
International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

19

Extraction of Frequent Patterns from Web Logs using

Web Log Mining Techniques

Rakesh Kumar
Research Scholar, Dept.

of Computer Science &
Applications, Kurukshetra

University, Kurukshetra, India

Kanwal Garg, PhD.
Assistant Professor, Dept. Of

Computer Science Applications,
Kurukshetra University,

Kurukshetra, India

Vinod Kumar
Research Scholar, Dept. Of

Computer Science Applications,
Kurukshetra University,

Kurukshetra, India

ABSTRACT

 World Wide Web is a huge repository of web pages and

links. It provides profusion of information for the Internet

users. The growth of web is tremendous as approximately one

million pages are added daily. User’s accesses are recorded in

web logs. Because of the incredible usage of web, the web log

files are growing at a faster rate and the size is becoming

huge. Web data mining is the application of data mining

techniques in web data. Web log Mining applies mining

techniques in log data to extract the behaviour of users. Web

log mining consists of three phases pre-processing, pattern

discovery and pattern analysis. Web log data is usually noisy

and ambiguous and pre-processing is an important process

before web log mining. For discovering patterns sessions are

to be constructed efficiently. This paper presents the existing

work done to extracting patterns by using decision tree

methodology in the technique of web log mining.

Keywords

Web Log mining, Web Log Files, World Wide Web (WWW),

HTTP (Hyper Text Transfer Protocol) and CHAID (Chi-

Squared Automatic Interaction Detection)

1. Introduction to Web Log Files
The huge advancements in World-Wide Web (WWW)

technology and the ever growing popularity of the WWW, a

huge number of Web access log records are being collected in

the form of web log files (Osmar R. Zaiane, Man Xi and

Jiawei Han, 2001). In Web log file there are three kinds of

files recording the client visiting behaviors: Access Log, Refer

Log, Agent Log, and for some systems Cookie Log is also

recorded. Access Log, recording detailed visiting behavior of

every client, is the main data resource for Web log mining.

Refer Log keeps record of the information about page layout

requested by client, such as client visiting date and period,

visiting path pattern and etc for client recognition and path

supplement. Cookie Log can have label number held by client

for recognizing client and its conversation and etc. (GAO,

2010)

When any user agent (e.g., IE, Mozilla, Netscape, etc) hits an

URL in a domain, the information related to that operation is

recorded in an access log file. In the data processing task, the

web log data can be preprocessed in order to obtain session

information for all users. Access log file on the server side

contains log information of user that opened a session. These

records have seven common fields, which are: 1. User’s IP

address, 2. Access date and time, 3. Request method (GET or

POST), 4. URL of the page accessed, 5.Transfer protocol

(HTTP 1.0, HTTP 1.1), 6.Success of return code, 7.Number of

bytes transmitted. (Veeramalai et.al. 2010)

Fig 1: Log File Fields

This paper has been divided into five sections. Section 1

explores the web log files. Section 2 discusses about frequent

patterns. Section 3 highlights the proposed strategy. Section 4

focuses on the analysis of frequent patterns. Section 5 finally

concludes by discussing the outcome of study.

2. ABOUT Frequent Patterns
Frequent patterns are values or events type combinations that

often occur together in the data. They provide information,

which can be used to find rules or patterns of correlated or

otherwise searched value combinations. A pattern is called

frequent if the number of its occurrences in the data is larger

than a given threshold.

There are two kinds of frequent patterns: frequent sets and

frequent episodes. Frequent sets consist of value combinations

that occur inside data records like log entries. Frequent

episodes, on the other hand, describe common value

sequences like log message types that occur in the network.

(Kimmo Hatonen, 2009).

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

20

Fig 2: An example firewall log fragment (Kimmo Hatonen,

2009)

Fig 3: An example alarm log fragment (Kimmo Hatonen,

2009)

2.1 Frequent sets
This section gives definitions for frequent sets in the context

of the telecommunications network event logs.

