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ABSTRACT 

The Electrocardiogram signals are a very valuable source of 

data for physicians in diagnosing heart abnormalities. In this 

paper, we present an efficient technique for compression of 

electrocardiogram (ECG) signals. A new thresholding method 

based on the three level of quantization is proposed for 

encoding samples using an Embedded Zero-tree Wavelet 

(EZW) and Huffman algorithms. The modified encoding 

algorithm allows an optimal data compression for a target bit 

rate and appeared superior to other wavelet-based ECG coders. 

Also, to improve the efficiency of the proposed method we 

propose to use different types of wavelet and compare their 

performances for compression of the ECG signals. 

Experimental results show that the proposed method has a good 

performance and less complexity for compression of ECG 

database from MIT-BIH database different types of wavelet 

transform. 
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1. INTRODUCTION 
The electrocardiogram is commonly needed because it is a non-

invasive way to establish clinical diagnosis of heart diseases. 

The records have become widely used to extract some 

considered information from the heart signals. With increasing 

use of ECG in heart diagnosis, such as 24 monitoring or in 

ambulatory monitoring systems, the volume of ECG data that 

should be stored or transmitted, has greatly increased. Therefore 

we need to reduce the data volume to decrease storage cost or 

make ECG signal suitable and ready for transmission through 

common communication channels such as phone line or mobile 

channel. So, an effective data compression method is needed.  

The main aim of any compression method is to accomplish 

maximum data reduction while preserving the significant signal 

morphology features upon reconstruction. Compression 

methods can be classified into three categories: 1) direct 

methods: These are time-domain Techniques; where the 

samples of the signal are directly handled to provide the 

compression. Coding by time-domain methods is based on the 

idea of extracting a subset of significant signal samples to 

represent the signal. Examples of the methods belonging to this 

group are Amplitude-Zone-Time Epoch Coding method 

(AZTEC) [1], Coordinate Reduction Time Encoding System 

(CORTES) [2]. The key to the successful algorithm is a good 

rule to determine the most significant samples. 

2) Linear Transformation Methods: where the original samples 

are subjected to a transformation and the compression is 

performed in the new domain. Wavelet coefficients are encoded 

based on the characteristics that the coefficients are ordered in 

hierarchies [3-5]. This implies that many of the transform 

coefficients will have little energy and may be discarded. A 

variety of encoding methods, for instance vector quantization 

and linear prediction, are used directly to the wavelet 

coefficients [6-9]. 

3) Parametric Methods: More recently reported in the 

literature, are combinations of direct and transformation 

techniques methods, typical examples being beat codebook [10] 

and artificial neural network [11]. Transform compression using 

the WT is an efficient and flexible scheme [12]. In recent year 

many of the research studies have been concentrated on 

Discrete Wavelet Transform (DWT) coding. Many efficient 

algorithms have been used to encode the DWT coefficients. 

Examples include: Embedded Zero-tree Wavelet encoding [13], 

the Set Partitioning in Hierarchical Tree (SPIHT) [14] and the 

wavelet coding using Vector Quantization [15]. 

     In this paper, a different thresholding method has been 

performed using the Three-Level Quantization and EZW & 

Huffman encoding for a better compression. Figure1 shows the 

block diagram of the proposed method for ECG compression. 

For lossy compression techniques, the definition of the error 

criterion to appreciate the distortion information can lead to 

wrong diagnostics. The measurement of these distortions is a 

difficult problem and it is only partially solved for biomedical 

signals. In bio-signal compression, adopting the proper 

evaluation criteria is important. Most common figure used for 

compression performance evaluation is percentage root mean 

square difference (PRD), compression ratio (CR) [16-19]. In 

most ECG compression algorithms, the percentage root-mean-

square difference (PRD) measure defined as:                                        
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Where x is the original signal, x̂  is the reconstructed signal, 

and N is the length of the window over which the PRD is 

calculated. In this paper the correlation coefficient (CC) is used 

as a measure. It is described by: 
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Where x is the original signal, x̂  is the reconstructed signal, 

x  is the average of original signal, x̂  is the average of 

reconstructed signal. It should be noted that this measure used 

to evaluate the similarity between two signals has the drawback 

of its global (average) nature. The compression ratio (CR) is 

defined as the ratio between the number of bits needed to 

represent the original and the compressed signal. The 

compression ratio is described by:   



 

 

International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.1, December 2012 

29 

ac

bc

n

n
CR 

                                                                   (3) 

Where 
acn  is number of bits in the compressed signal 

duration and 
bcn  is number of bits in original signal.    

