1) Memory considerations
in which the value is selected from the harmony memory, (2)
pitch adjustments in which a value is chosen which is adjacent
to the value from the harmony memory, and (3) randomization in
which a random value from the possible range is selected. These
three rules in HS algorithm are based on two parameters, i.e.,
harmony memory considering rate (HMCR) and pitch adjusting
rate (PAR). The various steps of HSA algorithm are discussed in
Section 8.2.

5.3 Gravitational Search Algorithm(GSA)
GSA [18] is a population based algorithm based on the law of
gravity and mass interactions. GSA can be considered as an arti-
ficial world of masses. In GSA, each mass (agent) has four spec-
ifications: position, inertial mass, active gravitational mass, and
passive gravitational mass. The position of the masses consti-
tutes the solution space and the performance of each solution is
measured in terms of their masses using fitness function. The
interactions of the masses are based on the Newtonian laws of
gravity and motion. Masses attract each other by the force of
gravity and objects are moved towards the object with heavier
mass, which represents the optimum solution. The heavy masses
move more slowly compared to lighter ones. Masses obey the
following laws [18]:
Law of gravity: Each particle attracts every other particle and
the gravitational force between two particles is directly propor-
tional to the product of their masses and inversely proportional
to the distance, R, between them.
Law of motion: the current velocity of any mass is equal to the
sum of the fraction of its previous velocity and the acceleration.

Acceleration of any mass is equal to the force acted on the sys-
tem divided by the mass of inertia.

The inertial mass of an agent represents its resistance to make
its movement slow. The velocity of an agent is controlled by
the gravitational mass and the inertial mass, which are computed
by the fitness function. The positions of the agents are updated
with every iteration. The various steps of GSA algorithm are de-
scribed in Section 8.3 in detail.

5.4 Artificial Bee Colony (ABC) Algorithm
Based on the foraging behaviour of honey bee swarm, Karaboga
proposed ABC algorithm in 2005 for solving multi-dimensional
and multi-modal optimization problems [14]. The colony of bees
consists of three types of bees: employed bees, onlooker bees and
scout bees.

Initially, each employed bee selects a food source randomly and
its nectar quality is determined. It searches the neighbouring area
for better food source. If a food source with higher nectar amount
is found, the employed bee memorizes the position of the new
food source and forgets the position of the old food source. Oth-
erwise, the position of old food source will be retained. Once
the search by all the employed bees are over, they pass the in-
formation of their food source to the onlooker bees. Now, the
onlooker bees determine the nectar information taken from all
the employed bees and a food source is selected with a prob-
ability depending on the nectar amount. If the nectar amount is
more, the corresponding food source will have higher probability
to get more number of onlooker bees. As in the case of employed
bees, onlookers also search for neighbouring area for better food
source. If a food source with higher nectar amount is found, on-
looker bee memorizes the position of the new food source and
forgets the position of the old food source. The employed bee
whose food source is abandoned due to poor nectar quality be-
comes a scout bee. Scout bees search for new food sources ran-
domly. Occasionally, the scouts can find food source with good
nectar quality. In ABC algorithm, the position of food sources
represent the possible solutions to the problem and the nectar
quality of a food source represents the fitness value of the cor-
responding solution. The detailed steps are explained in Section
8.4.

6. STATEMENT OF THE PROBLEM
In this work, low complexity non-uniform channel filters are de-
signed, which are suitable for hardware implementation. When
the continuous coefficient of the channel filters are rounded with
number of SPT terms, the performance of the channel filters may
degrade. So by selecting suitable optimization technique and ob-
jective function, we can improve the performance of the chan-
nel filters, which are totally multiplier-less. Since the different
channel filters are derived from the same prototype filter, the op-
timization of the prototype filter is done first and then that of
the masking filters of each channel as presented in [8]. The op-
timized prototype filter and optimized masking filters of each
channel are used to design the optimized channel filters. The for-
mulation of the objective function is discussed below.

6.1 Encoding of CSD filter coefficients
Once the continuous coefficients of the sub-filters of the channel
filters are obtained, they are converted into the CSD space. Con-
verting the filter coefficients into the CSD space is done using a
look up table approach [21]. In this work, a 12 bit CSD represen-
tation is used. A CSD look up table consisting of four fields are
created, namely, index, CSD representation, decimal equivalent
and number of SPT terms as shown in Table 1.
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Table 1. CSD look up table entries
Index CSD Decimal No: of

Representation Equivalent SPT Terms
1183 0100101000-10 0.5771 4

The optimization of the prototype filter will be done first. Since
the prototype filter is designed to have linear phase, only half the
number of coefficients of the filter need to be taken to form the
initial seed. If the prototype filter is made up of sub-filters using
the FRM method as discussed in Section 2, joint optimization of
these sub-filters has to be done i.e., the coefficients of the sub-
filters are concatenated together to form the initial seed of the
optimization problem. Since all the sub-filters are designed to
have linear phase, only half the number of coefficients of each
filter need to be taken and concatenated to form the initial seed.
This reduces the dimension of the optimization problem. Also,
since the joint optimization of the sub-filters is used, all of them
will be simultaneously adjusted to get better FRM filter response.

