
International Journal of Computer Applications (0975 - 8887)
Volume 58 - No. 9, November 2012

A Mixture Model of Circular-Linear Distributions for
Color Image Segmentation

Anandarup Roy
CVPR Unit

Indian Statistical Institute
203 B. T. Road, Kolkata 700108

Swapan K. Parui
CVPR Unit

Indian Statistical Institute

203 B. T. Road, Kolkata 700108

Utpal Roy
Dept. of Computer & System Sc.

Visva-Bharati University

Santiniketan- 731235, India

ABSTRACT
This article deals with mixture model based color image segmen-
tation in the LCH color space. In this space, one of the compo-
nents (representing hue in particular) is circular in nature. Hence
LCH image pixels are samples on a cylinder. A statistical model
for such data needs to employ circular-linear joint distributions.
Here such a model is designed using the “Independent von-Mises
Gaussian” distribution. Further its mixture is used to approximate
the distribution of the LCH data. The mixture parameters are esti-
mated using standard EM algorithm. Comprehensive experiments
are conducted on Berkeley segmentation data set to measure the
performance of the algorithm in terms of a variety of quanti-
tative indices for image segmentation. A comparison is further
made with some existing mixture models. Our study reveals that
the proposed mixture model performs satisfactorily in this regard.

General Terms:
Statistical model, Pattern recognition

Keywords:
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1. INTRODUCTION
Color based image segmentation [1] is becoming increasingly
important in many applications since color images are now easily
available and can provide more information than gray level im-
ages. In this article, a clustering based segmentation approach is
designed. The basic idea behind this approach is to directly clus-
ter the pixels in a certain color space by employing some clus-
tering algorithms. A classical technique for clustering is the K-
Means algorithm [1]. Clustering can also be viewed as a hidden
variable problem. Segmenting an image into clusters involves de-
termining which clusters generate the image pixels, which is the
hidden information. In this framework, a mixture model based
approach is suitable for segmentation. This approach assumes a
mixture distribution approximating the distribution of image pix-
els. The mixture distribution parameters can be estimated using
standard expectation maximization (EM) algorithm. The EM al-
gorithm utilizes the hidden variable to make an estimate. To this
direction an attempt was taken by Carson et al. [2] by modeling
the joint distribution of color and texture, with Gaussian Mixture
Model (GMM). The image was represented in CIE-LUV space.
GMM can be applied to the RGB color space also. The GMM
assumes symmetric distribution of R, G and B color bands. How-
ever, these three bands may be skewed in either directions. Roy
et al. [3] considered skewed distributions of the R, G, and B
color bands, and used a mixture of Beta distributions to model
the image data. The Beta distribution can approximate a skewed

distribution, thus can provide a more appropriate model for color
bands. We here consider LCH color space instead of RGB space.
The emphasis of this article is to obtain a suitable mixture dis-
tribution for hue, chroma and lightness data. The LCH model
is a mixture of angular (hue) and linear (chroma and lightness)
data. It is important to take into account these mixed character-
istics. The angular data can be represented by a random variable
Θ ∈ [0, 2π). A direct modeling of Θ can be avoided by trans-
forming it into the representation (cos θ, sin θ). Unlike Θ, the
quantities cos θ and sin θ themselves are not circular. Hence a
linear model e.g. GMM can be fit on the pair (cos θ, sin θ). This
approach has some disadvantages. First, the dimension of data is
increased by one. So, it has a negative effect on computational
complexity. A more serious drawback is the correlation between
the pair (cos θ, sin θ). This pair together represents a point on
the circumference of a circle, and may be highly correlated. This
may pose the problem of singularity of the covariance matrix
for some mixture components. Therefore, we use the von-Mises
distribution for Θ. The von-Mises [4] distribution is defined on
an unit circle and analogous to univariate Gaussian distribution
in <2. Several attempts have been taken to estimate the parame-
ters of the mixture of von-Mises distributions. Mooney et al. [5]
used a mixture of two circular von-Mises distributions and es-
timated the parameters using a quasi-Newton procedure. Baner-
jee et al [6] estimated the parameters of von-Mises Fisher distri-
bution which is a generalization of von-Mises distribution. The
von-Mises distribution also has application in image processing.
Ludtke et al. [7] used a mixture of von-Mises distributions to
model the orientation of the contour.
In this study, the hue, chroma and lightness are assumed inde-
pendent random variables. The hue information is modeled us-
ing von-Mises distribution. To model the linear variables (i.e.,
the chroma and the lightness) we use Gaussian and Beta distri-
butions as two alternatives. The joint density can be obtained by
the product of the two (von-Mises and Gaussian or von-Mises
and Beta) distributions. A mixture of this joint distribution ap-
proximate the LCH distribution over the image pixels. An EM
algorithm is designed to estimate the mixture parameters. The
clustering is done on the basis of the maximum a posteriori prob-
ability.
The paper is organized as follows. First a brief overview on di-
rectional statistics is presented in Section 2. Later, in Section
3 we describe the joint distribution for the circular-linear data
and construct the mixture model (IvMMM). The parameter es-
timation of this mixture model is considered in Section 4. This
section also includes the clustering evaluation strategies. The de-
tails about applying IvMMM to color segmentation problem is
discussed in Section 5. The post-processing to merge boundary
pixels is also described here. Further, the color segmentation re-
sults are presented in Section 6. We use the Berkeley segmenta-
tion data set (Section 6.1) for the application. Here, the IvMMM
is compared with two existing mixture model approaches for
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Fig. 1. The arithmetic mean points to the wrong way.