This paper is organized as follows. Section 2 describes the 
discrete wavelet transform (DWT). Section 3 presents the 
thresholding and the three-level quantization of the coefficients 
vector. Section 4 explains the encoding of the quantized 
coefficients using EZW without thresholding and Huffman 
algorithms. Section 5 shows the simulation results. Section 6 
concludes the paper. Here, we have proposed an algorithm using 
wavelet transform and EZW encoding based on the three-level 
quantization to achieve a better performance. As shown in Figure 
1, the block diagram of the proposed method to compress ECG 
signals is illustrated in the following place. 

 
Input Signal 

Discrete Wavelet 

Transform 

Thresholding 

Using Three-level 

of quantization 

EZW Coding  

Compressed Signal  

{101001000…} 

Huffman Coding  

{ZTPN…} 

{00+1-1…} 

C={a5,d5,d4,…} 

 
Figure 1. Block diagram of the proposed 

ECG compression method 

 

2. DISCRETE WAVELET TRANSFORM 
The discrete wavelet transform (DWT) is introduced as a novel 

method to analyze signals in both time and frequency domains, 

and therefore it is suitable for the analysis of time-varying non 

stationary signals such as ECG. The WT overcomes the fixed 

resolution analysis of the short time Fourier transform (STFT). 

This makes the wavelets an ideal tool for analyzing signals of a 

non-stationary nature. Their irregular shape lends them to 

analyzing signals with discontinuities or sharp changes, while 

their compactly supported nature enables temporal localization 

of signals' features. A mother wavelet )(t  is a function of 

zero average:                 
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                                                                       (4) 

In discrete wavelet transform, two functions are used: 

wavelet function )(t  and scaling function )(t . If we have a 

scaling function )(t , then the sequence of subspaces spanned 

by its scaling and translations:                                                                          
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For mother wavelet we have:                           
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For orthogonal basis we have:   

)1()1()(  nhng n                                             (7)                                                                               

Where )(nh  is low pass filter and )(ng is high pass filter. If we 

want to find the projection of a function )(tf  on this set of 

subspaces, it must be expressed in each subspace as a liner 

combination of expansion function of that subspace [20]:                                                   
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)(t is function of the discrete wavelet, the transform can be 

represented, as a tree of low a high pass filter, with each step 

transforming the output of the low pass filter. Figure2 shows the 

wavelet decomposition tree, where the boxes represent linear 

convolution and circles represent down sampling by a factor of 

two (removal of every other sample). The original signal is 

successively decomposed into components of lower resolution, 

while the high frequency components are not analyzed any 

further. At each of the DWT algorithm, there are outputs: the 

scaling coefficients, 1j

nc  and the wavelet coefficients, 1j

nd  

.These coefficients are given respectively, by:                                             
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Here, g and h represent the low pass and high pass filters' 

transfer functions respectively. The output scaling coefficients 

are considered as the input samples to the next stage in the 

DWT algorithm [20-21]. The wavelet coefficients are described 

by:       
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L denotes the maximum number of scales that can be 

performed. It depends on the size of the data to be analyzed.  
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Figure 2. The Structure of Discrete Wavelet Transform 

 

The initial decomposition produces two sets of data: a set of 

approximation coefficients and a set of detail coefficients. The 

S in the first row represents the entire signal, with no 

decomposition. The first stage represents the first level of 

decomposition. There, node 
1ja  shows the approximation 

coefficient and 
1jd states the detail coefficients. This stage 

represents the first level of decomposition, where an 

approximation and detail are generated for the first level of 

approximation and an approximation and detail are generated 

for the first level detail in the second stage. In this paper, we 

used a discrete wavelet transform with 5 levels of 
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decomposition (M=5), the length of signal: 2048 samples 

(n=2048). All detail coefficients },,,,{ 12345 ddddd

(1≤M≤5) and approximation coefficient 
5a  (M=5) are 

assembled together in the coefficient vector (C): 

],,,,,[ 123455 dddddaC        

       

2.1. Orthogonal Wavelets (dbN, symN) 
Let us recall that a multiresolution approximation is a nested 

sequence of linear space. The orthogonal complement jW  of 

jV  in 1jV  can be thus defined:     

jjj WVV 1
                                                        (12)                                                                                                                                 

Then there is a function   such that the family

)2(2)( 2/

, ntt jj

nj    , n in Z, is an orthonormal 

basis of 
jW . The family

nj ,  , j in Z and n in Z, is an 

orthonormal basis of L2 and:                        

kjkjjZjj WVWVRL  )(2                           (13)                                                                                      

  is an orthogonal wavelet associated to the multi-resolution 

approximation [27]. A signal f in L2 can be decomposed as: 
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φ is an orthogonal scaling function of the multiresoution. 

One can verify the other resolutions are generated by a suitable 

dilatation of these bases of translated atoms. Since the 

resolutions are embedded, there is necessarily a sequence of real 

number ][nh  such that: 
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In this study, we have examined the symN and dbN wavelet 

families that include: Sym8, Sym7, Sym5, db3 and db2.            