Now, the optimization of the masking filters need to be done. The
masking filters are designed to have linear phase. So, only half
the number of coefficients of each filter need to be concatenated
to form the initial seed in the optimization of masking filters.

Ternary encoding based optimization is discussed in [8]. When
the ternary encoding is used, dimension of the optimization prob-
lem is large. Also, restoration algorithms [12] are needed to bring
the non-canonical bit strings resulting from various operations
into the CSD format. So, in this work, they are encoded as the
signed indices of the look up table entries of the nearest CSD
equivalent [13], [15], [16]. Thus the initial solution is obtained
by concatenating these signed indices.

When the fitness is evaluated in each iteration, each index need
to be decoded to get the CSD equivalent. For this, the magni-
tudes of indices are used to address the look-up table, to access
the magnitudes of CSD filter coefficients and the number of SPT
terms in them. The signs of the indices are attached to the mag-
nitudes of the CSD filter coefficients, to get the actual values.

6.2 Formulation of the objective function
When the filter coefficients are represented in the CSD format,
all the multipliers are replaced with shifters and adders. The
number of adders required to implement the filter is proportional
to the number of SPT terms in the CSD representation. When the
filter coefficients are rounded to the nearest CSD representation
with restricted number of non-zero SPT terms, the frequency re-
sponse of the filter degrades. Suitable objective function need to
be used to optimize the performance of the multiplier-less filter
with minimum number of non-zero SPT terms.

In this paper, the pass-band ripple and stop-band attenuation of
the FRM filter is to be optimized with restricted average number
of non-zero bits. So the objective function should include these
parameters. The pass-band and stop-band error in the frequency
domain is defined respectively as:

F1(x) = |(|H(ω, x)| − 1)|, 0 < ω < ωp (9)
F2(x) = |H(ω, x)|), ωs < ω < π (10)

where, F1(x) is the pass-band error and F2(x) is the stop-band
error. The pass-band error and the stop-band error are the differ-
ence between the zero phase frequency response of the optimized
filter, H(ω, x) and the response of the ideal filter which is 1 in
the pass-band and 0 in the stop-band.

In this work, instead of representing each filter coefficient with
restricted number of non-zero SPT terms, the average number of
non-zero SPT terms in a filter is limited to a maximum value.
This allocation has more flexibility, since, here, the CSD filter

coefficients can contain different number of non-zero SPT terms.
To include the constraint for limiting the average number of non-
zero SPT terms in the CSD represented coefficients, a function
is added to the objective function using the penalty method [22].
If n(x) denotes the average number of non-zero SPT terms in
the optimized coefficients and nb is the required upper bound of
n(x), the penalty function added to the optimization problem is
given as

g(x) = max(0, n(x)− nb) (11)

where x is the vector constituted by the design variables.

In this paper, the average number of non-zero SPT terms is fixed
as 2. Thus after the optimization, we get channel filters with
better performance and reduced number of non-zero SPT terms.
Here, the objective function is intended to reduce the pass-band
and stop-band errors of the channel filters and the average num-
ber of non-zero SPT terms and is given below:

Minimize F (x) = α1F1(x) + α2F2(x) + α3g(x) (12)

where, α1, α2 and α3 are positive weighting coefficients and can
be taken considering the relative importance of each term in the
optimization problem. In this work, for the optimization of the
prototype filter, α1 and α2 are taken as 1 and α3 is taken as 0.1.
For the optimization of the masking filters of channel 1, α1 is
taken as 0.5, α2 is taken as 1 and α3 is taken as 0.25 and for the
optimization of the masking filters of the channel 2, α1 is taken
as 0.5 and α2 and α3 are taken as 1.

7. DESIGN EXAMPLE
In this work, reconfigurable two channel filters using FRM
method is designed as shown in Fig.4. They are made totally
multiplier-less using various meta-heuristic algorithms and the
performances are analysed. All the simulations are done using
MATLAB 7.10.0.499 on an Intel(R) Core(TM) i5-2400 proces-
sor operating at 3.10 GHz.

