
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

21

A Survey on Regression Test Selection Techniques on

Aspect-Oriented Programming

Neerja Gupta

Department of Computer
Science & Engineering
ASET, Amity University

Sector-125, Noida

Arun Prakash Agrawal
Department of Computer
Science & Engineering
ASET, Amity University

Sector-125, Noida

Abhishek Singhal
Department of Computer
Science & Engineering
ASET, Amity University

Sector-125, Noida

ABSTRACT

An aspect oriented programming is gaining a lot of popularity

these days, there is a growing interest because of crosscutting

concerns in object oriented systems. When the aspect oriented

features are added into object oriented features the new

program needs to be regression tested, and, to reduce the cost,

Selection technique is used which eliminates the redundant

test cases and thus makes them cost effective. Unfortunately

the already existing approaches of object oriented

programming does not work out for aspect oriented

programming because of the following new features of

aspects such as join points ,crosscutting concerns ,aspect

weaving, etc. Therefore, this paper proposes the techniques

used for object oriented programs and for aspect oriented

programming.

Keywords

Aspect oriented programming, Object oriented programming,

Regression testing, selection technique.

1. INTRODUCTION
As the software is modified during development and

maintenance, the software needs to be regression tested to

provide confidence that the changes do not introduce new

errors and thus do not harm the system. Because the size of

the test suite grows, regression-testing–selection-technique is

used .It deals with the problem of selecting subset of test cases

that tests the changed part of the software. A safe-regression –

test selection selects all the test cases that contain faults in the

modified software[1]. Various selection techniques have been

described for procedural languages[2,3,4], object oriented

languages[5,6,7] and aspect oriented languages[8,9,10].

Aspect oriented programming is a way of modularizing the

crosscutting concerns and aspect-J is an implementation of

aspect oriented programming as in the same way java is a way

of modularizing common concerns for object oriented

programming. Cross-cutting concerns are the parts of the

program that affect many other parts of the system. They

contain duplicate code as well as inter –dependent code.

Logging and authentication system are the examples of cross-

cutting concerns. In procedural and object oriented

programming there is function or procedure calling whereas in

aspect oriented programming ,the code to be implemented and

the related crosscutting concerns i.e. dependent code can be

accessed simultaneously . Aspect-j adds to java few constructs

like point cuts, join points, advice, aspects. A join point is a

well defined point in the program flow. A method call,

exceptions are some examples of join points. Each method

call at runtime is a different join point even if it comes from

the same call expressions. Point cut picks out certain join

points and values at those points .Point cuts don’t do anything

apart from that, to actually implement them we use advice.

Advice is a code that is executed when a join point is reached.

Advice brings together join point and body of code. Advice is

of three types before, around and after. Aspects wrap up point

cuts, advice and inter-type declaration (declarations that cut

across classes). It is similar to class and can have methods in

addition to crosscutting members[11].

2. Regression test selection for aspect

oriented programs:
Software maintenance accounts for two-third of the overall

software life cycle costs. Maintenance is necessary to fix

defects, enhance functionalities and helps the software to

work on different environments. Therefore, Resolution Test

Cases are designed whenever the application program is

modified and Regression Testing is done to ensure that no

new errors are introduced. Regression Testing is carried out at

all levels whether it is unit, integration or system level. As the

software is released, changing reports or failure reports are

compiled and the software is modified to provide necessary

changes. Resolution Testing is responsible for testing the

modified parts , whereas Regression Testing is responsible for

unchanged parts of the code that may be affected by the code

change. Regression Testing is an expensive process, therefore,

minimization of test cases is done . Regression Testing

involves three techniques , they are , Minimization -which

seeks to reduce the test cases by eliminating the redundant test

cases, Selection- that deals with the problem of selecting

subset of test cases that tests the changed parts and the last

one is Prioritization- it is concerned with the ordering of test

cases. It uses Bee Colony algorithm[12]. Rothermel and

Harrold have defined the Regression Test Selection Problem

as : Let P is application program and P’ is the modified

program . T is the test suite used to test P. RTS technique will

select T’ such that T′ ⊆ T which is to be executed on P’ in

such a way that every error detected when P’ is executed with

T is also detected when P’ is executed with T’[13].
Regression Test Selection technique have been used for

procedural languages, object oriented languages, component

based , database oriented applications, web applications ,

aspect oriented paradigm , and many more.

