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ABSTRACT 

 World Wide Web is a huge repository of web pages and 

links. It provides profusion of information for the Internet 

users. The growth of web is tremendous as approximately one 

million pages are added daily. User’s accesses are recorded in 

web logs. Because of the incredible usage of web, the web log 

files are growing at a faster rate and the size is becoming 

huge. Web data mining is the application of data mining 

techniques in web data. Web log Mining applies mining 

techniques in log data to extract the behaviour of users. Web 

log mining consists of three phases pre-processing, pattern 

discovery and pattern analysis. Web log data is usually noisy 

and ambiguous and pre-processing is an important process 

before web log mining. For discovering patterns sessions are 

to be constructed efficiently. This paper presents the existing 

work done to extracting patterns by using decision tree 

methodology in the technique of web log mining. 
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1. Introduction to Web Log Files 
The huge advancements in World-Wide Web (WWW) 

technology and the ever growing popularity of the WWW, a 

huge number of Web access log records are being collected in 

the form of web log files (Osmar R. Zaiane, Man Xi and 

Jiawei Han, 2001). In Web log file there are three kinds of 

files recording the client visiting behaviors: Access Log, Refer 

Log, Agent Log, and for some systems Cookie Log is also 

recorded. Access Log, recording detailed visiting behavior of 

every client, is the main data resource for Web log mining. 

Refer Log keeps record of the information about page layout 

requested by client, such as client visiting date and period, 

visiting path pattern and etc for client recognition and path 

supplement. Cookie Log can have label number held by client 

for recognizing client and its conversation and etc. (GAO, 

2010)  

When any user agent (e.g., IE, Mozilla, Netscape, etc) hits an 

URL in a domain, the information related to that operation is 

recorded in an access log file. In the data processing task, the 

web log data can be preprocessed in order to obtain session 

information for all users. Access log file on the server side 

contains log information of user that opened a session. These 

records have seven common fields, which are: 1. User’s IP 

address, 2. Access date and time, 3. Request method (GET or 

POST), 4. URL of the page accessed, 5.Transfer protocol 

(HTTP 1.0, HTTP 1.1), 6.Success of return code, 7.Number of 

bytes transmitted. (Veeramalai et.al. 2010) 

 

 
 

Fig 1: Log File Fields 

 

This paper has been divided into five sections. Section 1 

explores the web log files. Section 2 discusses about frequent 

patterns. Section 3 highlights the proposed strategy. Section 4 

focuses on the analysis of frequent patterns. Section 5 finally 

concludes by discussing the outcome of study. 
 

2.  ABOUT Frequent Patterns 
Frequent patterns are values or events type combinations that 

often occur together in the data. They provide information, 

which can be used to find rules or patterns of correlated or 

otherwise searched value combinations. A pattern is called 

frequent if the number of its occurrences in the data is larger 

than a given threshold. 

There are two kinds of frequent patterns: frequent sets and 

frequent episodes. Frequent sets consist of value combinations 

that occur inside data records like log entries. Frequent 

episodes, on the other hand, describe common value 

sequences like log message types that occur in the network. 

(Kimmo Hatonen, 2009). 
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Fig 2: An example firewall log fragment (Kimmo Hatonen, 

2009) 

 

Fig 3: An example alarm log fragment (Kimmo Hatonen, 

2009) 

2.1 Frequent sets 
This section gives definitions for frequent sets in the context 

of the telecommunications network event logs. 

Definition 3.1 (Items) Items is a finite set of items that are 

field: value pairs, i.e., Items= {A : ai, B : bj , C : ck, . . .}, 

where field is one of the fields in log entries and value 

attached to each field belongs to the domain of possible values 

of the field.Definition 3.2 (log entry) A log entry e is a subset 

of Items such that∀  F : u,G : v ∈  e : F _= G. 

Definition 3.3 (log) A log r is a finite and non-empty multiset 

r = {e1, e2, . . . , en} of log entries (Kimmo Hatonen et. al. , 

2003). 

Definition 3.4 (itemset) An itemset S is a subset of Items. The 

main properties that an itemset has entries. 