7.1 Design of Continuous Coefficient Channel Filters
The design of a two channel software radio channelizer
which supports Code Division Multiple Access (CDMA) and
Wideband-CDMA (WCDMA) is illustrated. The specifications
for each channel are given below. The first step is to design the
continuous coefficient channel filters.
First Channel (WCDMA)

Pass-band (PB) frequency: 5000 kHz
Maximum pass-band ripple: 0.01 dB
Stop-band (SB) frequency: 5250 kHz
Minimum stop-band attenuation: 60 dB
Sampling Rate: 21 MHz

Second Channel (CDMA)
Pass-band frequency: 1250 kHz
Maximum pass-band ripple: 0.01 dB
Stop-band frequency: 1300 kHz
Minimum stop-band attenuation: 60 dB
Sampling Rate: 21 MHz

When these values are substituted in Eq. 5 and 6, the interpola-
tion factors for channel 1 and channel 2 are obtained as M1 = 5
andM2 = 20 respectively. Also the prototype filter pass-band and
stop-band cut off frequencies are found to be fap = 0.2 and fas
= 0.25. The length of a filter can be estimated using Bellanger’s
equation given below [23]:

N =
−2log(10δ1δ2)

34f
− 1 (13)

where δ1 and δ2 are the peak pass-band and stop-band ripple
magnitudes respectively, and 4f is the normalized transition-
bandwidth. When these values are substituted in the above equa-
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Fig. 4. The structure of the two stage two channel reconfigurable
filters

tion, the length of the prototype filter is obtained as 65. The or-
der of the prototype filter implemented using Parks McClellan
method is also found to be 65. The number of multipliers needed
to implement the prototype filter is 33.

The WCDMA channel filter with small interpolation factor of
M1 = 5, is implemented using single stage masking. The lengths
of the masking and masking complementary filters HMa1 and
HMc1 are obtained as 30 and 36 respectively. The interpolation
factor of CDMA channel filter is found to be, M2 = 20. When
the interpolation factor is high, the order of the masking filters
becomes high. In order to reduce the order of masking filters,
multi-stage masking can be used, in which the interpolation fac-
tor is factorized and masking filters are designed for each of the
factors as discussed in [5]-[7]. Here, the interpolation factor of
the second channel,M2, is factorized into two,M21 = 5 andM22

= 4. HMa21 and HMc21 are the first stage masking filters corre-
sponding to M21 designed using Eq. 4 and they are interpolated
with value M22. HMa22 is the second stage masking filters de-
signed for interpolation factor M22. So, for the second channel,
the length of the first stage masking and masking complementary
filtersHMa21 andHMc21 are obtained as 29 and 37 respectively.
The length of the second stage masking filter HMa22 of chan-
nel 2 is 23. The filters are implemented using Remez Exchange
algorithm. The structure of the reconfigurable filters with two-
stage masking is given in Fig.4 [7]. The pass-band ripple and
stop-band attenuation of the continuous coefficient channel fil-
ters are listed in Table 8 and Table 9 respectively. The magnitude
response of the continuous coefficient channel 1 and channel 2
filters are shown in Fig.5 and Fig.6 respectively.

7.2 Design of CSD rounded channel filters
Now, to replace the multipliers in the filter implementation with
shifters and adders, the coefficients of all the sub-filters are di-
rectly rounded to the nearest CSD representation with restricted
number of non-zero bits. The performances of channel filters de-
grade. The magnitude response of the CSD rounded channel fil-
ters, channel 1 and channel 2 respectively are shown in Fig.5 and
Fig.6. Hence, suitable optimization algorithms in the CSD space
have to be used to improve the performance of the channel filters.

8. DESIGN OF MULTIPLIER-LESS CHANNEL
FILTERS USING META-HEURISTIC
ALGORITHMS

Since, both the channels are derived from the same prototype fil-
ter, the CSD represented prototype filter is optimized first. Then
the CSD represented masking filters of each channel are opti-
mized separately. All the sub-filters of both channels are de-
signed to have linear phase. Hence only half of the filter coef-
ficients need to be taken for the optimization.

The optimization of the prototype filter is done first. Half the
coefficients of the prototype filter are taken to form the initial

solution vector for the prototype filter optimization. The average
number of SPT terms in a filter coefficient are fixed to be 2.