Aspect oriented software development is a popular approach

for modularizing the cross cutting concerns, which then

simplifies software maintenance and evolution. When aspect

oriented features (aspects, point cuts, advices)[14] are added

to object oriented program or when the aspect oriented

program is modified, it is need to be regression tested to

ensure that the methods crosscuts and the aspects which has

been introduced should behave as expected. An aspect

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

22

changes the behavior of the original code for example,

without any change to the original program which is a java

program, a single aspect is added, which changes the pre and

the post conditions of the method. Regression testing is more

important for aspect oriented than object oriented programs

because of pervasive effects of small code changes. Existing

object oriented selection technique represented by[15] are

based on Graph Traversal algorithm. This paper focuses on

regression test selection technique for object oriented and

aspect oriented programs.

3. RTS Technique for Object Oriented

Programs

3.1 Firewall Technique
This technique is proposed by Kung [5], Hsia [6], Abdullah

and White [7] and Jang [16]. It was originally given by Leung

and White [17]. Its aim is to identify the modified version of

the software. It identifies only the affected area. It selects all

the test cases which exercise at least one class from within the

firewall. It can be class level or can be method level. In class

level Object relation Diagram (ORD) which shows the

relationships, associations and aggregations between the

classes [5]. And, in method level, methods are considered as

the unit of retesting and aim at identifying all affected

methods [16].

3.2 Program Model Based

2.2.1 Class Dependency Based [18]
Rothermal and Harrold have divided the problem of RTS of

object oriented programs into two parts: first one is for

application program and the second one is for modified

program. Application program uses inter-procedural class

dependence graph for original and modified program. As they

incur a lot of overhead, hence program dependence graph is

used. Whereas modified program uses class dependence

graph.

2.2.2 Extended Control Flow Graph [19]
Harrold et al. was the first one who proposed safe RTS for

java programs based on control flow analysis. He uses Graph

walk algorithm [20] .His method consists of three steps:

constructing, intermediate representation of source program,

analyzing the graph and detecting the dangerous arcs and test

case selections. Harrold et al. uses the JIG representation for

modeling java programs.

2.2.3 Partition Based [21]
Mansour and Statieh have proposed two phase RTS

technique. Their technique is based on affected areas i.e.

changed parts of the modified programs and constructs

Affected Class Diagram (ACD). ACD represents

modifications made at the level of class, interface, web,

services. Their technique then uses test coverage criteria and

selects the subset of test cases. It works on two phases-

Partioning and selection. In partioning, the original and the

modified programs are modeled as Inter Relation Graphs [22].

Partioning is further dived into statement and Declaration.

Statement consist addition, deletion and modification of

statements whereas declaration is addition, deletion,

modification of methods. And, in Selection analysis of

partitions are done.

3.3 Design Model Based Technique [23, 24]
Model Driven Development has made Model Based Testing

very popular. In this design model is refined to obtain the

code. The widespread usage of CASE tools has made close

correspondence between design model and code. It describes

Further various RTS techniques for Class and State machine

[25, 26], Sequence diagrams [27], Use case diagrams [28].

3.4 Specification Based Technique [29]
In industry, practical difficulty in RTS is that testers may not

have access to design code and source code. Hence code

based testing and model based testing does not work out in

this situation. So to avoid this problem specification based

technique has been evolved. It uses UML activity diagram for

modeling the potentially affected requirements and system

behavior. They have also classified the test cases into two

types safe and target test cases. Target test cases are those that

exercise the affected requirements and safety test cases helps

in achieving pre defined coverage target.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

23

Table 1: RTS techniques for object oriented Paradigm.

4. RTS Technique for Aspect Oreinted

Program:

4.1 Rothermal and Harrold:[30]
Rothermal and harrold proposes an approach which is based

on graph traversal algorithm. In their approach aspect oriented

features (such as point cuts, join points, aspects, advice [14])

are added into object oreinted programs, and the program is

regression tested to make sure that the newly introduced

features do not affect the code. He assumes two versions of

program P and P’ such that P is the original program which is

basically a java program and P’ is the modified program

(aspect is added to java program). He presents a graph

traversal algorithm which runs the test suite for the original

program and obtains the coverage information and constructs

the java interface graph (JIG)[20] for both original and

modified program and then compare the CFG’s .Comparison

helps in detecting the dangerous arcs. An arc is dangerous if

target of the CFG of both original and modified program

differ[31]. Dangerous arcs are then rerun and the test cases are

selected safely.