Definition 3.1 (Items) Items is a finite set of items that are

field: value pairs, i.e., Items= {A : ai, B : bj , C : ck, . . .},

where field is one of the fields in log entries and value

attached to each field belongs to the domain of possible values

of the field.Definition 3.2 (log entry) A log entry e is a subset

of Items such that∀ F : u,G : v ∈ e : F _= G.

Definition 3.3 (log) A log r is a finite and non-empty multiset

r = {e1, e2, . . . , en} of log entries (Kimmo Hatonen et. al. ,

2003).

Definition 3.4 (itemset) An itemset S is a subset of Items. The

main properties that an itemset has entries.

Definition 3.5 (itemset support) A log entry e supports an

itemset S if every item in S is included in e, i.e., with respect

to a given log are a set of entries in which it occurs, i.e., of

which it is subset, and the number of those S ⊆ e. The support

(denoted supp(S, r)) of an itemset S is the multiset of all log

entries of r that support S. Note that supp(∅ , r) = r.

Definition 3.6 (itemset frequency) The absolute frequency of

an itemset S in a log r is defined by freq(S, r) = |supp(S, r)|

where |.| denotes the cardinality of the multiset (Kimmo

Hatonen et. al., 2003).

Closed sets

A telecommunications network log can be seen as a sparse

transactional database. For example, in firewall logs fields

potentially have a very large set of possible values, e.g., the

value of the Destination field that contains the requested

destination address, can be any IP address in the Internet.

However, probably in most of the entries, the field contains

addresses of those servers in an intranet, which are hosting

services like web and mail that are open to the Internet. (Jean-

Fran et. al., 2001).

The Apriori algorithm works fine when the number of

candidates is not too large. In a sparse database, the number of

candidates usually starts to decrease after the frequent sets of

size two or three have been computed. With data like firewall

logs, which are dense, this does not happen. On the contrary,

when there are many local correlations between field values,

the number of candidates and frequent sets starts to expand

quickly. This problem of a large number of closely related

frequent sets can be solved with so-called closed sets, which

can be used as a condensed representation of a set of frequent

sets (Nicolas Pasquier et. al., 1999).

2.2 Frequent episodes
The notion of association rules was postulate for sequences by

defining episode rules. Episode rule A ⇒ B describes

association “if A occurs in a sequence also B occurs in the

sequence”. The confidence of the episode rule gives a

probability P(”B occurs in a sequence” | ”A occurs in the

sequence”) The probability can be computed from data by

computing frequent episodes, which reveal items occurring

close to each other in a sequence and correspond to frequent

sets (Kimmo Hatonen, 2009).

The sequences in the log domain consist of log event types —

for example, alarm numbers or message texts — which are

ordered by their recording or creation times. The patterns, the

so-called episodes, are ordered or unordered sequences of

entry types of log entries occurring within a time window of

specified width. (Kimmo Hatonen, 2009).

3. Proposed Strategy
With respect to secondary literature review, this includes

sources of information not available in the public but someone

has to get in touch with companies or universities in order to

get them. I got the Web log file from the Technical Support of

Kurukshetra University’s Institute of Engineering Collage.

Then, I needed first of all to convert them from the log’s file

format to a format that data mining software would

understand.

The second step is to build a excel file by using MS. Access

through which the data mining tool easily loaded and then

making decision tree for the extraction of patterns.

The final form of research that, I was conducting interviews

with members’ of the Technical Support Group and then

discuss with my dissertation guide, this was essential in order

for me to clarify some aspects of the web log file contents; an

example of this web log file is given below:

2012-03-18 00:29:07 W3SVC49 PLESK-WEB14

208.91.198.202 GET /tap_pb.html - 80 - 180.76.5.51

HTTP/1.1

Mozilla/5.0+(compatible;+Baiduspider/2.0;++http://www.bai

du.com/search/spider.html) - - uietkuk.org 200 0 0 8848 224

2168

2012-03-18 00:41:12 W3SVC49 PLESK-WEB14

208.91.198.202 GET /robots.txt - 80 - 77.75.77.17 HTTP/1.1

SeznamBot/3.0+(+http://fulltext.sblog.cz/) - -

www.uietkuk.org 404 0 2 5394 197 2043

3.1 Algorithms for Creating Decision Trees

3.1.1 The CHAID Algorithm

The CHAID algorithm was devised by J.A.Hartigan in 1975

(Berry and Linoff, 1997). It tries to ’evaluate’ the quality of

the tree so that no pruning will be needed. There is another

difference concerning the way the splitting is performed; first

of all, classes that correspond to the same value of the target

field are grouped together. An example of that is that BMW,

Mercedes and Audi would be grouped together as car brands

whereas Boeing and Airbus would be grouped together as

airline brands. This happens, though, if the proportion of

classes it leads to have no significant difference- this is

determined by the use of the X2 test. The mathematical

formula for this test is given below: (the Ei represent the

expected frequencies of classes and the Oi the ones that

actually occurred) (Damianou, 1998).

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

21

Eq. 1: Equation X2 formula (Lekeas, 2000)

3.1.2 The CART Algorithm

The CART algorithm was devised in 1984 by L.Briemen and

associates (Berry and Linoff, 1997). The product is a binary

tree; this means that there are only two nodes for each split.

This is done with the aid of a training set – that is a set for

which the target attribute’s value is known. The measure we

use for that split is diversity; despite the fact that many ways

for calculating diversity exists there is a common

interpretation for their values. In the case that its value is low,

this means that most records fall under one class whereas if

the value is high that means that all classes are represented.

Aim is at each step to reduce the amount of diversity by the

biggest possible amount. Try to do the split using each

different field and then pick up the one that reduces diversity

the most. Once the first split is done, there are two nodes as its

product; each node is now considered to be the root of the tree

and the search for the field that gives the best split is

performed. This is how the tree grows until no field can be

found that would reduce diversity significantly.

 In order to first identify those branches that give the least

additional predictive power; for that to happen, need to

introduce another measure the adjusted error rate.

This is equal to AE(T)= E(T) +α * leaf_count(T) (Berry and

Linoff, 1997)

In order to find the first subtree, to evaluate the adjusted error

rate’s values as α increase; when it becomes less or equal to

the respective value for the whole tree the first candidate

subtree is found and so on for other subtrees.

 3.1.3 The QUEST Algorithm

QUEST was introduced by (Wei-Yin Loh and Yu-Shan Shih

,1997) and is an acronym for "Quick, Unbiased, Efficient,

Statistical Tree." To become quick and unbiased, this

algorithm selects an input variable to split on before searching

for a split, thereby eliminating the time required for searching

on most inputs and eliminating the bias towards nominal

inputs inherent when relying on candidate splitting rules to

select the input variable.

A simplified version of the QUEST input selection is as

follows. For an interval input, perform a J-way ANOVA,

where J is the number of target values. For a nominal input

with M values, compute a chi-square statistic from the J by M

contingency table. Select the input with the smallest

Bonferroni adjusted p-value. If a nominal input is selected, it

is transformed to an interval one. A linear discriminant

analysis is then performed on the single selected input, and

one of the discriminant boundary points becomes the split

point.

Splits on linear combinations of inputs are also possible.

QUEST searches for binary splits on nominal or interval

inputs for a nominal target. Cases whose values are missing an

input are excluded in calculations with that input. Surrogate

rules assign such cases to branches. Recursive partitioning

creates a large tree that is retrospectively pruned using cross

validation.

3.2 Mathematical formulation for Decision

Tree

Given training vectors , i=1,..., l and a label

vector , a decision tree recursively partitions the

space such that the samples with the same labels are grouped

together. [2]

Let the data at node be represented by . For each

candidate split consisting of a feature and

threshold , partition the data into

 and subsets

The impurity at is computed using an impurity

function , the choice of which depends on the task

being solved (classification or regression)

Select the parameters that minimises the impurity

Recurse for subsets and until

the maximum allowable depth is

reached, or .

4. Interpretation of Patterns

4.1 Creating the Model for Decision Tree
 The Decision Tree Procedure offers several different methods

for creating tree models.