color segmentation. The findings are described in Section 6.2.
Our results show an improvement over the considered two exist-
ing mixture models.

2. ON DIRECTIONAL STATISTICS
Directional data may be visualized as points on the surface of a
hypersphere, or in two dimensions, on the circumference of a cir-
cle. A circular random variable Θ has domain [0, 2π) and can be
represented as a point on an unit circle. The problem that arises
with the directional data is that the linear statistics may not be
directly applicable to directional variables. Consider the arith-
metic mean for a circular variable. Let us have two samples 15◦

and 345◦ for θ. These samples are displayed in Fig. 1 (with East
as zero direction and anti-clockwise as positive motion). Mea-
sured in a standard way, the mean of these two samples becomes
180◦ directed West, whereas the two samples point towards East.
From this example it is clear that the usual approach to comput-
ing the arithmetic mean cannot be applied to directional data. An
appropriate measure of the mean direction can be obtained by
treating the data as unit vectors and using the direction of their
resultant vector. Suppose, we have θ1, . . . , θn circular observa-
tions. Consider the rectangular transformation for each observa-
tion θi, i.e., the pair (cos θi, sin θi). Then the resultant vector of
these unit vectors is given by:

R =

(
n∑
i=1

cos θi,

n∑
i=1

sin θi

)
= (C,S), say. (1)

The direction of this resultant vector, i.e., the mean direction is
denoted by Θ and defined as:

Θ = arg

(
n∑
i=1

cos θi + i

n∑
i=1

sin θi

)
(2)

= arctan
(
S

C

)
. (3)

Note, since 0 ≤ θ < 2π, we should employ a quadrant-specific
inverse of tangent so that Θ ∈ [0, 2π).
Besides the circular mean we may be interested in measuring
the circular distance. A reasonable measure of circular distance
between two points A and B with angles θ1 and θ2 is given as
follows.

d(A,B) = 1− cos (θ1 − θ2). (4)

Ifα is the angle betweenA andB, then clearly d(A,B) is mono-
tonically increasing from 0 (when α = 0) to 2 (when α = π).
After having the definition of circular mean and distance, they
may be extended to cope the circular-linear case. This could be
done by the insertion of linear measures of statistics along with
circular measures. Let ~p be the vector (θ, x1, . . . , xd)

T , i.e., ~p ∈
[0, 2π) × <d (hence ~X is linear while Θ is circular). When we
have n such vectors ~p1, . . . , ~pn, the circular-linear mean (~µcl)

and distance measure are defined as follows.

~µcl =
(

Θ, ~X
)T

(5)

and d(~pi, ~pj) = 1− cos(θi − θj) + ‖~xi − ~xj‖. (6)

Here the standard deviation of each ~xk is assumed to be unity.