4.2 Guoquing Xu: [32]
The approach given by Rothermal and Harrold is based only

on static analysis but most of the time dynamic analysis is

required because of calling of external methods. Guoquing Xu

gave an approach which is based on RETSA framework. This

technique uses dynamic analysis to record coverage

information for P and P’ and static analysis for safety and

precision. RETSA framework consist of five components :

First one is Dynamic Coverage Recorder which takes the byte

code of the program as input , runs the old test suite for P and

P’ and maps the dynamic execution path and outputs the

coverage matrix. Second one is CGF Comparator which is

used to compare the CFG’s of the two programs. Third is the

Safe Edge Identifier, which takes the two coverage matrices

as its input and does the pointer analysis to detect the safe

edges. Fourth is Candidate Selector which accepts the

dangerous arcs and coverage matrix of P, looks into the

coverage matrix the tests which covers the dangerous arcs.

And, the last one is Final Selector which removes the tests

output by computing the safe edge for each test.

4.3 Guoquing Xu:[33]
He gave another approach on aspect oriented program. This

approach is an extension of JIG used by Rothermal and

Harrold i.e. AJIG (Aspect-J Inter Module Graph). It is a new

control flow representation for aspect-J softwares which

captures the semantic intricacies of aspect-related interactions.

An AJIG includes(1) CFGs that model the control flow within

Java classes, within aspects, and across boundaries between

aspects and classes through non-advice method calls, and(2)

interaction graphs that model the interactions between

Author’s Name RTS Techniques for

object oriented

programs

Key Features Advantages Disadvantages

Leung And

White[17]

Firewall Based

Technique

 It analysis the data and control

dependencies and also shows the

dependencies among modified

and interacting modules. It uses

call graph. It identifies the

affected area.

Computationally efficient,

captures the dynamic

behavior of class

It is imprecise and also do not handle

exceptions in java

Rothermal And

Harrold[19] ,

Mansour and

stetieh[21] Program-Model

Based Technique

It Shows dependencies among

methods, classes, and there

control flow graphs and two

phased technique

Applicable to both derived

and modified programs,

safe, more precise than

firewall, more efficient than

firewall, it combines the

techniques that work at

higher level of abstraction.

It does not handle few constructs of

object oriented language such as

exception handling, and, it is

expensive, less efficient because of

high overhead of inter-procedural

graph.

It is also imprecise for handling

polymorphic calls

Ali [25]and

Gorthi[28]

Design Model Based

Technique

It is based on model driven

development which consist of

different UML diagrams such as

sequence diagram, use case

diagram

More efficient , suited for

large programs ,

independent of

implementation, higher

level of abstraction as

compared to code based

technique

 It is not safe ,

It requires close correspondence

between requirement artifacts, design

models, code, test cases which

sometimes impossible to collect,

Limited to model driven environment

Chen[29]

Specification Based

Technique

Based on specifications such as

activity diagram

More efficient, platform

independent, can be

extended to a wide class of

programs, do not depend on

static analysis of source

code , largely dependent on

quality and accuracy

It is not safe and it is less precise as

compared to others

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

24

methods and advices at certain join points .It does not

introduce extra nodes or edges to represent the lower level

details of compiler specific code. They depend only on the

input program and not on the implementation code of weaving

program. He uses two phase graph algorithm in which first

phase is defined as Inter-procedural Traversal and the second

phase is defined as the Intra-procedural comparison. In first

phase it compares the invocation order of two IG’s and

outputs the dangerous edges and the set of FP further

processing advices whose invocation order remains same. In

the second Phase, for each advice in FP it traverses its CFG in

P and P’.