Definition 3.5 (itemset support) A log entry e supports an 

itemset S if every item in S is included in e, i.e., with respect 

to a given log are a set of entries in which it occurs, i.e., of 

which it is subset, and the number of those S ⊆ e. The support 

(denoted supp(S, r)) of an itemset S is the multiset of all log 

entries of r that support S. Note that supp(∅ , r) = r. 

Definition 3.6 (itemset frequency) The absolute frequency of 

an itemset S in a log r is defined by freq(S, r) = |supp(S, r)| 

where |.| denotes the cardinality of the multiset (Kimmo 

Hatonen et. al., 2003). 

Closed sets 

A telecommunications network log can be seen as a sparse 

transactional database. For example, in firewall logs fields 

potentially have a very large set of possible values, e.g., the 

value of the Destination field that contains the requested 

destination address, can be any IP address in the Internet. 

However, probably in most of the entries, the field contains 

addresses of those servers in an intranet, which are hosting 

services like web and mail that are open to the Internet. (Jean-

Fran et. al., 2001). 

The Apriori algorithm works fine when the number of 

candidates is not too large. In a sparse database, the number of 

candidates usually starts to decrease after the frequent sets of 

size two or three have been computed. With data like firewall 

logs, which are dense, this does not happen. On the contrary, 

when there are many local correlations between field values, 

the number of candidates and frequent sets starts to expand 

quickly. This problem of a large number of closely related 

frequent sets can be solved with so-called closed sets, which 

can be used as a condensed representation of a set of frequent 

sets (Nicolas Pasquier et. al., 1999). 

 

2.2 Frequent episodes 
The notion of association rules was postulate for sequences by 

defining episode rules. Episode rule A ⇒ B describes 

association “if A occurs in a sequence also B occurs in the 

sequence”. The confidence of the episode rule gives a 

probability P(”B occurs in a sequence” | ”A occurs in the 

sequence”) The probability can be computed from data by 

computing frequent episodes, which reveal items occurring 

close to each other in a sequence and correspond to frequent 

sets (Kimmo Hatonen, 2009). 

The sequences in the log domain consist of log event types — 

for example, alarm numbers or message texts — which are 

ordered by their recording or creation times. The patterns, the 

so-called episodes, are ordered or unordered sequences of 

entry types of log entries occurring within a time window of 

specified width. (Kimmo Hatonen, 2009). 
 

3. Proposed Strategy 
With respect to secondary literature review, this includes 

sources of information not available in the public but someone 

has to get in touch with companies or universities in order to 

get them. I got the Web log file from the Technical Support of 

Kurukshetra University’s Institute of Engineering Collage. 

Then, I needed first of all to convert them from the log’s file 

format to a format that data mining software would 

understand. 

The second step is to build a excel file by using MS. Access 

through which the data mining tool easily loaded and then 

making decision tree for the extraction of patterns.  

The final form of research that, I was conducting interviews 

with members’ of the Technical Support Group and then 

discuss with my dissertation guide, this was essential in order 

for me to clarify some aspects of the web log file contents; an 

example of this web log file is given below: 

 
2012-03-18 00:29:07 W3SVC49 PLESK-WEB14 

208.91.198.202 GET /tap_pb.html - 80 - 180.76.5.51 

HTTP/1.1 

Mozilla/5.0+(compatible;+Baiduspider/2.0;++http://www.bai

du.com/search/spider.html) - - uietkuk.org 200 0 0 8848 224 

2168 

2012-03-18 00:41:12 W3SVC49 PLESK-WEB14 

208.91.198.202 GET /robots.txt - 80 - 77.75.77.17 HTTP/1.1 

SeznamBot/3.0+(+http://fulltext.sblog.cz/) - - 

www.uietkuk.org 404 0 2 5394 197 2043 

 

