
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

28

Solving TSP using DARO

Nitin S. Choubey
Professor & Head, Computer Department

MPSTME, SVKM’s NMIMS, Shirpur
 Maharashtra, India-425405

ABSTRACT

Travelling Salesperson Problem is finding a Hamiltonian

cycle with minimum weight. The paper presents solution

travelling salesperson problem with Genetic Algorithm.

Dynamic allocation of reproduction operators and social

disaster technique are used for generating the population and

based on the convergence analysis of evaluation process. The

method is demonstrated and found to be effective in the data

set for the cities in the state of Maharashtra.

Keywords

Genetic Algorithm, Evolutionary Computation, Travelling

Salesperson Problem, Premature Convergence problem.

1. INTRODUCTION
Travelling Salesperson Problem (TSP) is to find a tour of

minimum cost[1]. A Tour is a directed simple cycle that

includes every vertex in V. The cost of a tour is the sum of the

cost of the edges on the tour. The travelling sales person

problem find application in the variety of areas ranging from

the robot arm motion for tightening screws in assembly line to

finding the optimum rout to deliver the packets by a delivery

van. The objective in every application is to get the minimum

cost route. It is a classical problem of combinatorial

optimization. The problem is already proved in the category

of NP-Hard Problem. Potvin [2] presents survey of Genetic

Algorithm (GA) approaches for the general TSP.

Genetic algorithms are the heuristics methods from the

category of evolutionary algorithms which are based on the

Darwin’s principle of origin of species by means of natural

selection [3]. GA’s are invented by John Holland in 1960’s

[4]. In contrast with Evolution Strategies and Evolutionary

Programming, Holland’s original goal was not to design

algorithms to solve specific problems, but rather to formally

study the phenomenon of adaptation as it occurs in nature and

to develop ways in which the mechanisms of natural

adaptation might be utilized into computer systems. Holland’s

1975 book ‘Adaptation in Natural and Artificial Systems’

presented the GA as an abstraction of biological evolution and

gave a theoretical framework for adaptation under the GA.

Many problems in engineering and related areas require the

simultaneous genetic optimization of a number of, possibly

competing, objectives have been solve by combining the

multiple objectives in to single scalar by some linear

combination[5].

The perennial problem with GA is that of premature

convergence, a non-optimal genotype taking over a population

resulting in every individual being either identical or, the

consequences of which is a population that does not contain

sufficient genetic diversity to evolve further. To avoid the

premature convergence, in a GA is imperative to preserve the

population diversity during the evolution. An approach to

increase the population size may not be enough to avoid the

problem, as any increase in population size will incur the two

fold cost of both extra computation time and more generations

to converge on an optimal solution.

Paper focuses on the utilizing more than one reproduction

operators by Dynamic Application of Reproduction Operators

(DARO) Approach [6] for producing successive generations

and use of Social Disaster Technique (SDT) [7] for handling

the special case of potential convergence. Section 2 gives the

description of the DARO and SDT, where as Section 3 covers

the details of the data set used in the experiment. Section 4

describes the obtained result followed by concluding remarks

in section 5.

2. METHODOLOGY USED
The GA produces successive generations of individuals by

computing their “fitness” at each step and selecting the best of

them, when the termination condition arises. Figure 1 shows a

Simple Genetic Algorithm approach.

Fig 1: Simple Genetic Algorithm.

In order to avoid the premature convergence problem the

selection of a reproduction operator for the process of

crossover and mutation plays an important role by producing

successive generation. The figure gives steps for the Dynamic

application of reproduction operators, where more than one

operator is used for reproducing the proportionate amount of

child population. The portion to be generated by any

Crossover-Mutation Operator Combination (CMOC) is

determined by the contribution made by the operator

combination in generation of effective children in comparison

with the parents based on fitness [8]. It is an extension of the

Dynamic Application of crossover and mutation Operator

Approach given in Elena Simona Nicoaria [6]. This extended

version is also used for effective grammar induction [8] [9].

The GA run begins with the allocation of the equal probability

to every reproduction operator combination (Crossover-

Mutation operator combination, CMOC). The probability

value determines the proportion of the child population to be

generated with the application the CMOC.

The probability value for the CMOC is updated after every

generation based on the ratio of the average fitness of the

generated children to the average fitness value of the selected

parent. The each CMOC will have chance to generate

individuals in child population in proportionate to their

probability value.