4.4 Romaine Delaware:[34]
His goal was to analyze which test cases are impacted by the

introduction of an aspect in the base program. He divided the

methods and test cases into two categories: Impacted (I) and

Non –Impacted. The base program used is Java program and

its test case is implemented into Joint. His main objective is to

determine which test cases have modified , which test cases

should be kept unchanged , which test cases should be

removed in aspect oriented evolution. The analysis starts by

detecting the methods in base code that are impacted by an

aspect .An impacted method is a method where an aspect is

woven. The test case is detected as impacted if it can reach the

impacted method. His analysis consist of two parts: First, He

builds a model that captures the relationship of aspects and

base program. Then in second , He analyses the static call

graph of each test case in order to determine whether

iimpacted or not. In Impacted method model, join points are

identified where the aspects have been weaved when java and

aspects are run through aspect-j compiler. To evaluate the

impact , he represents the relationship between the aspects and

base code. The aspect-J compiler executes the java code and

weaves the aspects , but he has extended the aspect-J compiler

by offering an interface to add build listener, it then provides a

list of relations between aspects and java code. And in

second, static call graph checks whether test cases can reach

impacted method or not.

4.5 Mark Harman & Tao Xie: [35]

He develops an approach for Automated Test Data Generation

(ATDG) for aspect oriented programs. It is used to generate

test data which covers aspectual behavior (achieving aspectual

branch coverage [36]). He uses ASPECTRA framework,

which takes input as aspects or java programs in which

aspects are woven. To measure aspectual behavior, it uses the

metrics of aspectual branch coverage, which measures the

branch coverage within aspect code. The technique is based

on dependence analysis based on slicing .It consist of four

major components, that are, Aspectual- branch –identifier

which identifies branches inside aspects. Relevant- parameter

–identifier which identifies only relevant parameters because

not all parameters of the methods of base class are relevant.

Evolutionary Tester, it conducts evolutionary testing on

relevant parameters. Aspectual branch coverage measurer

measures the aspectual behavior. It is based on ASPECTRA

framework, a novel framework for automatically generating

test inputs for AspectJ programs. To test aspects in an AspectJ

program, developers can construct base classes, which can be

woven with aspects to produce woven classes. Aspectra

synthesizes a wrapper class for each woven class. The

wrapper mechanism allows test-generation tools to indirectly

exercise advice related to call join points and public non-

advice methods in aspects during test generation. At the same

time, the mechanism prevents the methods in generated test

classes from being advised by unwanted advice. Given

wrapper classes, Aspectra leverages existing test-generation

tools for generating test inputs.

Author’s Name Year Technique used Advantages Disadvantages

Rothermal and Harrold[30] 2001 They run the test suite for original program

and modified program and obtain the

coverage information, and , then detects the

dangerous arcs and the test cases containing

dangerous arcs are rerun. Based on

MSIL(Microsoft Intermediate Language).

 Safety, higher precision

 It enables the developer to

quickly recognize interaction

pattern that supports modular

reasoning and focuses on the

causes of potentially non

modular interaction

 code-weaving of AOP

messes up the execution

path hence results in

redundant tests cases.

 For external methods , JIG

does not represent the intra

– method control flow

 It does not considers

multiple advices apply at

shadow

Guoquing Xu [32] 2006 He uses RETESA framework which

involves dynamic coverage of information

for both P and P’ and static analysis to

achieve safety and precision.

 Safety and higher precision

 It involves dynamic coverage

of information.

 Better than above approach

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

25

Table 2: RTS Techniques for Aspect Oriented Programs

5. Tools for Aspect- Oriented Programs

5.1 ORTS tool: [37]
ORTS tool is used to generate the optimized regression test

suite for java applications. It helps in capturing the runtime

traces of test execution, and, identifies the change points

during build update. In this no artifacts are missed during

execution. It captures all artifacts of java applications such as

Java script, JSP, etc. It has three features: first is, it is scalable

for runtime profiling of commercial java applications. Second

is, it has the ability to identify complete change points, and

last is , it prioritizes the test suites in terms of risk and guides

the rerun schedule.