                                                                                            

2.2. Biorthogonal Wavelet (BiorN) 
Leave Biorthogonal wavelets are defined similarly to 

orthogonal wavelets, except that the starting point is 

biorthogonal multi-resolution approximations. The following 

decompositions are performed:           


  )(1 jjjjj VwithWWVV                             (16-1)                                                                     



  )(1 jjjjj VwithWWVV                              (16-2) 

Like in the orthogonal case, a signal in L can be written as:  
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In this paper, we have tested the Bior wavelet families that 

include: Bior4.4, Bior3.3, Bior3.1 and Bior2.2 as the 

biorthogonal wavelets.    
                                                                                                                                   

3. THREE-LEVEL QUANTIZATION 
In this section, the quantization of the coefficient vector (C) is 

described. Due to the quantization, perfect reconstruction is not 

possible, and reconstruction errors occur. The quantization is 

performed iteratively by a three-level quantizer. Given the input 

vector C and the threshold 
i  of the 

thi  iteration, 
i  

described by:  
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Nk ,...,2,1  

Where 
i  is a threshold of the thi  iteration that is 

generated by the above equation for beginning of quantization. 

The coefficients of vector (C) are quantized by the quantizer 

that is defined by equation (19). The quantized coefficients 

][kd
n

 are described by: 
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In this stage, the input vector includes a set of approximation 

and detail coefficients that is created in the five levels of 

decomposition. Results of this step are the quantized 

coefficients vector (C) that is generated by the equation (19). 

The quantized coefficients that are named ][kd
n

 include 

exclusively three symbols {-1, 0, 1}. Where 0][  kd
n

 denotes 

the insignificant coefficients that is not very important for 

reconstruction of the original signals and 1][  kd
n

 the 

significant ones that are very effective to decrease error rate. 

The wavelet coefficient ][̂kc  can be reconstructed by using the 

quantized coefficients and the initial threshold
1 :                                      


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4. EZW AND HUFFMAN ENCODING 
The EZW algorithm has two very interesting properties [22-23-

24]. The first is that the EZW algorithm creates a connection 

between the wavelet coefficients from different sub-bands. This 

is the reason why several quantized coefficients from different 

sub-bands can be encoded using only one symbol .The second 

property is that the import coefficients are encoded using the 

successive approximated technique, which puts the most 

important parts of the coefficients at the beginning of a bit 

stream. Therefore, the encoder can easily stop encoding 

procedure at any desired target rate.    

In this section, the encoding of the quantized coefficients is 

performed at each iteration level of the quantization procedure. 

The main goal of the encoding algorithm is to find a connection 

between the quantized coefficients [.]
i

d
 from different sub-

band. Also we don’t need to calculate the threshold again by
])max([log

2
C

thr  equation because of the thresholding of the 

coefficient vector (C) in the previous section. Therefore in this 

stage, we only need to encode the results of the previous step to 

receive a better performance. 

The EZW algorithm use an alphabet which includes four 

symbols {P, N, T, Z}. Symbols P and N indicate the sign of a 

significant quantized coefficients, respectively for values of +1 

and -1. A non-significant coefficients is encoded with the 

symbol {T} if it the root of a zero-tree where all of its 

coefficients are non-significant. A zero-tree and its members are 

encoded with only one symbol, namely with its root. The 
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symbols {Z} describes those quantized coefficient, which are 

zero and do not belong to a zero-tree. The results of this stage 

are an encoded coefficients vector C with four symbols {P, N, 

T, Z}. 

In the next stage, these coefficients with the Variable-Length 

Coding (Huffman Coding) are encoded. In the Huffman 

encoding, a code with shorter length is replaced by symbols that 

have a small number and a code with longer length is 

substituted by symbols that their number is very large. We have 

considered the number of each symbol and Z, T, P and N have 

been replaced by 1, 01, 001 and 000 codes, respectively. Table1 

describes this procedure:  
 

TABLE 1. ENCODING SYMBOLS IN THE HUFFMAN ALGORITHM 

Symbol Code 

Z 1 

T 01 

P 001 

N 000 

 

5. SIMULATION RESULTS 
In this section, we have compared the result of several 

experiments of our method with other ECG coders. The 

proposed algorithm was tested and evaluated using actual data 

from MIT-BIH arrhythmia database. These ECG databases 

were sampled at 360 Hz with the Resolution of 11 bits/sample. 