3.1 Algorithms for Creating Decision Trees 

3.1.1 The CHAID Algorithm 
 

The CHAID algorithm was devised by J.A.Hartigan in 1975 

(Berry and Linoff, 1997). It tries to ’evaluate’ the quality of 

the tree so that no pruning will be needed. There is another 

difference concerning the way the splitting is performed; first 

of all, classes that correspond to the same value of the target 

field are grouped together. An example of that is that BMW, 

Mercedes and Audi would be grouped together as car brands 

whereas Boeing and Airbus would be grouped together as 

airline brands. This happens, though, if the proportion of 

classes it leads to have no significant difference- this is 

determined by the use of the X2 test. The mathematical 

formula for this test is given below: (the Ei  represent the 

expected frequencies of classes and the Oi  the ones that 

actually occurred) (Damianou, 1998). 
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Eq. 1: Equation X2 formula (Lekeas, 2000) 

3.1.2 The CART Algorithm 
 

The CART algorithm was devised in 1984 by L.Briemen and 

associates (Berry and Linoff, 1997). The product is a binary 

tree; this means that there are only two nodes for each split. 

This is done with the aid of a training set – that is a set for 

which the target attribute’s value is known. The measure we 

use for that split is diversity; despite the fact that many ways 

for calculating diversity exists there is a common 

interpretation for their values. In the case that its value is low, 

this means that most records fall under one class whereas if 

the value is high that means that all classes are represented. 

Aim is at each step to reduce the amount of diversity by the 

biggest possible amount. Try to do the split using each 

different field and then pick up the one that reduces diversity 

the most. Once the first split is done, there are two nodes as its 

product; each node is now considered to be the root of the tree 

and the search for the field that gives the best split is 

performed. This is how the tree grows until no field can be 

found that would reduce diversity significantly. 

 In order to first identify those branches that give the least 

additional predictive power; for that to happen, need to 

introduce another measure the adjusted error rate.  

This is equal to AE(T)= E(T) +α * leaf_count(T) (Berry and 

Linoff, 1997)  

In order to find the first subtree, to evaluate the adjusted error 

rate’s values as α increase; when it becomes less or equal to 

the respective value for the whole tree the first candidate 

subtree is found and so on for other subtrees. 

 

 3.1.3 The QUEST Algorithm 
 

QUEST was introduced by (Wei-Yin Loh and Yu-Shan Shih 

,1997) and is an acronym for "Quick, Unbiased, Efficient, 

Statistical Tree." To become quick and unbiased, this 

algorithm selects an input variable to split on before searching 

for a split, thereby eliminating the time required for searching 

on most inputs and eliminating the bias towards nominal 

inputs inherent when relying on candidate splitting rules to 

select the input variable.    

A simplified version of the QUEST input selection is as 

follows.  For an interval input, perform a J-way ANOVA, 

where J is the number of target values.  For a nominal input 

with M values, compute a chi-square statistic from the J by M 

contingency table.  Select the input with the smallest 

Bonferroni adjusted p-value. If a nominal input is selected, it 

is transformed to an interval one.  A linear discriminant 

analysis is then performed on the single selected input, and 

one of the discriminant boundary points becomes the split 

point. 

Splits on linear combinations of inputs are also possible.  

QUEST searches for binary splits on nominal or interval 

inputs for a nominal target. Cases whose values are missing an 

input are excluded in calculations with that input.  Surrogate 

rules assign such cases to branches.  Recursive partitioning 

creates a large tree that is retrospectively pruned using cross 

validation. 

 

3.2 Mathematical formulation for Decision 

Tree 

Given training vectors , i=1,..., l and a label 

vector , a decision tree recursively partitions the 

space such that the samples with the same labels are grouped 

together. [2] 

Let the data at node  be represented by . For each 

candidate split  consisting of a feature  and 

threshold , partition the data into 

 and  subsets 

 
The impurity at  is computed using an impurity 

function , the choice of which depends on the task 

being solved (classification or regression) 

 
Select the parameters that minimises the impurity 

 

Recurse for subsets  and  until 

the maximum allowable depth is 

reached,  or . 

4. Interpretation of Patterns 

4.1 Creating the Model for Decision Tree 
 The Decision Tree Procedure offers several different methods 

for creating tree models. 

4.1.1 CHAID Tree Model 
To run a Decision Tree analysis, from the menus choose: 

        Menu Tab 

          Analyze 

            Classify 

                Tree... 
 

 

Fig 4: Decision Tree dialog box 

 Select Types of Files as the dependent variable. 

 Select all the remaining variables as independent 

variables. 