Now, the masking filters of each channel are optimized. Since
the masking filters are also designed to have linear phase, only
half of the coefficients of HMa1 and HMc1 need to be concate-
nated to get the initial vector for the optimization of channel 1
masking filters. Similarly, only half of the coefficients ofHMa21,
HMc21 and HMa22 need to be concatenated to get the initial
vector for the optimization of channel 2 masking filters. The op-
timized masking filters along with the optimized prototype filter
result in totally multiplier-less two channel filters.

In all the optimization algorithms discussed below, the average
number of non-zero bits in a filter coefficient are fixed to be 2.

8.1 Design of Multiplier-less channel filters using DE
Algorithm

A modified integer coded DE algorithm is proposed for the opti-
mization of FRM filter in [16]. This modified integer coded DE
algorithm is used in the optimization of the channel filters. The
various steps of DE algorithm are explained below [19].

8.1.1 Initialization. A population of size N is generated by
randomly perturbing the initial vector. To have a wider search
space, the initial number of vectors in the population is taken
as the integer multiple of N chosen. A typical vector in the Gth
generation is represented as

xi,G = [x1i,G x2i,G x3i,G ........ xDi,G]

where, D is the dimension of the solution vector.

8.1.2 Prioritized enlisting of solution vectors using the fitness
function. The fitness of the candidate solutions is evaluated us-
ing the objective function given in Section 6.2 and only N num-
ber of the best solutions are passed to the next stage [16].

8.1.3 Mutation. In this process, a new parameter vector called
mutant vector is generated for each target vector xi,G. This is
done by adding the scaled difference between two population
vectors to a third vector. Three vectors, xr1,G, xr2,G and xr3,G
are randomly chosen and for each target vector, xi,G, the mutant
vector is generated as given below.

vi,G+1 = xr1,G + b(xr2,G − xr3,G)F c , i ∈ 1, 2, .....,N
(14)

where r1, r2, r3 are the different random indices lying between
{1, 2,....., N} and are different from the running index i. F is
the scaling factor which controls the amplification of difference
to be added and varies in the range [0, 2]. b.c operation ensures
that the values obtained from the mutation operation are integers.
Also, to ensure that the values in the new vector is within the
boundaries of look up table, following step is also included [16].

vji,G+1 =

{
vlb if vji,G+1 < vlb
vub if vji,G+1 > vub

(15)

where, vlb and vlb respectively are the lower bound and upper
bound of look up table and j ∈ 1, 2, .....,D

8.1.4 Crossover. Now, the parameters of the vector ob-
tained from the mutation step is mixed with those of
the target vector to obtain the trial vector, ui,G+1 =
[u1i,G+1 u2i,G+1 u3i,G+1 ........ uDi,G+1]. The mixing of vec-
tors is controlled using a parameter called crossover ratio, CR,
which is in the range [0, 1] and is done as below

uji,G+1 =

{
vji,G+1 if randi ≤ CR or j = jrandi
xji,G otherwise

(16)

where, jrandi is a random integer in the range [1, D] and randi
is a random value in the range [0, 1].
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Table 2. Parameters of Integer Coded DE Algorithm
Population Scaling Crossover Number of

Size, N Factor, F Ratio, CR Generations
Prototype

Filter 50 0.8 0.05 300
Channel 1

Masking Filters 50 0.8 0.05 300
Channel 2

Masking Filters 50 0.6 0.05 300
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Fig. 5. Magnitude response of the Channel 1 filter designed using
the integer coded DE
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Fig. 6. Magnitude response of the Channel 2 filter designed using
the integer coded DE

8.1.5 Selection. The fitness of the target vector and the trial
vector is evaluated using the objective function given in Section
6.2 and is compared. If the trial vector has a better fitness, the
target vector will be replaced by the trial vector in the next gen-
eration.

8.1.6 Termination. The steps from 8.1.3 to 8.1.5 are repeated
until the specified number of iterations are reached. Once the
algorithm is terminated, the best solution is taken and is decoded
to get the optimum filters.

The different parameters used for DE algorithm are shown in
Table 2. The magnitude responses of the integer coded DE op-
timized channel 1 and channel 2 filters are shown in Fig.5 and
Fig.6 respectively.

8.2 Design of multiplier-less channel filters using
HSA algorithm

The various steps of HSA algorithm are listed below [17].

8.2.1 Initialization of Harmony Memory. Different solutions
are generated by perturbing the initial harmony vector. To have
a wider search space, the initial number of harmony memory
locations is taken as the integer multiple of harmony memory
size (HMS) chosen. A typical harmony vector of size D in the
kth location of the harmony matrix can be represented as:

xk = [xk,1 xk,2 xk,3...............xk,D]

Table 3. Parameters of Integer Coded HSA
Harmony Harmony Pitch Number of
Memory Considering Adjusting Generations

Size (HMS) Rate (HMCR) Rate (PAR)
Prototype

Filter 50 0.9 0.01 1000
Channel 1
Masking 50 0.9 0.01 1000
Filters

Channel 2
Masking 50 0.9 0.02 1000
Filters

where D is the number of optimization variables.