3. CIRCULAR-LINEAR JOINT DISTRIBUTION:
DESCRIPTION AND MIXTURE

Let us consider a circular-linear random vector ~p =
(θ, x1, . . . , xd)

T , i.e., ~p ∈ [0, 2π) × <d. Let us start by defin-
ing the marginal distributions of Θ and ~X prior to specify the
joint distribution.
The von-Mises distribution is used here for the circular random
variable Θ. The pdf of von-Mises distribution is given as follows.

f (v)(θ) =
1

2πI0(κ)
exp(κ cos(θ − µ)) (7)

Here, I0(κ) is the modified bessel function of the first kind of
order zero and argument κ. The mean µ ∈ [0, 2π) and concen-
tration parameter κ ∈ <+ ∪ {0}. When κ = 0, the density gives
an uniform distribution on [0, 2π). We use a polynomial approx-
imation to I0(κ) discussed by Mardia and Jupp [4].
The linear variable ( ~X) here is described using two choices. Let
us assume Gaussian distributions for ~X . Let x be an element of
~X . Its pdf is then given as:

g(g)(x) =
1

σ
√

2π
exp

(
− (x− ν)2

2σ2

)
. (8)

With an usual sense, ν and σ are the mean and standard deviation
of g(g)(x).
One limitation of the Gaussian distribution is its symmetry. In
general, the concerned data may not form a symmetric distribu-
tion. Then the Gaussian is not an appropriate choice to approxi-
mate the data distribution. To add asymmetry, let us now assume
~X follows a Beta distribution instead of a Gaussian. Then the
pdf has the following form.

g(b)(x) =
1

B(α, β)
x1−α(1− x)1−β , (9)

where B(α, β) is the Beta function. The Beta distribution may
become symmetric or asymmetric depending upon the choice of
the parameters α and β. In this context it is more powerful than
the Gaussian, to represent underlaying data distribution. On the
other hand, the Gaussian pdf is simpler than Beta distribution
pdf in terms of computation. The Beta function B(α, β) needs
approximation to evaluate. Nevertheless, the Beta margins pro-
vide a good alternative design as our results indicate.
Considering the two alternative margins for the linear variables,
the joint distributions are defined as follows.

IvMG: The independent von-Mises Gaussian joint distribution
uses Gaussian margins for ~X . It has the following pdf

fIG(~p) = f (v)(θ)

d∏
i=1

g
(g)
i (xi). (10)

IvMB: The independent von-Mises Beta joint distribution as-
sumes Beta margins for ~X instead of Gaussian. So its pdf be-
comes

fIB(~p) = f (v)(θ)

d∏
i=1

g
(b)
i (xi). (11)

To make it brief, further we use the term “IvM” to denote both
IvMG and IvMB distributions. For the rest of this article, fI de-
notes IvM distribution.
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3.1 Mixture model of the joint distributions
Let us now define the mixture of K circular-linear (i.e., IvM)
distributions. The pdf of the mixture is given by:

f(~p|~Ξ) =

K∑
h=1

PhfI(~p|h, ~Ξh), (12)

where Ph (0 ≤ Ph ≤ 1 and
K∑
h=1

Ph = 1) is the hth com-

ponent mixing proportion (prior probability), fI(~p|h, ~Ξh) is the
IvM distribution representing the hth component of the mixture
and ~Ξh is the set of parameters of the hth component. The sym-
bol ~Ξ = (~Ξ1, . . . , ~ΞK , P1, . . . , PK) refers to the entire set of
parameters of the mixture distribution to be estimated. This mix-
ture model is further referred to as “IvMMM”. To make it spe-
cific we use the term “IvMGMM” and “IvMBMM” to denote the
mixture distributions involving IvMG and IvMB distributions re-
spectively.