5.2 Automatic Debugging tool

(AutoFlow):[38]
It integrates the delta algorithm for debugging as well as the

change impact analyzer to reduce search for faulty changes. It

first uses the change impact analyzer is responsible for

identifying the subset of changes for faulty or failed test cases

(i.e., it indicates the likelihood that is contributed to failure)

Guoquing Xu[33] 2007 He also gave AJIG approach which is an

extension of JIG approach. It captures the

semantic intricacies of aspect –related

interactions. It uses two phase graph

algorithm. The first phase is Inter-

procedural traversal in which it compares

the invocation order of advices and the

second phase is Intra-procedural traversal in

which, for each advice it traverses its cfg.

 It is independent of the low-

level implementation code

introduced by a weaving

compiler.

 It not only serves as a basis of

regression test selection but

also does the static analysis of

aspect-J.

 It reduces the number of test

cases effectively

 AspectJ Inter-module Graph

(AJIG) extends the Java

Interclass Graph from [8] with

representations

 This approach does not

appear to be effective for

woven byte code.

Romain Delamare[34] 2008 He categorizes the test cases as well as the

methods into two parts : Impacted and Non

Impacted. Impacted methods are those

where an aspect is woven , or the methods

that are affected. He builds a model that

represents the relation between aspect and

java code called as Impacted method model

and uses static call graph to check whether

test cases can reach impacted method or

not.

 It provides confidance.

 It is used to validate the

preservation of certain

behaviours after the addition

of a new aspect or the

evolution of an aspect already

woven.

 It selects the test cases that

must be executed to validate

this behaviour preservation.

 It takes the advantage of the

point cut expression to

evaluate the impact of aspects

on the test cases.

 This approach helps in

identifying the test cases

that do not need to be

executed but they do not

consider the evolution of the

impacted test cases.

Mark Harman and Tao

Xie[35]

2009 He develops an approach for automated test

data generation .Its objective is to cover the

aspectual branches. It uses ASPECTRA

framework. , a novel framework for

automatically generating test inputs for

AspectJ programs. To test aspects in an

AspectJ program, developers can construct

base classes, which can be woven with

aspects to produce woven classes. Aspectra

synthesizes a wrapper class for each woven

class.

 Manual test data generation for

achieving coverage is tedious,

error-prone and expensive.

Therefore, for some time,

automation has been

considered to be the key to

effective and efficient test data

generation.

 Because of the widespread

practitioner usage of branch

coverage, this testing goal has

received a lot of attention from

the software testing research

community.

 It generates a lot of

redundant test cases.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

26

Table 3 : Tools for Aspect –Oriented Programs

and then it uses delta debugging algorithm to determine the

minimal set of faulty changes. When a regression test fails

unexpectedly after a session of source changes, AutoFlow

works as follows, first it decomposes the code modifications

into a set of atomic changes (at method-level); then it employs

change impact analysis to isolate a subset of responsible

changes for that failed test; in the third step, AutoFlow ranks

these changes according to our proposed heuristic, and finally

employs an improved delta debugging algorithm to determine

a minimal set of faulty changes.[38]

5.3 Celadon tool:[39]
It automates the change impact analysis for aspect-J. It is

implemented in the context of eclipse environment and is

designed as a plug-in. It analyses the source code of two

aspect-j software versions and divide them into two set of

independent changes along with their dependence

relationship. It outputs the impacted program and the affected

results.

Conclusion and Future Work:

In this paper survey has been done on various regression test

selection techniques of object-oriented programs as well as on

aspect–oriented programs. Advantages and Limitations of

them is also discussed along with the techniques they have

proposed. It has also discussed the tools used for aspect

oriented programs. We will use any of these tools in our

future research work for regression selection techniques.

These tools will help to simplify the use of regression

selection techniques in aspect-oriented software systems. This

will also reduce the testing effort, cost and time.

6. References
[1] S. Yoo and M. Harman. Regression testing minimization,

selection and prioritization: a survey. Software Testing,

Verification and Reliability, 1(1):121–141, March 2010.

[2] Thomas Ball, On the limit of control flow analysis for

regression test selection, Proceedings of the 1998 ACM

SIGSOFT ISSTA, pp.134-142, March 02-04, 1998,

Clearwater Beach, Florida, United States.

[3] Yih-Farn Chen , David S. Rosenblum , Kiem-Phong Vo,

Test Tube: a system for selective regression testing,

Proceedings of the 16th ICSE, pp.211-220, May 16-21,

1994,Sorrento, Italy.