8.2.2 Prioritized enlisting of harmony memory locations using
the fitness function. The fitness function is evaluated for each
harmony vector, and the ’HMS’ number of best solutions will be
passed to the next stage.

8.2.3 Harmony Improvisation. Harmony improvisation is
based on the following steps [17]:

Memory Consideration: Values of the decision variable xnewi

in the new vector are chosen from any of the values stored in
the harmony memory in the range x1,i, x2,i, .........xHMS,i with
probability equal to the HMCR.

Pitch Adjustment: Every new decision variable obtained in the
memory consideration step is examined to decide whether it
should be pitch adjusted. This is decided by the parameter PAR.
If pitch adjustment has to be done, it is done as shown below:

xnewi = xi + brand(1,−1)FW (i)c (17)

where FW(i) is an arbitrary distance bandwidth for the ith design
variable. b.c operation ensures that the new values obtained from
the pitch adjustment step are integers.

Random Selection: Generate random decision variables for the
new vector with a probability equal to (1- HMCR).

8.2.4 Update the harmony memory. Now the fitness function
is evaluated and if the fitness of the newly generated harmony
vector is better than the worst harmony in the harmony memory
(HM), the worst harmony is replaced by the new harmony.

8.2.5 Check the stopping criterion. The HSA is terminated
when the specified number of iterations are reached. Otherwise,
the steps given in sections 8.2.3 and 8.2.4 are repeated. After al-
gorithm terminates, fitness is evaluated for all harmony vectors
which are retained and the best solution is taken and it is encoded
to get the optimized filter coefficients.

The various parameters used for the integer coded HSA opti-
mization of multiplier-less FRM prototype filter and masking
filters of channel 1 and channel 2 are shown in Table 3. The mag-
nitude responses of the integer coded HSA optimized channel 1
and channel 2 filters are shown in Fig.7 and Fig.8 respectively.

8.3 Design of multiplier-less channel filters using
GSA algorithm

The various steps of GSA algorithm are listed below [18].

8.3.1 Initialization of agents. Let there be a system of N
masses (agents) and the position of the ith agent is defined as

xi = (x1i , ....x
d
i , .......x

n
i ) for i = 1, 2, 3, ...,N

where xdi represents the position of the ith agent in the dth di-
mension. Different agents are generated by randomly perturbing
the initial solution vector. To have a wider search space, the ini-
tial number of agents is taken as the integer multiple of N.
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Fig. 7. Magnitude response of the Channel 1 filter designed using
the integer coded HSA
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Fig. 8. Magnitude response of the Channel 2 filter designed using
the integer coded HSA

8.3.2 Sort the agents based on fitness value. The fitness value
of agents is calculated using the objective function and sort the
agents based on the fitness value. Only N number of agents with
the best fitness will be passed to the next step.

8.3.3 Evaluate fitness and update gravitational constant, G. In
each iteration, the best fitness, best(t) and worst fitness, worst(t)
of the agents are updated using the equation given below.

worst(t) = maxj∈1,...,Nfitj(t) (18)
best(t) = minj∈1,...,Nfitj(t) (19)

where fiti(t) represents the fitness value of the agent i at time t.
The gravitational constant depends on the age of the universe and
is reduced with time t. Gravitational constant G at each iteration
is computed by the following equation:

G(t) = G0e
−αt/T (20)

G0 is set to 100, α is taken as 20 and T is the total number of
iterations.

8.3.4 Calculate mass of each agent. Gravitational and inertia
masses of an agent are calculated using the fitness function and
they are updated by the following equations:

Mai =Mpi =Mii =Mi, i = 1, 2, 3.., N (21)

mi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

Mi(t) =
mi(t)∑N
j=1mj(t)

(22)

where, Mai, Mpi and Mii are the active gravitational mass, pas-
sive gravitational mass and inertia mass respectively of the ith
agent.