4. MAXIMUM LIKELIHOOD ESTIMATION
Let ~ℵ = ~p1, . . . , ~pN be a finite set of N samples drawn inde-
pendently from IvMMM. Here ~pi is a circular-linear data. The
standard method to fit finite mixture model to data is the EM al-
gorithm which converges to maximum likelihood estimate of the
mixture parameters. The EM algorithm is based on the assump-
tion that ~ℵ is incomplete data. The missing information is the
label associated with each ~pi and indicates which mixture com-
ponent produces that ~pi. From data clustering viewpoint, these
labels are simply the cluster information associated with each
data point. The standard EM settings express the distribution of
these missing variables as follows.

q(h|~pi) =
PhfI(~pi|h, ~Ξh)
K∑
l=1

PlfI(~pi|l, ~Ξl)
. (13)

With the inclusion of the missing variables, the log likelihood
function of the mixture distribution becomes:

Φ(~ℵ, ~Ξ, λ) =

N∑
i=1

K∑
h=1

[
ln
(
PhfI(~pi|h, ~Ξh)

)]
q(h|~pi) +

λ

(
1−

K∑
h=1

Ph

)
, (14)

where λ is the lagrange multiplier.
To maximize Φ(~ℵ, ~Ξ, λ) one may go independently for a priori
probabilitiesPh and the parameters ~Ξh. The a priori probabilities
can be found out with:

Ph =
1

N

N∑
i=1

q(h|~pi). (15)

After differentiating Φ(~ℵ, ~Ξ, λ) with respect to µh, the expres-
sion for µh is obtained as:

µh = tan−1


N∑
i=1

q(h|~pi) sin θi

N∑
i=1

q(h|~pi) cos θi

 . (16)

The expression of κh is however given in terms of the ratio of
modified bessel functions:

A2(κh) =
I1(κh)

I0(κh)
=

N∑
i=1

cos(µh − θi)q(h|~pi)

N∑
i=1

q(h|~pi)
. (17)

SinceA2(κh) involves ratio of Bessel functions, it is not possible
to get an analytical solution. A2(κh) is a non-decreasing func-
tion. Thus one may obtain κ by applying Newton-Raphson. The
numerical methods, however, often causes a problem of over-
flow. Therefore, an asymptotic approximation of A2(κ) is more
suitable for estimating κ. Such approaches also take constant
computation time unlike any iterative numerical method. In this
paper, an approximation, proposed by Banerjee et al [6], is used
to find κ. Thus κ can be estimated by:

κ =
2r − r3

1− r2
,

where A2(κ) = r. Other approximations of κ are discussed by
Mardia and Jupp [4].
Now consider the linear variable ~X . Let x be an element of ~X .
We assume Gaussian distribution for x. Then the estimates for
νh and σh are then given by:

νh =
1

N∑
i=1

q(h|~pi)

N∑
i=1

q(h|~pi)xi, (18)

σ2
h =

1
N∑
i=1

q(h|~pi)

N∑
i=1

q(h|~pi)(xi − νh)2. (19)

Besides Gaussian, Beta distribution is also considered for x. The
method of moments can be used to estimate the Beta distribution
parameters α and β. Given the estimated moments νh and σh,
the parameters αh and βh are estimated by the following expres-
sions.

αh = νh

(
νh(1− νh)

σh
− 1

)
, (20)

βh = (1− νh)

(
νh(1− νh)

σh
− 1

)
. (21)

According to EM algorithm, the E-Step involves the computation
of q(h|~pi) using equation 13. The M-Step, on the other hand,
maximizes the complete log-likelihood Φ(~ℵ, ~Ξ, λ) by estimating
the mixture parameters. These two steps iterate untill the log-
likelihood stabilizes.
After EM, the different components indicate different clusters in
the data cloud. Let these clusters be denoted byC1, C2, . . . , CK .
After estimating all the parameters of the mixture, the cluster
assignment of a data point ~pi is performed using the following
maximum-a-posteriori (MAP) condition.

~pi ∈ Cj if q(j|~pi) > q(h|~pi) ∀h 6= j. (22)

4.1 Initialization of the EM
The K-Means algorithm is applied with (Θ, ~X) values to obtain
an initial clustering of the data. This K-Means procedure uses
the circular-linear version of mean and distance (i.e. Eq. 5 and
6). The number of mixture components is same as the number of
clusters. Further, to initialize the model we proceed as follows.
Let the hth cluster have Nh data points. Then the parameters of
the corresponding von-Mises marginal distribution (i.e. µh and
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κh) are estimated with:

tanµh =

Nh∑
i=1

sin θi

Nh∑
i=1

cos θi

(23)

A2(κh) =
1

Nh

Nh∑
i=1

cos(θi − µh). (24)

Next, let us consider the linear variable ~X . Assuming Gaussian
margin, the parameters are obtained using the following equa-
tions.