 Select CS Bytes as influence variable. 

At this point, you could run the procedure and produce a 

basic tree model, but we’re going to select some 

additional output and make a few minor adjustments to 

the criteria used to generate the model. 
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Fig 5: Selecting Target Categories 
 

 

 Click the Categories button right below the selected 

dependent variable. This opens the Categories 

dialog box, where you can specify the dependent 

variable target categories of interest. 

 Select (check) the Target check box for the .CSS, 

.doc, .gif, .jpg, .pdf and .png categories. 

 Click Continue. 
 

4.1.1.1 Specifying Tree Growing Criteria 
 To keep the tree fairly simple, so limit the tree 

growth by raising the minimum number of cases for 

parent and child nodes. 

 In the main Decision Tree dialog box, click Criteria. 

 In the Minimum Number of Cases group, type 100 

for Parent Node and 50 for Child Node. 

 Click Continue. 
 

4.1.1.2 Selecting Additional Output 
 In the main Decision Tree dialog box, click Output. 

This opens a tabbed dialog box, where you can 

select various types of additional output. 

 On the Tree tab, select (check) Tree in table format. 

 Then click the Plots tab. 
 

4.1.1.3 Saving Predicted Values 
 You can save variables that contain information 

about model predictions.  

 In the main Decision Tree dialog box, click Save. 

 Select (check) Terminal node number, Predicted 

value, and Predicted probabilities. 

 Click Continue. 

 In the main Decision Tree dialog box, click OK to 

run the procedure. 
 

4.1.2 Evaluating the Model 
 This model results include: 

 Tables that provide information about the model. 

 Tree diagram. 

 Charts that provide an indication of model 

performance. 

 Risk Estimate and Classification. 

 

 

 

 

 

 

 

 
 

I. Model Summary Table 

TABLE 1. Model Summary 

Specifi
cations 

Growing Method CHAID 

Dependent 
Variable 

Types of Files 

Independent 
Variables 

C_IP Address, Transfer Protocool, 
CS Method, CS_Host URL, SC 
SubStatus, SC Status, SC Win32 
Status, Time Taken, SC Bytes  

Validation None 

Maximum Tree 
Depth 

3 

Minimum Cases 
in Parent Node 

100 

Minimum Cases 
in Child Node 

50 

Result
s 

Independent 
Variables 
Included 

SC Bytes, Time Taken, C_IP 
Address  

Number of Nodes 7 

Number of 
Terminal Nodes 

4 

Depth 2 

 
The model summary table provides some very broad 

information about the specifications used to build the model 

and the resulting model. Nine independent variables were 

specified, but only three were included in the final model. The 

variables for transfer protocols, cs method, cs_hosturl, sc 

substatus, sc status and sc win32status did not make a 

significant contribution to the model, so they were 

automatically dropped from the final model. 

I. Tree Diagram 
 

 
 

Fig 6: Tree Model 
 

The tree diagram is a graphic representation of the tree model. 

This tree diagram shows that: 
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Using the CHAID method, SC Bytes is the best predictor of 

Types of Files. 

For the node1 and node2, the next best predictors are Time 

taken and C_IP Address respectively. 

The Tree Editor can hide and show selected branches, change 

colours and fonts, and select subsets of cases based on 

selected nodes. 
 

II. Tree Table 

TABLE 2. Gain Summary for Nodes 

Node N Percent Profit ROI 

3 117 39.1% 4.556 227.8% 

4 75 25.1% 3.160 158.0% 

5 50 16.7% 2.240 112.0% 

6 57 19.1% 1.912 95.6% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 

  

Fig 7: Profit Graph 

 

Fig 8: ROI Graph 

Target Category: .CSS 

TABLE 3. Gains for Nodes 

Node 

Node Gain 

Respons

e Index N 

Percen

t N 

Percen

t 

3 117 39.1% 40 71.4% 34.2% 182.5% 

4 75 25.1% 16 28.6% 21.3% 113.9% 

6 57 19.1% 0 .0% .0% .0% 

5 50 16.7% 0 .0% .0% .0% 

Growing Method: CHAID 
Dependent Variable: Types of Files  

 