8.3.5 Calculate acceleration of each agent. adi (t), the accel-
eration of the agent i at time t, and in dimension d, is given by:

adi (t) =
F di (t)

Mii(t)
(23)

Table 4. Parameters of Integer Coded GSA
Number of Gravitational α Number of

Agents Constant, G0 Generations
Prototype

Filter 50 100 20 300
Channel 1

Masking Filters 50 100 20 300
Channel 2

Masking Filters 50 100 20 300

Total force that acts on agent i in a dimension d is equal to the
randomly weighted sum of the dth components of the forces ap-
plied from other agents, which is given by

F di (t) =

N∑
j=1,j 6=i

randjF
d
ij(t) (24)

where randj is a random number in the interval [0,1]. To avoid
the algorithm to trap in a local optimum, in the beginning, algo-
rithm must explore and after some iterations, exploration must be
decreased and exploitation must be increased. Thus, the perfor-
mance of GSA can be improved by modifying F di (t) such that
only the Kbest agents will attract the others. Kbest is a function
of time, with the initial value K0 at the beginning and decreases
with time. Thus, at the beginning, all agents apply the force, and
after a number of iterations, Kbest is decreased linearly and at
the end there will be only one agent applying force to the others.
Therefore, Eq. (24) for F di (t) can be modified as:

F di (t) =

N∑
j∈Kbest,j 6=i

randjF
d
ij(t) (25)

where Kbest is the set of the first K agents with the best fitness
value i.e, the biggest mass. At a particular time t, the force acting
on mass i from mass j can be defined as

F dij(t) = G(t)
Mpi(t)Maj(t)

Rij(t) + ε
(xdj (t)− xdi (t)) (26)

where, Rij(t) is the distance between two agents i and j and ε is
a small constant.

8.3.6 Update the velocity and position of each agent. The next
position and velocity of an agent can be calculated as follows:

vdi (t+ 1) = randiv
d
i (t) + adi (t) (27)

xdi (t+ 1) =
⌊
xdi (t) + vdi (t+ 1)

⌋
(28)

where randi is a uniform random variable in the interval [0, 1].
b.c denotes rounding to the lower value. This operation ensures
that the new candidate solution is an integer.

8.3.7 Termination. The steps given in the sections 8.3.3 to
8.3.6 are repeated until the maximum number of iterations is
reached. The agent with the best fitness is taken and is decoded
to obtain the optimum filters in the CSD space.

The various parameters used for integer coded GSA optimization
of multiplier-less prototype filter and channel 1 and channel 2
masking filters is shown in Table 4. The magnitude responses of
the integer coded GSA optimized channel 1 and channel 2 filters
are shown in Fig.9 and Fig.10 respectively.

8.4 Design of multiplier-less channel filters using
ABC algorithm

An integer coded algorithm for the optimization of transmulti-
plexer is discussed in [15]. A modified integer coded ABC algo-
rithm is proposed for the optimization of FRM filter in [16]. This
modified integer coded ABC algorithm is extended to be used in
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Fig. 9. Magnitude response of the Channel 1 filter designed using
the integer coded GSA
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Fig. 10. Magnitude response of the Channel 2 filter designed using
the integer coded GSA

the optimization of the channel filters. The various steps of ABC
algorithm are given below [14].

8.4.1 Initialize the food sources. Filter coefficients are con-
catenated to get the initial food source. Other different food
sources are generated by randomly perturbing the initial food
source. To have wider search space, the initial number of food
sources is taken as the integer multiple of the number of em-
ployed bees.

8.4.2 Sort the food sources based on fitness value. The nectar
amount of each food source which represents the fitness of the
solution vectors are calculated. The solution vectors are sorted
based on their fitness value and only N vectors will be passed to
the next step [16].

8.4.3 Employee Bee Phase. Each employed bee is associated
with a food source i.e. a solution vector. Employed bees search
for new food sources in the neighbourhood of the current food
sources i.e., they try to find out new solution vectors which are
adjacent to the existing vectors. A new food source adjacent to
the ith food source is found by changing the randomly chosen
jth value in ith food source as in the equation given below:

vij = xij + φij(xij − xkj) (29)

where φij is a random value in the range [-1, 1], j is a random
value in the range (1, 2, 3, ...., D) and k is a random value in the
range (1, 2, 3, ...., N). D is the dimension of the solution vectors
and N is the number of employed bees. To ensure that the newly
generated value is an integer the above equation is modified as
below

vij = xij + bφij(xij − xkj)c (30)

Also, to ensure that the values in the new vector is within the
boundaries of the look up table, the following step is also in-
cluded [16].

vij,G+1 =

{
vlb if vij,G+1 < vlb
vub if vij,G+1 > vub

(31)

Table 5. Parameters of Integer Coded ABC
Number of Number of

Food Sources Limit Generations
Prototype

Filter 50 200 300
Channel 1

Masking Filters 50 200 300
Channel 2

Masking Filters 50 250 300
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Fig. 11. Magnitude response of the Channel 1 filter designed using
the integer coded ABC

Now, a greedy selection mechanism is used to select between the
old and new solution vectors. The fitness value of the new vector
representing the nectar amount of the new food source is calcu-
lated and it is compared with that of the existing food source. If
the fitness value of the new vector is equal to or greater than the
existing one, it is replaced with the new vector, otherwise, it is
retained.