νh =
1

Nh

Nh∑
i=1

xi, σ
2
h =

1

Nh

Nh∑
i=1

(xi − νh)2. (25)

Considering Beta margin, given νh and σ2
h (Eq. 25), αh and βh

are estimated using Eq. 20 and 21.

4.2 Estimating the Number of Mixture Components
Several model selection methods have been proposed to esti-
mate the possible number of mixture components. These meth-
ods can be broadly categorized into two classes: deterministic
and stochastic. The deterministic methods start with a set of
candidate models for minimum to maximum number of compo-
nents. The optimum number of components is then selected from
this set by minimizing certain model selection criterion. We here
use the BIC type approximation of integrated classification like-
lihood (ICL-BIC) [8] criterion for model selection. A detailed
review of ICL-BIC and other criteria is presented by Mclachlan
and Peel [9] where ICL-BIC seems to outperform the others.

4.3 Evaluation of Segmentation
An obvious concern in clustering is to qualify the clustering al-
gorithm. The data set we used here is an image data set for seg-
mentation purpose. This data set accompanies a set of ground-
truths suggesting different orderings of cluster labels. In this pa-
per, four metrics are used to quantify the consistency between an
image segmentation and its ground-truths. These metrics are: the
probabilistic Rand index proposed by Unnikrishnan et al. [10],
the global consistency error [11], the variation of information
[12] and the boundary displacement error [13]. Let’s take a brief
overview of these measures.

(1) The probabilistic Rand index (PRI) is a classical metric that
measures the probability that an arbitrary pair of samples
have consistent labels in the two partitions. The PRI metric
is in the range [0, 1], with higher values indicating greater
similarity between two partitions.

(2) The Global Consistency Error (GCE) measures the extent
to which one segmentation can be viewed as a refinement of
the other. Segmentations which are related in this manner are
considered to be consistent, since they could represent the
same natural image segmented at different scales. A lower
value for GCE implies better performance.

(3) The variation of information (VoI) measures the sum of in-
formation loss and information gain between the two clus-
terings, and thus it roughly measures the extent to which one
clustering can explain the other. The VoI metric is nonnega-
tive, with lower values indicating greater similarity.

(4) The boundary displacement error (BDE) measures the av-
erage displacement error of boundary pixels between two
segmented images. Particularly, it defines the error as the
distance between the pixel in one boundary image and the
closest pixel in the other boundary image.

The GCE and BDE, by definition, penalize under-segmentation
more heavily than over-segmentation. In particular, GCE does
not at all penalize over-segmentation, i.e., the best score is
achieved by assigning each pixel as an individual segment. But
then the VoI score can be poor. As Yang et al. [14] experienced,
the PRI and the VoI are supposed to be good measures for human
perception.

5. COLOR IMAGE SEGMENTATION
Let us assume that the LCH image pixels are generated from
IvMMM (equation 12). Here, since we have only color channels
as features, the dimensionality of the circular-linear vector ~p is
three. The EM method estimates the mixture parameters by iter-
ating expectation and maximization steps. As an extreme condi-
tion we must look at the gray portions inside an image. The gray
portions can be represented using only the lightness component
of LCH image. If we consider the LCH color cylinder, we find
the lightness component varies parallel to z-axis (perpendicular
to hue axis). Thus the hue becomes undefined for gray portions.
Since IvMMM assumes the presence of hue, it could no longer
be applicable. Here, we separate out the gray portions before em-
ploying EM. A separate clustering (say, univariate GMM) may
be employed with the gray portions. However, for the present im-
age data set, we encounter only a few gray pixels and thus ignore
them to minimize time complexity.
After EM, a single spectral cluster, when mapped to an image,
may contain several spatially connected components. It is ob-
served that between two such adjacent components from two
different clusters, there is a thin boundary consisting of pixels
with spectral values that are different from both these clusters.
In fact, a pixel on such a boundary really comes from any one
the two adjacent components. These thin boundaries do not cor-
respond to any particular physical entities in the original image.
Hence, these boundary pixels may be merged with any of the ad-
jacent clusters without harm. This issue is addressed by applying
a spatial similarity based smoothing proposed in the following
subsection.