We have used Daubechies (db3, db2), Symlet (sym8, sym7, 

sym5) and Biorthogonal wavelets (Bior2.2, Bior3.1, Bior3.3, 

Bior2.6, Bior4.4) with five levels of decomposition. The 

following results have been obtained using the records number: 

101, 103, 105, 115, 117, 118, 119, 201, 205, 213 and 219. To 

gain an optimum performance, 2048 samples and 3 types of 

wavelet with 5-level decompression have been used for 

compression of ECG signals. In order to validate the proposed 

compression algorithm and to compare it with other methods, 

11 records consisting of the 2048 samples from the MIT-BIH 

Arrhythmia database have been used. The ECG signals were 

digitized through sampling at 360 (samples/s), quantized and 

encoded with 11 bits. 

We have compared the performance of our encoder with 

some kinds of encoders in the literature, wavelet-based coders 

and direct ECG signal coders. The PRD and CR results in a 

similar record have been compared. Now, the effects of the 

iterations of the three-level quantization on the PRD, CR have 

been evaluated.  

 

TABLE 2. A COMPRESSION OF DIFFERENT ENCODING 

ALGORITHM FOR RECORD 117 

Algorithms PRD (%) CR (%) 

 

JPEG2000 [25] 

 

1.03 

 

10:1 

 

Sec & SPIHT [26] 

 

1.01 

 

8:1 

 

SPIHT & VQ [27] 

 

1.45 

 

8:1 

 

SPIHT [28] 

 

1.8 

 

8:1 

 

Hilton [35] 

 

2.6  

 

8:1 

 

WT & Huffman [11] 

 

3.2 

 

9.4:1 

 

Djohn [36] 

 

3.9 

 

8:1 

 

Wavelet Neural Network [33] 

 

2.74 

 

7.6:1 

 

Jianhua Chen [32] 

 

1.08 

 

12:1 

the block-based discrete 

cosine transform (DCT )[34] 

 

1.18 

 

9.56:1 

 

RLE [29] 

 

2.915 

 

5.8:1 

 

ASCII [30] 

 

7.89 

 

15.72:1 

 

Benzid [9] 

 

3.51 

 

12.6:1 

Dc Equalization and 

Complexity Sorting [31]  

 

1.118 

 

13.75:1 

Proposed Technique 0.97 13.92:1 

 

Table 2 shows the performance of the different algorithms in 

comparison with our simulated results. According to the table, 

there are some ECG compression methods in the literature, The 

Wavelet Neural Network, RLE, Benzid, Jianhua Chen, Hilton, 

SPIHT, SPIHT&VQ, Sec&SPIHT and WT&Huffman methods 

have presented a wavelet and wavelet packet-based EZW 

encoder [7]. They have reported respectively the PRD values of 

2.74%, 2.915%, 3.51, 1.08, 2.6%, 1.8%, 1.45%, 1.01% and 3.2 

with CR lower than 13. Also by comparison with other coders, 

the PRD ranges of 1.18%, 1.03% and 3.9% in Table 2 are 

significantly higher (inferior) compared to our results and also, 

their CR values of 9.56%, 10% and 8% are noticeably lower 

(inferior) in comparison with our presented results. In ASCII 

[36] a combination of CR and PRD that has been received is so 

bad. In table 2, the best combination of CR and PRD values of 

the coder compared here which is considerably better than 

others is 13.75:1% and 1.118% for the Dc Equalization and 

Complexity Sorting method [38]. The proposed compression 

algorithm in this paper obtain an excellent performance 

(PRD=0.97% and CR=13.92:1%) that is extremely better 

than other coders. 
Figure 3 shows the effects of the iterations of quantization on 

PRD. According to the Figure, as the numbers of iterations 

increase, the values of PRD can be improve more and in low 

number of iterations, the PRD values increase sharply and it 

would be worse than. Fig. 4 shows the effects of the iterations 

of quantization on CR. It can be found from the Figure 4 that 

the values of CR would be increased when the numbers of 

iteration become lower. In other words, by decreasing the 

numbers of iteration, the values of CR can be better and by 

increasing iterations, the CR values would be worse. 

We show the results of the 9th, 8th, 7th, 6th and 5th iterations in 

Tables 3, 4, 5, 6 and 7 for eleven records. In this study, several 

types of wavelets named: db3, db2, Bior4.4, Bior3.3, Bior3.1, 

Bior2.2, Sym8, Sym7 and Sym5 are examined. 
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          Figure 3. The effects of the iterations of quantization on PRD 
 

 
Figure 4. The effects of the iterations of quantization on CR 

 

Table 3 shows the achieved results for compression of the 9th 

iteration. The highest compression ratio (CR=15.3670%) was 

achieved using Bior3.1for record number 115. The lowest 

percent root-mean-square different (PRD=0.61511%) was 

achieved using sym8 for record no. 117. The correlation 

coefficients (CC) for all the records in 9th iteration are very 

excellent (CC>99.99%). But it is noted that the performance of 

the compression algorithm is dependent on CR, PRD and CR 

together. Because of it, the highest compression performance 

was achieved for record 219 using Bior3.1 with a CR of 

13.9839%, a PRD value of 0.71706% and CC=99.998%. The 

fonts of the other better performances are boldface in Table 3. 