4.1.1 CHAID Tree Model
To run a Decision Tree analysis, from the menus choose:

 Menu Tab

 Analyze

 Classify

 Tree...

Fig 4: Decision Tree dialog box

 Select Types of Files as the dependent variable.

 Select all the remaining variables as independent

variables.

 Select CS Bytes as influence variable.

At this point, you could run the procedure and produce a

basic tree model, but we’re going to select some

additional output and make a few minor adjustments to

the criteria used to generate the model.

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

22

Fig 5: Selecting Target Categories

 Click the Categories button right below the selected

dependent variable. This opens the Categories

dialog box, where you can specify the dependent

variable target categories of interest.

 Select (check) the Target check box for the .CSS,

.doc, .gif, .jpg, .pdf and .png categories.

 Click Continue.

4.1.1.1 Specifying Tree Growing Criteria
 To keep the tree fairly simple, so limit the tree

growth by raising the minimum number of cases for

parent and child nodes.

 In the main Decision Tree dialog box, click Criteria.

 In the Minimum Number of Cases group, type 100

for Parent Node and 50 for Child Node.

 Click Continue.

4.1.1.2 Selecting Additional Output
 In the main Decision Tree dialog box, click Output.

This opens a tabbed dialog box, where you can

select various types of additional output.

 On the Tree tab, select (check) Tree in table format.

 Then click the Plots tab.

4.1.1.3 Saving Predicted Values
 You can save variables that contain information

about model predictions.

 In the main Decision Tree dialog box, click Save.

 Select (check) Terminal node number, Predicted

value, and Predicted probabilities.

 Click Continue.

 In the main Decision Tree dialog box, click OK to

run the procedure.

4.1.2 Evaluating the Model
 This model results include:

 Tables that provide information about the model.

 Tree diagram.

 Charts that provide an indication of model

performance.

 Risk Estimate and Classification.

I. Model Summary Table

TABLE 1. Model Summary

Specifi
cations

Growing Method CHAID

Dependent
Variable

Types of Files

Independent
Variables

C_IP Address, Transfer Protocool,
CS Method, CS_Host URL, SC
SubStatus, SC Status, SC Win32
Status, Time Taken, SC Bytes

Validation None

Maximum Tree
Depth

3

Minimum Cases
in Parent Node

100

Minimum Cases
in Child Node

50

Result
s

Independent
Variables
Included

SC Bytes, Time Taken, C_IP
Address

Number of Nodes 7

Number of
Terminal Nodes

4

Depth 2

The model summary table provides some very broad

information about the specifications used to build the model

and the resulting model. Nine independent variables were

specified, but only three were included in the final model. The

variables for transfer protocols, cs method, cs_hosturl, sc

substatus, sc status and sc win32status did not make a

significant contribution to the model, so they were

automatically dropped from the final model.

I. Tree Diagram

Fig 6: Tree Model

The tree diagram is a graphic representation of the tree model.

This tree diagram shows that:

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

23

Using the CHAID method, SC Bytes is the best predictor of

Types of Files.

For the node1 and node2, the next best predictors are Time

taken and C_IP Address respectively.

The Tree Editor can hide and show selected branches, change

colours and fonts, and select subsets of cases based on

selected nodes.