The process for Dynamic Application of Reproduction

Operators is given below:

1. Create initial random Population.

2. Calculate fitness of the individuals in the population.

3. Repeat following steps until terminations criteria is

reached.

a. Select best fit from the current population and

generate offspring.

b. Evaluate fitness of each offspring.

c. Replace weak individuals from the population

with newly generated ones.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

29

1. Create initial population of random individuals and

calculate the fitness of all individuals.

2. Assign the initial probability values to the operator

combination (m crossover  n mutation operators) by the

formula,

 


nm

u
up

nm
up

*

1
1)(&

)*(

1
)(

3. Sort the current population in increasing order of fitness.

4. Select the crossover operator, X i=1. Select the first

mutation operator, Mj=1 and set u=1.

5. Set Resultant Efficiency, RE to 0.

6. Select two parents by using tournament selection

method, P1 & P2 and produce two off-springs, C1 & C2,

with the crossover operator Xi.

7. Perform mutation on the newly generated off springs

with the mutation operator, Mi

8. Calculate the fitness of off-springs.

9. Calculate the Resultant Efficiency as,

2
))()((

2
))()((

21

21

PfitnessPfitness

CfitnessCfitness

RERE






10. Insert the newly generated off-spring in to child

population.

11. Repeat step 6 through 10 until)(up proportion of

population is generated by the current operator

population.

12. Update)(up as,

REupup )()(

13. Select next mutation operator and increment u.

14. If all the mutation operators are applied with the current

crossover operator then go to step 15 else go to step 6.

15. Select next crossover operator. If the entire crossover

operators are applied, then go to step 16 else go to step 4.

16. Update)(up for all u as,









nm

u nextnm

u current

current
next up

up

up
up

*

1*

1

1)(&
)(

)(
)(

17. Create new current population by overlapping the current

population with child population.

18. If termination criterion is not reached, go to step 3.

19. Stop.

Three crossover operators and four mutation

operators are used in the process. The Crossover Operators

used are Single Point Order Based Crossover (SPOBC), Two

Point Order Based Crossover (TPOBC), and Two Point Order

Based Crossover with Internal Swapping (TPOBCIS) whereas

the Mutation Operators are Swap Single bit Mutation

(SSBM), Swap Block Mutation (SBM) [10]. The working of

Mutation and crossover operators are shown in fig 2 and fig 3

respectively.

Swap Single Bit Mutation (SSBM)

CH 1 2 3 4 5 6 7 8 9

Random Points (3,6):  

Mutated

Child

1 2 6 4 5 3 7 8 9

Swap Block Mutation (SBM)

CH 1 2 3 4 5 6 7 8 9

Random Blocks    

2-3 & 6-8

Mutated

Child

1 6 7 8 4 5 2 3 9

Fig 2: Mutation Operators Used

Single Point Order Based Crossover (SPOBC)

P1 1 2 3 4 5 6 7 8 9

P1 9 8 7 6 5 4 3 2 1

Random Point : 4 

Ch1 1 2 3 4 9 8 7 6 5

Ch2 9 8 7 6 1 2 3 4 5

Two Point Order Based Crossover (TPOBC)

P1 1 2 3 4 5 6 7 8 9

P1 9 8 7 6 5 4 3 2 1

Random Points 4&7 :  

Ch1 1 2 3 4 7 6 5 8 9

Ch2 9 8 7 6 3 4 5 2 1

Two Point Order Based Crossover with Internal

Swapping (TPOBCIS)

P1 1 2 3 4 5 6 7 8 9

P1 9 8 7 6 5 4 3 2 1

Random Points 4&7 :  

Ch1 7 6 5 1 2 3 4 8 9

Ch2 3 4 5 9 8 7 6 2 1

Fig 3: Crossover Operators Used

Potential convergence is examined with the help of

the difference between best and worst value (D_Range)

obtained in any generation. If the value of D_Range is less

than the required minimum difference (Min_Diff), the next

generation is obtained by using Social Disaster Technique

(SDT). In SDT, the entire population is operated with a

WRAP (Judgment day) Operator by preserving the elite

members of the population [7]. The process adopted for the

experiment is shown in fig 4.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

30

The process used in the experiment is shown in the

fig 4.

Fig 4: GA process used

3. DATA SET USED
New data set is used for the experiment. The data

about the various cities in the State of Maharashtra from India

is used in the experiment. The data (Latitude & Longitude)

about the location of the cities is taken from

http://www.mapsofindia.com/lat_long/maharashtra/. The data

set of the cities used for experiment is given in figure 5.