 
Fig 9: Gain Graph - .CSS 

 
Target Category: .doc 

TABLE 4. Gains for Nodes 

Node 

Node Gain 
Resp

onse Index N Percent N Percent 

6 57 19.1% 2 100.0% 3.5% 524.6% 

3 117 39.1% 0 .0% .0% .0% 

4 75 25.1% 0 .0% .0% .0% 

5 50 16.7% 0 .0% .0% .0% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 
 Fig 10: Gain Graph - .doc 

 

Target Category: .gif 

TABLE 5. Gains for Nodes 

Node 

Node Gain 

Respon

se Index N Percent N 

Perce

nt 

3 117 39.1% 41 74.5

% 

35.0% 190.5

% 

4 75 25.1% 14 25.5

% 

18.7% 101.5

% 

6 57 19.1% 0 .0% .0% .0% 

5 50 16.7% 0 .0% .0% .0% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 

 
Fig 11: Gain Graph - .gif 
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Target Category: .jpg 

TABLE 6. Gains for Nodes 

Node 

Node Gain 
Resp

onse Index N Percent N Percent 

6 57 19.1% 39 39.4% 68.4

% 

206.6

% 

5 50 16.7% 31 31.3% 62.0

% 

187.3

% 

4 75 25.1% 25 25.3% 33.3

% 

100.7

% 

3 11

7 

39.1% 4 4.0% 3.4% 10.3% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 

 
Fig 12: Gain Graph - .jpg 

Target Category: .pdf 

TABLE 7. Gains for Nodes 

Node 

Node Gain 
Resp

onse Index N Percent N Percent 

3 117 39.1% 13 56.5% 11.1

% 

144.4% 

6 57 19.1% 5 21.7% 8.8% 114.0% 

4 75 25.1% 5 21.7% 6.7% 86.7% 

5 50 16.7% 0 .0% .0% .0% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 
Fig 13: Gain Graph - .pdf 

Target Category: .png 

TABLE 8. Gains for Nodes 

 

 
 Fig 14: Gain Graph - .png 

 

The gains for nodes table provide a summary of information 

about the terminal nodes in the model. 

 Only the terminal nodes—nodes at which the tree 

stops growing—are listed in this table. 

 Since gain values provide information about target 

categories, this table is available only if specified 

one or more target categories. 

 Node N is the number of cases in each terminal 

node, and Node Percent is the percentage of the total 

number of cases in each node. 

 Gain N is the number of cases in each terminal node 

in the target category, and Gain Percent is the 

percentage of cases in the target category with 

respect to the overall number of cases in the target 

category. 

 For categorical dependent variables, Response is the 

percentage of cases in the node in the specified 

target category. 

 For categorical dependent variables, Index is the 

ratio of the response percentage for the target 

category compared to the response percentage for 

the entire sample. 
 

III. Gains Chart 
Gains chart indicates that the model is a fairly good one. 

Cumulative gains charts always start at 0% and end at 100% 

as you go from one end to the other. For a good model, the 

gains chart will rise steeply toward 100% and then level off. A 

model that provides no information will follow the diagonal 

reference line. 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Node 

Node Gain 
Respon

se Index N Percent N Percent 

4 75 25.1% 5 50.0% 6.7% 199.3% 

5 50 16.7% 3 30.0% 6.0% 179.4% 

6 57 19.1% 2 20.0% 3.5% 104.9% 

3 117 39.1% 0 .0% .0% .0% 

Growing Method: CHAID 
Dependent Variable: Types of Files 
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IV. Risk Estimate and Classification 

 

Table 9. Risk Estimate and 

Classification 

Risk 

Estimate Std. Error 

.548 .029 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 

Classification 

Obser
ved 

Predicted 

.CSS 
.do
c .gif .html .ico .jpg .js 

.p
df 

.pn
g 

Percent 
Correct 

.CSS 40 0 0 0 0 16 0 0 0 71.4% 

.doc 0 0 0 0 0 2 0 0 0 .0% 

.gif 41 0 0 0 0 14 0 0 0 .0% 

.html 7 0 0 0 0 11 0 0 0 .0% 

.ico 0 0 0 0 0 8 0 0 0 .0% 

.jpg 4 0 0 0 0 95 0 0 0 96.0% 

.js 12 0 0 0 0 16 0 0 0 .0% 

.pdf 13 0 0 0 0 10 0 0 0 .0% 

.png 0 0 0 0 0 10 0 0 0 .0% 

Overa
ll 
Perce
ntage 

39.1% .0% .0% .0% .0% 60.9
% 

.0
% 

.0
% 

.0% 45.2% 

Growing Method: CHAID 
Dependent Variable: Types of Files 

 