(e.g. For record 219 using Sym8 wavelet, CR=11.92%, 

PRD=0.75792%, CC=99.997%. For record 119 using Bior3.1 

wavelet, CR=13.2362%, PRD=0.86724%, CC=99.996%. For 

record 117 using Sym8, CR=9.3014%, PRD=0.61511%, 

CC=99.998%) 

 

 

 

 

 

 

 

Table 3. Results of the proposed algorithm in 9th iteration 

of quantization using bior, db and sym wavelets for 11 

records with n=2048 samples. 
CC CR PRD Wavelet Record 

999999 9.0802 1.0904 Bior3.1  

101 999999 0979.6 6999999 db3 

999999 092569 69999.0 Sym8 

99.992 13.579 1.2863 Bior3.1  

103 999992 995977 699955 db3 

999990 999629 6995955 Sym8 

99.995 9.3361 0.9803 Bior3.1  

105 999999 099700 6977025 db3 

999999 097909 697797 Sym8 

999999 15.3670 1.0748 Bior3.1  

115 999999 9999.2 6999929 db3 

999997 79972. 69009.7 Sym8 

99.997 11.976 0.82503 Bior3.1  

117 999997 799027 6902..9 db3 

999999 9903.9 395.9.. Sym8 

99.995 11.5174 0.99121 Bior3.1  

118 999999 792697 69970.7 db3 

999999 999022 6999097 Sym8 

99.996 13.2362 0.86724 Bior3.1  

119 999990 .59772 6992.70 db3 

999999 .69959 3999969 Sym8 

99.995 8.7419 1.0062 Bior3.1  

201 999990 097929 69796 db3 

999990 095920 697699 Sym8 

99.995 12.2835 1.0027 Bior3.1  

205 999999 997697 699.79 db3 

999999 999290 690929 Sym8 

99.996 14.0888 0.97583 Bior3.1  

213 999992 99797 .9690 db3 

999999 99.970 697799 Sym8 

99.998 13.9839 0.71706 Bior3.1  

219 999999 .6929. 6999697 db3 

999999 ..996 3999996 Sym8 

 

It can be found from comparison of Table 3 and Table 4 that the 

values of CR and PRD decreased and the value of CC 

increased, when the numbers of iteration become higher. In 

other words, in the higher numbers of iteration, the PRD and 

CC performances become better values and the value of CR 

would be worse.  Table 4 shows the achieved results for 

compression of the 8th iteration. The highest compression ratio 

(CR=5790079%) was achieved using Bior3.1for record no. 115. 

The lowest percent root-mean-square different 

(PRD=0.99699%) was achieved using sym8 for record no. 117. 

The correlation coefficients (CC) for most of the records in 9th 

iteration are very excellent (CC>99.99%). But generally, the 

performance of the compression algorithm is dependent on CR, 

PRD and CR together. The highest compression performance 

was achieved for record 219 using Bior3.1 wavelet with 

CR=18.3154%, PRD=1.1508% and CC=99.994%. And the 

other better performances are highlighted with boldface in 

Table 4.  As seen from Table 4, some better performances are: 

record 219 using Bior3.1 wavelet with values of 

CR=11.18.3154%, PRD=1.508% and CC=99.997%. Record 

119 using db3 wavelet has the values of CR=21.293%, 

PRD=1.5276% and CC=99.989%.  
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Table 4. Results of the proposed algorithm in 8th iteration of 

quantization using bior, db and sym wavelets for 11 records 

with n=2048 samples 
CC CR PRD Wavelet Record 

99.984 12.7349 1.8531 Bior3.1  

101 999979 797979 .99999 db3 

99999 799597 .99577 Sym8 

99.981 23.1056 2.0404 Bior3.1  

103 999972 .6929.9 .99299 db3 

999977 .69762 .92999 Sym8 

99.987 12.9994 1.6608 Bior3.1  

105 999977 79077 .92929 db3 

999979 996.79 .99979 Sym8 

99.986 23.6639 1.7895 Bior3.1  

115 999995 .595907 .97695 db3 

999999 .796556 .96750 Sym8 

99.992 15.8648 1.3217 Bior3.1  

117 999999 .79999 .969.9 db3 

999999 .099609 3999399 Sym8 

99.986 15.7980 1.7186 Bior3.1  

118 99999. ..95729 .97702 db3 

999997 ..90790 .95795 Sym8 

99.991 18.4052 1.4276 Bior3.1  

119 999999 6.9690 .99695 db3 

999996 .99939 .909.9 Sym8 

99.987 10.3959 1.668 Bior3.1  

201 999970 99722 .90255 db3 

999979 9900 .92600 Sym8 

99.988 14.5342 1.6166 Bior3.1  

205 99999. ..9677 .95965 db3 

999999 .5969. .9.629 Sym8 

99.987 18.0224 1.7402 Bior3.1  

213 999972 .590996 .97520 db3 

99999. .595070 .99662 Sym8 

99.994 18.3154 1.1508 Bior3.1  

219 999997 .797.5 .95999 db3 

999999 .79092 .9.769 Sym8 

 