[4] H. K. N. Leung and L. J. White. A cost model to

compare regression test strategies. In Proceedings of

ICSM '91, pages 201- 208, Oct. 1991.

Author’s Name Name of the

tool

Year Features Advantages

Sheng Huang[37] ORTS 2009 A tool used for generating the

optimized regression test suite

for java applications. It helps in

capturing the runtime traces of

test execution and identifies the

change points during build

update.

 It improves efficiency, reduces

cost and is lightweight, thus

making regression test selection

process more automated and

effective.

 Scalable with resource and

time constraint

Sai Zhang[38] Autoflow

Debugging

Tool

2008 It identifies the subset which is

responsible of the changes for a

failed test through impact

analysis, and indicates the

likelihood that is contributed to

failure.

 It automatically reduces a large

portion of irrelevant changes in

early phase only.

Sai Zhang [39] Celadon 2007 It analyses the source code of

two aspect-J software versions

and divide them into two parts

of atomic changes along with

their dependence relationship

and outputs the impacted

program and affected results. It

provides the extended concept

of atomic change.

 It helps in fault localization by

isolating failure inducing

changes for one specific

affected test case.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

27

[5] D. Kung, J. Gao, P. Hsia, F. Wen, Y.Toyoshima, and C.

Chen. On regression testing of object oriented programs.

Journal of Systems and Software, 32(1):21–40, January

1996

[6] P. Hsia, X. Li, D. Kung, C. Hsu, L. Li, Y. Toyoshima,

and C. Chen. A technique for the selective revalidation of

object-oriented software. Journal of Software

Maintenance: Research and Practice, 9(4):217–233,

1997.

[7] K. Abdullah and L.White. A firewall approach for the

regression testing of object-oriented software. In

Proceedings of 10th Annual Software Quality Week,

page 27, May 1997.

[8] L. Bergmans and M. Aksits. Composing crosscutting

concerns using composition filters. Commun. ACM.

44(10):51-57, 2001.

[9] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C.

Lopes, J. M. Loingtier, and J. Irwin. Aspect-Oriented

Programming. In and J. Hugunin. Advice weaving in

Proceeding of 11th ECOOP, pp. 220-242, 1997.

[10] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-

oriented programming with adaptive methods. Commun.

ACM, 44(10): 39-41, 2001.

[11] The AspectJ Team. The AspectJ Programming Guide.

August 2004.

[12] L. P. Wong, M. Y. H. Low, and C. S. Chong, "A bee

colony optimization algorithm for travelling salesman

problem," in Proceedings of Second Asia International

Conference on Modelling & Simulation (AMS 2008),

2008. pp. 818-823.

[13] G. Rothermel and M. Harrold. Selecting tests and

identifying test coverage requirements for modified

software. In Proceedings of the International Symposium

on Software Testing and Analysis, pages 169–184,

August 1994.

[14] http://en.wikipedia.org/wiki/AspectJ

[15] G. Rothermel and M. J. Harrold. Empirical studies of a

safe regression test selection technique. IEEE

Transactions on Software Engineering, 24(6):401{419,

Jun.1998.

[16] Y. Jang, M. Munro, and Y. Kwon. An improved method

of selecting regression tests for C++ programs. Journal of

Software Maintenance: Research and Practice,

13(5):331–350, September 2001.

[17] H. Leung and L. White. A firewall concept for both

control-flow and data-flow in regression integration

testing. In Proceedings of the Conference on Software

Maintenance, pages 262–270, 1992.

[18] G. Rothermel and M. Harrold. Selecting regression tests

for object-oriented software. In International Conference

on Software Maintenance, pages 14–25, March 1994.

[19] G. Rothermel, M. Harrold, and J. Dedhia. Regression test

selection for C++ software. Software Testing,

Verification and Reliability, 10(2):77–109, June 2000.

[20] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso, M.

Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.

Regression test selection for Java software. In

Proceedings of the 16th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages and

Applications, pages 312–326, January 2001.

[21] N. Mansour and W. Statieh. Regression test selection for

C# programs. Advances in Software Engineering,

2009:1:1–1:16, January 2009.