The risk and classification tables provide a quick evaluation of 

how well the model works.The risk estimate of 0.548 

indicates that the category predicted by the model (Types of 

File) is wrong for 54.8% of the cases. So the “risk” of 

misclassifying Clients is approximately 29%. The results in 

the classification table are  consistent with the risk estimate. 

The table shows that the model classifies approximately 

45.2% of the types of Files correctly. 

5. Conclusion 
Pattern discovery is an important subfield of web mining that 

attempts to discover interesting (or high-quality) patterns from 

web log files. There are several efficient techniques to 

discover such patterns with respect to different interestingness 

measures. Merely discovering the patterns efficiently is rarely 

the ultimate goal, but the patterns are discovered for some 

purpose. One important use of patterns is to summarize data, 

since the pattern collections together with the quality values of 

the patterns can be considered as summaries of the data. 

6. REFERENCES 
[1] Berry Michael J.A. and Linoff       Gordon,      “Data 

Mining Techniques: For Marketing, Sales and Customer 

Support, John Wiley & Sons Ltd.”, ISBN: 0-471-17980-    

9, (1997).  

[2] Decision Tree http://scikit-

learn.sourceforge.net/stable/modules/tree.html 

[3] Damianou Charalambos,” Statistics, Symmetria    

Publications”, (1998). 

[4] Gao, “Research On Client Behavior Pattern Recognition System 

Based On Web Log Mining”,” Proceedings of the Ninth 

International     Conference on Machine Learning and 

Cybernetics, Qingdao, 11-14 July 2010”, 978-1-4244-6527-

9/10, (2010). 

[5] Jean-Fran et. al.,”Mining free-sets under constraints”, In Michel 

E. Adiba, Christine Collet, and Bipin C. Desai, editors, 

“Proceedings of International Database Engineering & 

Applications Symposium (IDEAS’01)”, pages 322 – 329, 

Grenoble, France, July (2001). 

[6] Kimmo Hatonen, “Data mining for telecommunications   

network log analysis”,   (2009). 

[7] Kimmo Hatonen et. al.,“Comprehensive log compression with 

frequent patterns, “Proceedings of Data Warehousing and 

Knowledge Discovery, 5th International Conference”, (DaWaK 

2003), volume 2737 of LNCS, pages 360 – 370, Prague, Czech 

Republic, September (2003). 

[8] Lekeas, “Data mining the web: the   case of City University’s 

Log    Files”, (2000). 

[9] Loh, W. and Shih, Y. (1997), "Split Selection Methods for 

Classification Trees," Statistica Sinica, 7, 815-840.  Introduces 

the QUEST algorithm.  Refer to http://www.stat.wisc.edu/~loh. 

[10] Nicolas Pasquier et. al.,”Closed set based discovery of small 

covers for association rules”, “In Christine Collet, editor, 

Proceedings of BDA’99”, pages 361 – 381, Bordeaux, France, 

October (1999). 

[11] Osmar R. Zaiane et. al. “Discovering Web Access Patterns and 

Trends by Applying OLAP and Data Mining Technology on 

Web Logs”, (2001). 

[12] Veeramalai et.al. “Efficient Web Log Mining Using Enhanced 

Apriori Algorithm with Hash Tree and Fuzzy”, “International 

journal of computer science & information technology (IJCSIT) 

Vol.2, No.4, August 2010”, 10.5121/ijcsit.2010.2406, (2010).            

 

 

http://scikit-learn.sourceforge.net/stable/modules/tree.html
http://scikit-learn.sourceforge.net/stable/modules/tree.html
http://www.stat.wisc.edu/~loh