Table 5. Results of the proposed algorithm in 7th iteration of 

quantization using bior, db and sym wavelets for 11 records 

with n=2048 samples. 
CC CR PRD Wavelet Record 

99990 569295 599777 Bior3.1  

101 999995 .997999 599267 db3 

999997 .99.290 599662 Sym8 

999999 0.9939 09.959 Bior3.1  

103 999909 5799.79 597655 db3 

999990 609059 6995 Sym8 

999902 5796.. 599279 Bior3.1  

105 999909 .29.0 590700 db3 

999995 .99629 599057 Sym8 

999959 099939 699659 Bior3.1  

115 99997. 5697569 596299 db3 

999999 .993559 .95599 Sym8 

999999 699936 69.955 Bior3.1  

117 999999 6399933 .95909 db3 

99999 6399.90 .99.69 Sym8 

999905 569592 597955 Bior3.1  

118 999999 .299690 595769 db3 

99997 .099999 59..0 Sym8 

999999 599607 597657 Bior3.1  

119 999995 699965 690900 db3 

99999. 699090 69.069 Sym8 

999905 .996.2 597970 Bior3.1  

201 999905 ..9095 597952 db3 

999909 .69957 592907 Sym8 

999909 579792 599.7 Bior3.1  

205 99997 .9999.6 596929 db3 

999979 .79625. .90929 Sym8 

999907 5996079 599270 Bior3.1  

213 999906 .990.77 796799 db3 

999990 .099.59 597099 Sym8 

999999 699399 .99959 Bior3.1  

219 99997. 569299 596907 db3 

999990 609690 .995.9 Sym8 

 

Table 5 shows the achieved results for compression of the 7th 

iteration. The best compression ratio (CR=779967%) was 

achieved using Bior3.1for record no. 115. The lowest percent 

root-mean-square different (PRD=.92.57%) was achieved 

using sym8 for record no. 117. The highest correlation 

coefficient (CC) was obtained using sym8 wavelet for record 

number 117. But the performance of the compression is 

dependent on CR, PRD and CR. With this explanation, the 

highest compression performance was achieved for record 219 

using Bior3.1 wavelet with CR=27.077%, PRD=1.8968% and 

CC=99.985%. It can be found from the table, some better 

performances are: record 115 using Bior3.1 wavelet with 

CR=38.708%, PRD=2.9269%, CC=99.965%. Record 117 using 

sym8 wavelet with CR=5692.97%, PRD=1.5128%, 

CC=99.99%. Record 219 using Bior3.1 wavelet with the values 

of CR=27.077%, PRD=1.8968%, CC=99.985%. 

Table 6 and 7 show the simulation results of the proposed 

algorithm for 6th and 5th iterations. In these iterations, the values 

of CR and PRD are higher and the value of CC is lower. On the 

other hands, in the 6th and 5th numbers of iteration, the CR 

performance become better values and the values of PRD and 

CC would be worse. For iterations lower than 5, the 

compression ratio (CR) was achieved extremely high (the high 

CR is our favorite) but the percent root-mean-square different 

(PRD) that is a very important factor, was inferior (the value of 

PRD become high too whereas the low PRD is our preferable). 

And also for iterations higher than 9, the percent root-mean-

square different (PRD) was obtained extremely low (the lower 

PRD is our admirable) but in these iterations, the compression 

ratio (CR) was achieved lower whereas the low CR is inferior. 

Because of it, we show the simulation results from 5th to 9th 

iteration. 
 