5.1 Smoothing Towards Merging of Boundary Pixels
We observed that if there is a thin boundary between two ad-
jacent components, its thickness varies from one pixel to three
pixels. So, the 5 × 5 (or larger) neighborhood around a pixel
of such a boundary will necessarily contain pixels of at least
two clusters other than the boundary. Let there be K clusters
C1, C2, . . . , CK . Let pi be a pixel belonging to cluster Cj . We
examine the n × n neighborhood around pi, where n (≥ 5)
is the size of the window. Further, we construct a set H =
{h1, h2, . . . , hK} where hl denotes the number of pixels sur-
rounding pi and belonging to Cl. So, at least two elements of
H , namely, hl and hn (l 6= n 6= j) become positive. If we do
not have at least two such surrounding clusters Cl and Cn, we
may ignore the current pixel pi and proceed to the next. How-
ever, even if we find a pixel with two or more different surround-
ing clusters, it may not be a boundary pixel. A thin object may
have a pixel having a few pixels of two or more different clusters
around it. Hence, we impose a condition that, if we find hl and
hn (l 6= n 6= j) both greater than bhj/2c, then pi is treated as
a boundary pixel. Such a pixel is to be merged with one of the
two surrounding components corresponding to hl and hn. Next
we find the posterior probabilities of pi for these two clusters.
We assign pi to the cluster corresponding to the higher posterior
probability.
This smoothing algorithm only merges the boundary pixels. Any
perturbations inside the image are left intact. Thus we perform
only a minor change in the original clustering. We here intend to
present the segmentation directly available after the clustering.
Thus we compromise with the segmentation quality that may

9



International Journal of Computer Applications (0975 - 8887)
Volume 58 - No. 9, November 2012

be improved by applying certain sophisticated post processing
methods.

6. RESULTS AND DISCUSSIONS
In this section, we present the segmentation results on the Berke-
ley segmentation data set (Section 6.1). Further, for comparison,
we choose two other mixture approaches. Below, we give a brief
description for each of them.

IGMM: The IvMMM has a similarity with the well-known
GMM in linear space. Since the three color channels are assumed
to be independent, the covariance matrix of the GMM reduces to
a diagonal matrix. This version of GMM is termed as IGMM. We
apply IGMM in LUV space, which is a linear version of LCH.
BMM: The Beta mixture model [3] can cope with skewed dis-
tributions of color channels. This way it becomes stronger than
IGMM in modeling pixel distribution. Here, this mixture model
is applied on LUV color space. According to the construction,
the three channels are assumed independent.

We present here a detailed comparison both visually and with
respect to the evaluation scores.

6.1 Berkeley Segmentation Data Set
The Berkeley segmentation data set [11] contains several color
images (having unique Id) of natural scenes. Most images con-
tain at least one distinguishable and identifiable object embedded
in a natural scene. The images we consider have ground-truth in
the form of manual segmentation by humans. Manual segmen-
tation is performed by several users independently. Thus the im-
ages have multiple ground-truth segmentations. Also, the num-
ber of clusters generally varies from one user to another. These
manual segmentations are done mostly based on human visual
perception. Martin et al. [11] prepared this data set and used it
to evaluate the performance of segmentation algorithms and to
measure probability distributions associated with Gestalt group-
ing factors as well as statistics of image region properties.