II. Tree Table

TABLE 2. Gain Summary for Nodes

Node N Percent Profit ROI

3 117 39.1% 4.556 227.8%

4 75 25.1% 3.160 158.0%

5 50 16.7% 2.240 112.0%

6 57 19.1% 1.912 95.6%

Growing Method: CHAID
Dependent Variable: Types of Files

Fig 7: Profit Graph

Fig 8: ROI Graph

Target Category: .CSS

TABLE 3. Gains for Nodes

Node

Node Gain

Respons

e Index N

Percen

t N

Percen

t

3 117 39.1% 40 71.4% 34.2% 182.5%

4 75 25.1% 16 28.6% 21.3% 113.9%

6 57 19.1% 0 .0% .0% .0%

5 50 16.7% 0 .0% .0% .0%

Growing Method: CHAID
Dependent Variable: Types of Files

Fig 9: Gain Graph - .CSS

Target Category: .doc

TABLE 4. Gains for Nodes

Node

Node Gain
Resp

onse Index N Percent N Percent

6 57 19.1% 2 100.0% 3.5% 524.6%

3 117 39.1% 0 .0% .0% .0%

4 75 25.1% 0 .0% .0% .0%

5 50 16.7% 0 .0% .0% .0%

Growing Method: CHAID
Dependent Variable: Types of Files

 Fig 10: Gain Graph - .doc

Target Category: .gif

TABLE 5. Gains for Nodes

Node

Node Gain

Respon

se Index N Percent N

Perce

nt

3 117 39.1% 41 74.5

%

35.0% 190.5

%

4 75 25.1% 14 25.5

%

18.7% 101.5

%

6 57 19.1% 0 .0% .0% .0%

5 50 16.7% 0 .0% .0% .0%

Growing Method: CHAID
Dependent Variable: Types of Files

Fig 11: Gain Graph - .gif

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

24

Target Category: .jpg

TABLE 6. Gains for Nodes

Node

Node Gain
Resp

onse Index N Percent N Percent

6 57 19.1% 39 39.4% 68.4

%

206.6

%

5 50 16.7% 31 31.3% 62.0

%

187.3

%

4 75 25.1% 25 25.3% 33.3

%

100.7

%

3 11

7

39.1% 4 4.0% 3.4% 10.3%

Growing Method: CHAID
Dependent Variable: Types of Files

Fig 12: Gain Graph - .jpg

Target Category: .pdf

TABLE 7. Gains for Nodes

Node

Node Gain
Resp

onse Index N Percent N Percent

3 117 39.1% 13 56.5% 11.1

%

144.4%

6 57 19.1% 5 21.7% 8.8% 114.0%

4 75 25.1% 5 21.7% 6.7% 86.7%

5 50 16.7% 0 .0% .0% .0%

Growing Method: CHAID
Dependent Variable: Types of Files

Fig 13: Gain Graph - .pdf

Target Category: .png

TABLE 8. Gains for Nodes

 Fig 14: Gain Graph - .png

The gains for nodes table provide a summary of information

about the terminal nodes in the model.

 Only the terminal nodes—nodes at which the tree

stops growing—are listed in this table.

 Since gain values provide information about target

categories, this table is available only if specified

one or more target categories.

 Node N is the number of cases in each terminal

node, and Node Percent is the percentage of the total

number of cases in each node.

 Gain N is the number of cases in each terminal node

in the target category, and Gain Percent is the

percentage of cases in the target category with

respect to the overall number of cases in the target

category.

 For categorical dependent variables, Response is the

percentage of cases in the node in the specified

target category.

 For categorical dependent variables, Index is the

ratio of the response percentage for the target

category compared to the response percentage for

the entire sample.

III. Gains Chart
Gains chart indicates that the model is a fairly good one.

Cumulative gains charts always start at 0% and end at 100%

as you go from one end to the other. For a good model, the

gains chart will rise steeply toward 100% and then level off. A

model that provides no information will follow the diagonal

reference line.

Node

Node Gain
Respon

se Index N Percent N Percent

4 75 25.1% 5 50.0% 6.7% 199.3%

5 50 16.7% 3 30.0% 6.0% 179.4%

6 57 19.1% 2 20.0% 3.5% 104.9%

3 117 39.1% 0 .0% .0% .0%

Growing Method: CHAID
Dependent Variable: Types of Files

International Journal of Computer Applications (0975 – 8887)