Table 6. Results of the proposed algorithm in 6th iteration of 

quantization using bior, db and sym wavelets for 11 records 

with n=2048 samples. 
CC CR PRD Wavelet Record 

999967 779992 99067. Bior3.1  

101 999979 579779. 790997 db3 

999999 5792965 792979 Sym8 

999999 999395 990995 Bior3.1  

103 999975 5995925 99679. db3 

99992 529979 79299 Sym8 

999969 099939 996.39 Bior3.1  

105 99997. 5.9972 799979 db3 

999972 559752 797907 Sym8 

999960 999599 99555 Bior3.1  

115 999929 7797997 79.79. db3 

999909 599090 599629 Sym8 

999999 959909 099369 Bior3.1  

117 99999. 0996996 699595 db3 

999995 099.99. 690990 Sym8 

999790 759099 997997 Bior3.1  

118 999977 5.99972 790029 db3 

999999 5699207 7996.7 Sym8 

999996 969.99 099339 Bior3.1  

119 999909 099.99 099.60 db3 

99999. 0995.9 0995.9 Sym8 

9999.. 57997 992562 Bior3.1  

201 9999.2 5.972. 999677 db3 

999957 .79707 99.905 Sym8 

9999.9 799299 999677 Bior3.1  

205 999997 5092672 797792 db3 

999907 5.9.775 599777 Sym8 

999960 799902 99792. Bior3.1  

213 999797 55979.9 2967.0 db3 

999972 5697970 79990 Sym8 

99995 939399 096599 Bior3.1  

219 999927 59967. 79797 db3 

99990 509922 79.72. Sym8 
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Table 7. Results of the proposed algorithm in 5th iteration of 

quantization using bior, db and sym wavelets for 11 records 

with n=2048 samples. 
CC CR PRD Wavelet Record 

999765 979999 99.929 Bior3.1  

101 999799 779299 2997.2 db3 

999777 59979.0 299799 Sym8 

999969 259777 99567. Bior3.1  

103 999779 759.759 090625 db3 

999709 759065 096799 Sym8 

99979. 929990 09977 Bior3.1  

105 999759 70992 099967 db3 

999797 779999 095.0 Sym8 

999977 29999. 796909 Bior3.1  

115 999939 969.990 999609 db3 

999959 79995 997202 Sym8 

999936 909339 990990 Bior3.1  

117 99990. 99999.9 99.999 db3 

99999. 969.990 099359 Sym8 

999929 269797 999967 Bior3.1  

118 999799 959260 297029 db3 

999707 769979 29095 Sym8 

999999 909099 590696 Bior3.1  

119 9997.9 999975 099.77 db3 

999799 779999 299569 Sym8 

999769 959260 996595 Bior3.1  

201 999759 7.9267 092599 db3 

99977 59959. 097769 Sym8 

999752 979707 99.962 Bior3.1  

205 999795 7799977 29.66. db3 

999967 7697067 99979. Sym8 

99997. 9597929 797792 Bior3.1  

213 999099 7.96767 7996.6 db3 

9997.2 509777. 097979 Sym8 

999999 969999 999639 Bior3.1  

219 999799 79970 290905 db3 

999770 7.9579 292027 Sym8 

 

Table 8. A comparison of the average of PRD and CR based 

on the different wavelets and iterations of quantization 

Iteration Wavelet PRD (%) CR (%) 

 

9
th

 

Bior3.1 0.983370 12.108180 

db3 0.840505 8.306609 

Sym8 0.768781 8.671600 

 

8
th

 

Bior3.1 1.635209 16.712700 

db3 1.464164 11.932481 

Sym8 1.305449 11.903890 

 

7
th

 

Bior3.1 2.693036 25.853581 

db3 2.387445 18.603245 

Sym8 2.122491 18.025000 

 

6
th

 

Bior3.1 4.374991 38.949909 

db3 3.745418 27.601063 

Sym8 3.376809 25.174490 

 

5
th

 

Bior3.1 7.136664 50.049263 

db3 6.038873 37.717381 

Sym8 5.561527 32.959663 

 
Table 8 shows the average values of the performance 

accuracy at 9th, 8th, 7th, 6th and 5th iterations for all the eleven 

records. Because the correlation coefficients (CC) for all the 

proposed records in all iterations are very excellent (CC>99%), 

we have only calculated the average values of the PRD and CR 

for Bior3.1, db3 and Sym8 wavelets. As expected, the PRD is 

generally low and the compression ratio (CR) is achieved low at 

higher iterations and for lower iterations, the PRD and CR 

values are achieved higher. It can be seen from the Table8, The 

best compression ratio (CR=50.17449%) was obtained using 

Bior3.1 and the lowest percent root-mean-square different was 

achieved (PRD=6990797.%) using sym8 wavelet for all the 

considered records. But as we mentioned before, the best 

performance depends on both CR and PRD. Therefore 

according to the values, the Bior3.1 and sym8 are achieved the 

best performances. The lower PRDs are achieved by sym8 

wavelet and the higher CRs are achieved by Bior3.1 for all the 

considered iterations.  

 
(a) 

 
(b) 

 
(c) 

Figure 5. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using Bior2.2 wavelet and 2048 samples of 

signal and 5th iteration of quantization for record no. 117 from 

MIT-BIH database (CR=59.9149, PRD=4.2883, CC=99.928) 
                      

 
(a) 

 
(b) 

 
(c) 

Figure 6. (a) Original signal, (b) Reconstructed signal, (c) Error signal. 