6.2 Color segmentation results and evaluation
Let us now present the segmentation results produced by all
the four algorithms, namely, IvMGMM, IvMBMM, IGMM and
BMM. For each of these mixture approaches, we perform 9 in-
dependent trials of EM algorithm with K = 2, 3, . . . , 10. Af-
terwards, we select the value of K at the first local minimum
of ICL-BIC criterion, as optimum. After performing EM, the
smoothing is applied to merge boundary pixels (Section 5.1).
This smoothing is done using a sliding window of size 7 × 7.
To make a visual comparison, we first present some sample re-
sults in Fig. 2. The general observation on Fig. 2 is that too many
regions are generated by all the mixture approaches, though the
actual number of clusters is small. These mixture approaches
do not consider spatial information of pixels. Each pixel is as-
sumed to be sampled independently from a model. Thus, these
models employ a pixel color based clustering, producing several
small regions inside an image. Since we apply ICL-BIC crite-
rion, we only select the number of clusters instead of number
of regions. A good post processing (preferably some spatial fil-
ters) may be applied after EM to limit the number of regions.
We here keep the results intact to measure the relative strength
of the original algorithms. For a more robust comparative study
than the visual comparison, we accumulate all the scores (i.e.,
PRI, GCE, VoI and BDE) for all the images. The averages of all
the scores are presented in Table 1. Now we are able to com-
pare our algorithm quantitatively with the other two. Table 1
shows that IvMBMM outperforms the other algorithms in terms
of GCE and VoI. IvMGMM becomes the best considering the
PRI score. BMM outperforms the other algorithms with respect

Table 1. Average performance of different
algorithms on the Berkeley Database. The best

scores are in boldface.
PRI GCE VoI BDE

IvMGMM 0.7076 0.3774 2.8698 15.7330
IvMBMM 0.7032 0.3717 2.7893 15.4740

IGMM 0.7037 0.3781 3.1896 10.7770
BMM 0.7062 0.3728 2.8581 10.5131

to BDE. Interestingly, IGMM falls behind BMM for all the cri-
teria. The IGMM doest not incorporate skewness of the color
channels whereas BMM does. In this way BMM is superior to
IGMM in modeling the distribution of color channels. By the
same argument, the IvMBMM (uses Beta distributions) is supe-
rior to IvMGMM (uses Gaussian distributions). The overall per-
formance of IvMMM is thus satisfactory. We may conclude that
IvMMM can provide a suitable mixture model for LCH image
data. However, from image segmentation point of view, results
may be improved by adding more features (other than L, C and
H) and applying a good post processing.

7. SUMMARY AND FUTURE SCOPE
We study color image segmentation in LCH space. The hue is as-
sumed to follow the von-Mises distribution whereas we use two
alternative (Gaussian and Beta) distributions for the chroma and
the lightness. Assuming the independence of the color channels,
we design the IvMG and the IvMB joint distributions for hue,
chroma and lightness. Further, the mixture of such joint distri-
butions is used to approximate the pixel distribution. We define
two alternative mixtures, namely, IvMGMM and IvMBMM for
IvMG and IvMB distributions.
We apply the mixture models on Berkeley segmentation data set.
For comparison, we use the existing IGMM and the BMM algo-
rithms. The results show that the joint distributions (IvMGMM
and IvMBMM) can well approximate the LCH distribution. Our
next work aims to address the possible dependency among the
three color channels.
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[13] J. Freixenet, X. Muñoz, D. Raba, J. Martı́, X. Cufı́. Yet an-
other survey on image segmentation: Region and boundary
information integration. Proc. of European Conf. on Com-
puter Vision-Part III, pages 408–422, 2002.

[14] A. Y. Yang, J. Wright, Y. Ma, and S. S. Sastry. Unsu-
pervised segmentation of natural images via lossy data
compression. Computer Vision and Image Understanding,
110:212–225, 2008.

11


	INTRODUCTION
	ON DIRECTIONAL STATISTICS
	CIRCULAR-LINEAR JOINT DISTRIBUTION: DESCRIPTION AND MIXTURE
	Mixture model of the joint distributions

	MAXIMUM LIKELIHOOD ESTIMATION
	Initialization of the EM
	Estimating the Number of Mixture Components
	Evaluation of Segmentation

	COLOR IMAGE SEGMENTATION
	Smoothing Towards Merging of Boundary Pixels

	RESULTS AND DISCUSSIONS
	Berkeley Segmentation Data Set
	Color segmentation results and evaluation

	SUMMARY AND FUTURE SCOPE
	REFERENCES