Volume 59– No.10, December 2012

25

IV. Risk Estimate and Classification

Table 9. Risk Estimate and

Classification

Risk

Estimate Std. Error

.548 .029

Growing Method: CHAID
Dependent Variable: Types of Files

Classification

Obser
ved

Predicted

.CSS
.do
c .gif .html .ico .jpg .js

.p
df

.pn
g

Percent
Correct

.CSS 40 0 0 0 0 16 0 0 0 71.4%

.doc 0 0 0 0 0 2 0 0 0 .0%

.gif 41 0 0 0 0 14 0 0 0 .0%

.html 7 0 0 0 0 11 0 0 0 .0%

.ico 0 0 0 0 0 8 0 0 0 .0%

.jpg 4 0 0 0 0 95 0 0 0 96.0%

.js 12 0 0 0 0 16 0 0 0 .0%

.pdf 13 0 0 0 0 10 0 0 0 .0%

.png 0 0 0 0 0 10 0 0 0 .0%

Overa
ll
Perce
ntage

39.1% .0% .0% .0% .0% 60.9
%

.0
%

.0
%

.0% 45.2%

Growing Method: CHAID
Dependent Variable: Types of Files

The risk and classification tables provide a quick evaluation of

how well the model works.The risk estimate of 0.548

indicates that the category predicted by the model (Types of

File) is wrong for 54.8% of the cases. So the “risk” of

misclassifying Clients is approximately 29%. The results in

the classification table are consistent with the risk estimate.

The table shows that the model classifies approximately

45.2% of the types of Files correctly.

5. Conclusion
Pattern discovery is an important subfield of web mining that

attempts to discover interesting (or high-quality) patterns from

web log files. There are several efficient techniques to

discover such patterns with respect to different interestingness

measures. Merely discovering the patterns efficiently is rarely

the ultimate goal, but the patterns are discovered for some

purpose. One important use of patterns is to summarize data,

since the pattern collections together with the quality values of

the patterns can be considered as summaries of the data.

6. REFERENCES
[1] Berry Michael J.A. and Linoff Gordon, “Data

Mining Techniques: For Marketing, Sales and Customer

Support, John Wiley & Sons Ltd.”, ISBN: 0-471-17980-

9, (1997).

[2] Decision Tree http://scikit-

learn.sourceforge.net/stable/modules/tree.html

[3] Damianou Charalambos,” Statistics, Symmetria

Publications”, (1998).

[4] Gao, “Research On Client Behavior Pattern Recognition System

Based On Web Log Mining”,” Proceedings of the Ninth

International Conference on Machine Learning and

Cybernetics, Qingdao, 11-14 July 2010”, 978-1-4244-6527-

9/10, (2010).

[5] Jean-Fran et. al.,”Mining free-sets under constraints”, In Michel

E. Adiba, Christine Collet, and Bipin C. Desai, editors,

“Proceedings of International Database Engineering &

Applications Symposium (IDEAS’01)”, pages 322 – 329,

Grenoble, France, July (2001).

[6] Kimmo Hatonen, “Data mining for telecommunications

network log analysis”, (2009).

[7] Kimmo Hatonen et. al.,“Comprehensive log compression with

frequent patterns, “Proceedings of Data Warehousing and

Knowledge Discovery, 5th International Conference”, (DaWaK

2003), volume 2737 of LNCS, pages 360 – 370, Prague, Czech

Republic, September (2003).

[8] Lekeas, “Data mining the web: the case of City University’s

Log Files”, (2000).

[9] Loh, W. and Shih, Y. (1997), "Split Selection Methods for

Classification Trees," Statistica Sinica, 7, 815-840. Introduces

the QUEST algorithm. Refer to http://www.stat.wisc.edu/~loh.

[10] Nicolas Pasquier et. al.,”Closed set based discovery of small

covers for association rules”, “In Christine Collet, editor,

Proceedings of BDA’99”, pages 361 – 381, Bordeaux, France,

October (1999).

[11] Osmar R. Zaiane et. al. “Discovering Web Access Patterns and

Trends by Applying OLAP and Data Mining Technology on

Web Logs”, (2001).

[12] Veeramalai et.al. “Efficient Web Log Mining Using Enhanced

Apriori Algorithm with Hash Tree and Fuzzy”, “International

journal of computer science & information technology (IJCSIT)

Vol.2, No.4, August 2010”, 10.5121/ijcsit.2010.2406, (2010).

http://scikit-learn.sourceforge.net/stable/modules/tree.html
http://scikit-learn.sourceforge.net/stable/modules/tree.html
http://www.stat.wisc.edu/~loh