 

ECG compression using db3 wavelet and 2048 samples of 

signal and 5th iteration of quantization for record no. 117 from 

MIT-BIH database (CR=45.8819, PRD=4.1879, CC=99.931) 
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(a) 

 
(b) 

 
(c) 

Figure 7. (a) Original signal, (b) Reconstructed signal, (c) Error signal. 
 
ECG compression using Bior3.1 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 115 from 

MIT-BIH database (CR=23.6639, PRD=1.7895, CC=99.986)  

 

 
(a) 

 
(b) 

 
(c) 

   Figure 8. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using db3 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 115 from 

MIT-BIH database (CR=12.5925, PRD=1.1309, CC=99.994)   

 

 
(a) 

 
(b) 

 
(c) 

Figure 9. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using Bior4.4 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 119 from 

MIT-BIH database (CR=22.2170, PRD=1.4032, CC=99.991)                          

 

 
(a) 

 
(b) 

 
(c) 

Figure 10. (a) Original signal, (b) Reconstructed signal, (c) Error signal.   

 

ECG compression using Sym7 wavelet and 2048 samples of 

signal and 9th iteration of quantization for record no. 119 from 

MIT-BIH database (CR=12.364, PRD=0.82527, CC=99.997)              
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(a) 

 
(b) 

 
(c) 

Figure 11. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using sym8 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 119 from 

MIT-BIH database (CR=13.923, PRD=0.97044, CC=99.995)       
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(b) 

 (c) 
Figure 12. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using db2 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 117 from 

MIT-BIH database (CR=13.037, PRD=1.2312, CC=99.993)     
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(c) 

Figure 13. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using sym5 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 117 from 

MIT-BIH database (CR=13.346, PRD=1.0594, CC=99.998)    
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Figure14. (a) Original signal, (b) Reconstructed signal, (c) Error signal.  

 

ECG compression using db2 wavelet and 2048 samples of 

signal and 8th iteration of quantization for record no. 117 from 

MIT-BIH database (CR=13.037, PRD=1.2312, CC=99.993)     

 

                      

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03



 

 

International Journal of Computer Applications (0975 – 8887)  

Volume 59– No.1, December 2012 

37 

6. CONCLUSION 
The proposed algorithm for compression of ECG signals using 

wavelet transforms and EZW& Huffman encoding based on the 

three-level quantization is described in this Paper. The 

algorithm is examined for compression of 11 records of ECG 

signal from the MIT-BIH database. The experimental results 

indicate that the presented wavelets in this coder have high 

performance. The some of biorthogonal wavelets have a 

performance better than the orthogonal wavelets. In this paper, 

combination of three-level quantization and EZW together for 

thresholding and encoding has been used. After selecting 

threshold, the three-level quantization has been continued from 

1th level to 12th level of iteration. In low iterations, the values of 

CR and PRD are higher and the value of CC is lower. On the 

other hands, in the lower numbers of iteration, the compression 

ratio (CR) is achieved extremely high (CR become better 

values) but the percent root-mean-square different (PRD) that is 

a very important factor, is inferior (the value of PRD become 

high too whereas the low PRD is our favorite). And also for 

high iterations, the PRD is obtained extremely low (the lower 

PRD is our admirable) but in these iterations, the CR values are 

achieved lower whereas the low CR is inferior. Consequently, it 

seems reasonable to conclude that the best simulation results are 

achieved for 5th to 9th iterations. The three kinds of wavelet 

were tested to gain the acceptable results named: db, bior and 

sym. 

The different results have gained for each wavelet and record 

number. Among all wavelets, in higher iterations, sym8 and 

some of biorthogonal wavelets (bior2.2, bior3.3, bior3.1 and 

bior4.4) achieved better results. Also, we have concluded that if 

high compression rates need, we should continue iterations of 

quantization for lower than 4th level. Consequently, if we want 

to decrease the PRD value, the iterations of the three-level 

quantizer can be continued to high levels. Generally, for values 

of CR>50 and 3.5<PRD, the three-level quantization should be 

continued to 4th or 5th level of iteration. If a ratio around 

24<CR<50 and 1.5<PRD<3.5 is our favorite, we should repeat 

the three-level quantization to 6th or 7th   iteration. For 6<CR<24 

and 0.6<PRD<1.7, it should be quantized to 8th or 9th iteration. 

And for about 0<CR<10 and 0<PRD<0.6, the three-level 

quantization can be repeated to 10th or more. The number of 

iteration depends on our particular application in which value of 

CR and PRD should be used to gain our favorite results.      
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