8.4.4 Onlooker Bee Phase. The employed bees share the in-
formation of their food source with the onlooker bees. The on-
looker bees calculate the nectar information collected from all
employed bees and depending on the nectar amount they select
the food source. If the nectar amount of a food source is high,
the probability of selecting that food source by an onlooker bee
is also more. This indicates that if the fitness of a solution vec-
tor is high, the probability of selecting that vector by a onlooker
bee is also more. An onlooker bee selects a food source depend-
ing on the probability distribution function associated with that
food source. So the solution vector with high fitness value will
get more onlooker bees. Now the onlooker bees search for bet-
ter food sources in the neighbourhood of the current food source
and it will be selected or rejected depending on the fitness value.
The search and the selection/rejection of the new food source is
done by the same method as in the employee bee phase.

8.4.5 Scout Bee Phase. If the fitness value of a solution vector
representing the food source is not improved after a fixed number
of iterations, called limit cycles, that food source will be aban-
doned and the associated employee bee becomes the scout bee.
The scout bee randomly finds a new food source and it occupies
the position of abandoned food source.

8.4.6 Termination. The steps from 8.4.2 to 8.4.5 are repeated
until the number of predetermined maximum number of itera-
tions is reached. Once the algorithm terminates, the solution vec-
tor with the best fitness is taken and is decoded to obtain the
optimum filters filter in the CSD space.

The various parameters used for the integer coded ABC opti-
mization of multiplier-less prototype filter and channel 1 and
channel 2 masking filters are shown in Table 5. The magnitude
responses of the integer coded ABC optimized channel 1 and
channel 2 filters are shown in Fig.11 and Fig.12 respectively.
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Fig. 12. Magnitude response of the Channel 2 filter designed using
the integer coded ABC

Table 6. Parameters of Ternary Coded GA
Pop. Mut. Popkeep No: of Elite No: of
Size Rate Fraction Chromosomes Generations

Prototype
Filter 50 0.1 0.3 20 500

Channel 1
Masking 50 0.1 0.3 20 500
Filters

Channel 2
Masking 50 0.1 0.3 20 500
Filters

Table 7. Parameters of Integer Coded GA
Pop. Mut. Popkeep No: of Elite No: of
Size Rate Fraction Chromosomes Generations

Prototype
Filter 50 0.02 0.3 5 300

Channel 1
Masking 50 0.02 0.3 5 300
Filters

Channel 2
Masking 50 0.02 0.4 20 300
Filters

9. RESULT ANALYSIS
Design of reconfigurable two channel filters using ternary coded
GA algorithm is discussed in [8]. The use of the integer coded
GA algorithm for the optimization of transmultiplexer is illus-
trated in [13]. Optimization of FRM filter using modified inte-
ger coded ABC and modified integer coded DE algorithm are
discussed in [16]. In this paper, CSD encoded reconfigurable
channel filters based on FRM are designed using various meta-
heuristic algorithms like modified Integer Coded DE, modified
Integer Coded ABC, modified Integer Coded HSA and modified
Integer Coded GSA algorithms. The parameters are compared
with those of Ternary Coded GA and Integer Coded GA.

The various parameters used for the optimization of CSD
rounded FRM filter using ternary coded GA and integer coded
GA are shown in Table 6 and 7 respectively. The frequency re-
sponse parameters of the various optimization techniques are
compared in Table 8 and Table 9. The performances are com-
pared in terms of the average pass-band ripple and stop-band
attenuation for 10 simulations.

In Table 8, the average pass-band ripple obtained for various al-
gorithms for 10 simulations are compared with those of the con-
tinuous and CSD represented channel filters. It is seen that, the
ABC algorithm gives the lowest pass-band ripple for channel 1
and GSA gives the lowest passband ripple for channel 2 com-
pared to all other optimization algorithms.
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Fig. 13. Magnitude response of the Channel 1 filter designed using
various algorithms
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Fig. 14. Magnitude response of the Channel 2 filter designed using
various algorithms

Table 8. Pass-band (PB) ripple of the channel
filters (Average of 10 simulations)
Optimization Average PB Ripple (dB)
Techniques Channel 1 Channel 2

Continuous Coefficients 0.02156 0.08502
CSD Rounded 0.05625 0.1228

Ternary Coded GA [8] 0.04702 0.04946
Integer Coded GA 0.05571 0.07403
Integer Coded DE 0.03381 0.0628

Integer Coded ABC 0.02775 0.04504
Integer Coded HSA 0.04424 0.04528
Integer Coded GSA 0.04658 0.043

The average stop-band attenuation obtained for 10 simulations
when different optimization algorithms are used is compared in
Table 9. ABC optimized channel 1 and channel 2 filters have
the maximum average stop-band attenuation. The magnitude re-
sponses of the various optimization techniques for channel 1 and
channel 2 are shown in Fig.13 and Fig.14 respectively.