Fig 5. Locations of the cities in State of Maharashtra

4. EXPERIMENTAL SETUP AND

RESULT ANALYSIS
The experiment is conducted JDK 1.6 on

Experiment is done with JDK 1.4 on an Intel Core™2 CPU

with 2.66 GHZ and 2 GB RAM. The Population size =200,

Maximum number of generation = 5000, Crossover Rate = 0.8

and mutation rate = 0.05 is used for the purpose of

experiment. Fig 6 shows the comparison of Adopted

approach with Simple Genetic Algorithm (SGA) approach.

The adopted approach is found to give better performance in

term of the required number of generation for achieving

result. It is found that the results obtained for n (n = 20, 25,

30, 35, 40, 45, 50, 55, 60) number of cities is shown in the fig

7. It is found that, the population is converged to the best

value earlier in case of less number of cities, whereas it has

converged late for the relatively more number of cities and

complex data sets. The adapted method is found to be

working successfully on the data set considered. There is

further scope for adoption of the same method for more

complex data sets.

5. CONCLUSION
The proposed model has been implemented, and the

results for the data set used are demonstrated successfully.

The DARO approach found to be effective in utilizing the

right combination of reproduction (crossover and mutation)

operator for producing the better results. The combination of

DARO approach and Social Disaster Technique resulted in to

generating the optimal solution for the data set used. There is

further scope for using the methods for larger number of cities

and more complex data set.

6. ACKNOWLEDGMENTS
Author thanks to the Dr. Tapan Bagchi, Director,

SVKM’s NMIMS, Shirpur campus and Dr. M. V. Deshpande,

Associate Dean, MPSTME, Shirpur Campus for providing

necessary guidance and infrastructural facilities for

conduction of experiment. Author also thanks to Ms. Manisha

Kasar, Mr. Nilesh Pawar, and Ms. Shubhangi Patil for their

necessary help in data collection.

7. REFERENCES
[1] Horowitz E., Sahani S, and Rajasekaran S, 2007.

Fundamentals of Computer Algorithm, University Press,

2007.

[2] Potvin J.Y., 1996. Genetic algorithms for the travelling

salesman problem, Annals of Operations Research, 339–

370, 1996.

[3] DARWIN C., 1859, The origin of species by means of

natural selection, 1859.

[4] Holland John H., 1992. Adaption in Natural and

Artificial Systems- Introductory analysis with

Application to biology, control and Artificial

Intelligence, Bradford Book edition, The MIT Press,

England.,1992.

[5] Goldberg D., 1989. Genetic Algorithm in Search,

Optimization, and Machine Learning. Addison Wesley,

1989.

[6] Nicoar, E.S., 2009. Mechanisms to Avoid the Premature

Convergence of Genetic Algorithms. Universitatea

Petrol-Gaze din Ploieti.Matematica-Informatic-Fizica

LXI(1), 87–96 2009.

[7] Kureichick, Miagkikh, and Topchy, 1996. Genetic

algorithm for solution of the travelling salesman problem

with new feature against premature convergence,

Working Paper, 1996.

[8] Choubey N. S., and Kharat M. U., 2012. Hybrid System

for Handling Premature Convergence in GA - Case of

Grammar Induction, Applied Soft Computing 2012, doi:

10. 1016 / j. asoc . 2012 . 03. 069.

[9] Choubey N. S., and Kharat M. U., 2011. Approaches for

Handling Premature Convergence in CFG Induction

Using GA, Soft Computing in Industrial Applications,

55-66, Springer Berlin/Heidelberg, 2011.

[10] Sivanandam, Deepa “Introduction to Genetic Algorithm”,

Springer, 2008.

1. Create initial random Population.

2. Calculate fitness of the individuals in the population.

3. Repeat following steps until the prescribed maximum

number of generations are completed.

a. If D_Range is less than Min_Diff, generate next

generation by using SDA, otherwise generate

next generation by using DARO.

b. Evaluate fitness of each offspring.

c. Replace weak individuals from the population

with newly generated ones.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.9, November 2012

31

Figure 6. Comparison chart for SGA and DARO

Fig 7: Optimal Solution for n cities (n=20, 25, 30, 35, 40, 45, 50, 55, 60) from State of Maharashtra, India

0

5000

10000

15000

20000

25000

20 25 30 35 40 45 50 55 60

N
u

m
b

e
r

o
f

G
e

n
e

ra
ti

o
n

s

Number of Cities

Comparison Chart

SGA

DARO