[22] A. Orso, N. Shi, and M. Harrold. Scaling regression

testing to large software systems. In Proceedings of the

12th ACM SIGSOFT Twelfth International Symposium

on Foundations of Software Engineering, pages 241–251,

November 2004.

[23] M. Fahad and A. Nadeem. A survey of UML based

regression testing. In Zhongzhi Shi, E. Mercier-Laurent,

and D. Leake, editors, Intelligent Information Processing

IV, volume 288 of IFIP Advances in Information and

Communication Technology, pages 200–210. Springer

Boston, 2008.

[24] L. Briand, Y. Labiche, and G. Soccar. Automating

impact analysis and regression test selection based on

UML designs. In Proceedings of the International

Conference on Software Maintenance (ICSM’02), pages

252–261, 2002.

[25] Q. Farooq, M. Iqbal, Z. Malik, and A. Nadeem. An

approach for selective state machine based regression

testing. In Proceedings of the 3rd international workshop

on Advances in model-based testing, AMOST ’07, pages

44–52. ACM, 2007.

[26] Q. Farooq, M. Iqbal, Z. Malik, and M. Riebisch. A

model-based regression testing approach for evolving

software systems with flexible tool support. In 17th IEEE

International Conference on Engineering of Computer-

Based Systems (ECBS), pages 41–49. IEEE Computer

Society, March 2010.

[27] L. Naslavsky and D. Richardson. Using traceability to

support model-based regression testing. In Proceedings

of the twenty-second IEEE/ACM international

conference on automated software engineering, ASE ’07,

pages 567–570. ACM, November 2007.

[28] R. Gorthi, A. Pasala, K. Chanduka, and B. Leong.

Specification-based approach to select regression test

suite to validate changed software. In Proceedings of the

2008 15th Asia-Pacific Software Engineering

Conference, pages 153–160, 2008.

[29] Y. Chen, R. Probert, and D. Sims. Specification based

regression test selection with risk analysis. In CASCON

’02: Proceedings of the 2002 conference of the Centre for

Advanced Studies on Collaborative research, page 1,

2002.

[30] M. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M.

Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.

Regression Test Selection for Java Software. Proc. ACM

Conference on Object-Oriented Programming, Systems,

Languages, and Applications, pp.312-326, October 2001.

[31] G. Rothermel and M. J. Harrold. A Safe, Efficient

Regression Test Selection Technique. ACM Transactions

on Software Engineering and Methodology, Vol. 6, No.

2, pp.173-210, April 1997.

[32] G. Xu. A regression tests selection technique for aspect

oriented programs. In Workshop on Testing Aspect-

Oriented Programs, pages 15–20, 2006.

http://en.wikipedia.org/wiki/AspectJ

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.11, December 2012

28

[33] G. Xu and A. Rountev. Regression test selection for

AspectJ software. In ICSE ’07: Proceedings of the 29th

international conference on Software Engineering, pages

65–74, 2007.

[34] Romain Delamare, Benoit Baudry, Yves Le Traon.

Regression Test Selection when Evolving Software with

Aspects

[35] M. Harman, F. Islam, T. Xie, and S. Wappler,

“Automated test data generation for aspect-oriented

programs,” in AOSD, 2009, pp. 185–196.

[36] T. Xie and J. Zhao. A framework and tool supports for

generating test inputs of AspectJ programs. In Proc.

AOSD, pages 190–201, 2006.

[37] Sheng Huang, Jun Zhu, Yuan Ni . ORTS: a tool for

optimized regression testing selection. In Proceedings of

the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and

applications, Pages 803-804, OOPSLA '09.

[38] Sai Zhang, Zhongxian Gu, Yu Lin and Jianjun Zhao .

AutoFlow: An Automatic Debugging Tool for AspectJ

Software In Proc. 24th IEEE International Conference on

Software Maintenance (ICSM 2008 demo).

[39] S. Zhang and J. Zhao. Change impact analysis for

AspectJ programs. Technical Report SJTU-CSE-TR-07-

01, Center for Software Engineering, SJTU, Jan 2007.

http://www.researchgate.net/researcher/47110_Romain_Delamare/
http://www.researchgate.net/researcher/42954469_Benoit_Baudry/
http://www.researchgate.net/researcher/8711990_Yves_Le_Traon/
http://www.oopsla.org/oopsla2009