In Table 10, the average of the minimum cost obtained for 10
simulations for channel 1 and channel 2 is presented. The ABC
algorithm gives minimum value for the average minimum cost
for the objective function for both channels.

Table 11 compares the run time of the various optimization tech-
niques for an average of 10 simulations. The average run time of
the GSA algorithm is found to be the minimum and that of the
HSA algorithm is the maximum.

In Table 12, the complexity of implementation of the channel fil-
ters using various optimization techniques is compared. All the
optimization algorithms reduce the complexity of the channel fil-
ters compared to that of the continuous coefficient channel filters
and than that of the maximum precision channel filters, in which
the filter coefficients are directly rounded with maximum num-
ber of non-zero SPT terms which is obtained as 6.
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Table 9. Stop-band (SB) Attenuation of channel
filters (Average of 10 simulations)

Optimization Average SB Attenuation (dB)
Techniques Channel 1 Channel 2

Continuous Coefficients 54.81 52.68
CSD Rounded 39.97 44.21

Ternary Coded GA [8] 48.388 47.904
Integer Coded GA 47.723 45.607
Integer Coded DE 49.629 46.927

Integer Coded ABC 50.22 48.983
Integer Coded HSA 47.625 47.427
Integer Coded GSA 47.658 48.104

Table 10. Minimum cost of various
optimization algorithms (Average of 10

simulations)
Optimization Minimum Cost
Techniques Channel 1 Channel 2

Ternary Coded GA [8] 0.0065364 0.0069335
Integer Coded GA 0.0074541 0.0096806
Integer Coded DE 0.0052932 0.0084675

Integer Coded ABC 0.0046857 0.0062785
Integer Coded HSA 0.0067334 0.0073753
Integer Coded GSA 0.0068436 0.006479

Table 11. Total Run time for
various optimization algorithms

(Average of 10 simulations)
Optimization Run Time
Techniques (Seconds)

Ternary Coded GA [8] 231.2128
Integer Coded GA 201.7026
Integer Coded DE 187.436

Integer Coded ABC 213.3106
Integer Coded HSA 264.905
Integer Coded GSA 104.531

Table 12. Complexity Comparison of the channel filters using
various optimization algorithms

No: of Adders due Total No: of
Optimization SPT to SPT No: of No: of Multi-
Techniques Terms Terms Adders Adders pliers
Continuous

Coefficients [7] - - 106 106 112
Maximum
Precision 266 157 106 263 0

CSD
Rounded 245 141 106 247 0
Integer

Coded GA 246 137 106 243 0
Integer

Coded DE 245 142 106 248 0
Integer

Coded ABC 247 138 106 244 0
Integer

Coded HSA 241 132 106 238 0
Integer

Coded GSA 244 135 106 241 0

It is seen that the ABC algorithm gives low complexity totally
multiplier-less channel filters with very good frequency speci-
fications. But the running time of the ABC algorithm is more.
From the tables given it can be seen that GSA algorithm con-
verges faster and also gives acceptable values for the frequency
specifications. So, when the running time is of primary concern,
GSA algorithm can be chosen which also uses less number of
adders compared to ABC algorithm. But, if the application de-
mands better frequency specifications, ABC algorithm can be se-
lected.

10. CONCLUSION
The reconfigurable channel filters based on FRM gives non-
uniform bandwidth channel filters with much reduced complex-
ity. Design of channel filters in the canonic signed digit space
leads to totally multiplier-less channel filters. Modified meta-
heuristic algorithms are proposed to improve the performance
of the channel filters. For the given specifications, it is observed
that ABC results in the best frequency response characteristics.
In terms of computational complexity, all the proposed algo-
rithms result in multiplier-less non-uniform channel filters. But
the number of adders is the least when ABC is deployed. In terms
of run time, Gravitational Search Algorithm is found to be more
suitable to get faster optimization with acceptable values of fre-
quency response characteristics and complexity.
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