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ABSTRACT 
 

The flow due to torsional oscillations of a disk about a steady 

rotation in an elastico-viscous fluid which is also rotating has 

been analyzed. The flow is characterized by two circularly 

polarized waves travelling with different velocities. It is found 

that the depth of penetration or wave length decreases for 

0 0.58k   and increases for > 0.59k  where k  is the 

elastic parameter and   is the frequency parameter. The 

unsteady axial velocity at large distance from the disk has a 

phase lead for < 2  and a phase lag for > 2 . 
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1. INTRODUCTION  

The torsional oscillations of an infinite disk in an 

incompressible viscous fluid has been studied by Rosenblat[1]. 

On the other hand, the flow caused by torsional oscillations for 

a disc with frequency n  about a state of steady rotation in a 

viscous fluid which is also rotating with angular velocity was 

investigated by Henney [2]. The flow induced by a fluid 

between two infinite disks when one disk is at rest and the other 

disk performs small torsional oscillations about their common 

axis for second order fluids have been studied by Bhatnagar and 

Rajeswari [3] and Srivastava [4]. The elastico-viscous liquid 

B  characterized by Walters [5] has been found to have a close 

resemblance so real fluids, like oils, blood and high polymer 

solutions. Basu and Debnath [6] have studied the unsteady flow 

of elastico-viscous fluid induced by torsional oscillations of a 

plate. Rajagopal [7] have discussed the flow of visco-elastic 

fluids between rotating disks. 

In the present paper, we have studied the flow of a visco-elastic 

fluid B  induced by torsional oscillations of a disk in a rotating 

fluid. It is found that the flow is characterized by two-deck 

boundary layer such that one of the boundary layers tends to 

infinitely thickness when 2  ,   being frequency 

parameter. It is found that the axial velocity at a large distance 

from the disk has a phase lead for < 2  and a phase lag for 

> 2 . 

 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 
The constitutive equations characterizing the elastico-viscous 

liquid B  are  

  ,ik ik ikp pg p                                                    (1) 
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p t t e dt
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 where ikp  is the stress tensor, p  an arbitrary isotropic 

pressure, ikg  the metric tensor, ( )l mke  the rate of strain tensor 

and  
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where ( )N   is the distribution function of the relaxation time. 

Walters [5] has shown that in the case of liquids with short 

memories ( i.e., short relaxation time) the above equations give  

(1)
(1)

0 02 2 ,
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ik
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
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where 0

0

( )N d  



   is the limiting viscosity at small rate of 

shear, 0
0

( )k N d  


   and / t   denotes the convected 

differentiation of a tensor. 

    In view of the above equations, the equation of continuity 

and the momentum are  

     0,q                                                                               (5) 
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where 0


  is the kinematic viscosity, 0
0

k
k



   the 

coefficient of elasticity and   the fluid density. 

A disk coinciding with the plane = 0z  is rotating in unison 

with an elastico-viscous fluid with angular velocity   about an 

axis z . The disk also performs torsional oscillations with 

amplitude   and frequency n  so that the absolute angular 

velocity of the disk is in tn e
 . The fluid occupying the 

region > 0z  is also rotating with an angular velocity   at a 

large distance from the disk [see in Fig.1]. We introduce 

cylindrical polar coordinates ( , , )r z  such that q  has 

components ( , , )u v w  along ( , , )r z  directions respectively. 

  

 
     

Figure 1. Geometry of the problem 
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Substituting  

( ) , ( ) , ( ) ,in t in t in tu r f z e v r rg z e w h z e
  

     

2 2
0 1

1
( , ) ,

2

in tp p r p r z e
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                              (7) 

in equations (5) and ( 6) , we obtain following equations after 

linearization  
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The linearization in equations (8) to (11) is valid provided the 

amplitude of the torsional oscillations is small such that 

n   . 

The boundary conditions are  

 0, , 0 at 0,f g n h z      

 0, 0 a .f g s z                    (12) 

Since ( )h z  is a function of z  only, we have from (11) on 

differentiation with respect to r  as  

 
2
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


 
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Integrating the equation (13) with respect to z  and using (9) 

together with conditions 0f   and 0g   as z  , we 

have 1 0
p

r





. 

Introducing  

 1,2 ,f f ig                                        (14) 

 equations (9) and (10) become  
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The boundary conditions for 1,2F  are  

           1,2 1,2at 0 and 0 as .F i n z F z                 (16) 

The solution of (15) subject to the boundary conditions (16) is  
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 and using (14), we get  
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Substituting f  given by (20) in the equation (8) and on 

integration after using (12), we get  
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In the above equations (20)-(22), the subscript '2  and plus sign 

are taken for > 2  and the subscript '3  and negative sign are 

taken for < 2 . 

Substituting (20)-(22) in (7), we have the following expressions 

for u , v  and w  in real forms  
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equations (33)-(35) become  
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       2,31
1 1 2,3cos cos ,v e e
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        sin( )R    .                                                           (31) 

 

3.  RESULTS AND DISCUSSION  

Equations (24) and (25) show that for > 2  the velocity 

consists of damped harmonic oscillations with amplitude 

1
1

2
r n e

 


  and 2
1

2
r n e

 


  having phase lags 1   and 

2   respectively relative to the disk. The depth of penetration 

or wave length of the two layers are  
1

2 12 /    and 

 
1

2 22 /    respectively. It is found from equation (23) that 

both 1  and 2  increase for 0 0.58k   and decrease for 

> 0.58k  which implies that the depths of penetration 

decrease for 0 0.58k   and increase for > 0.58k . 

    For < 2  the velocity consists of damped harmonic 

oscillations of which one of the amplitude is the same as that 

for the case > 2  and the second one has an amplitude 

3
1

2
r n e

 


  and has a phase advance 3   with respect to the 

disk. The depth of penetration of this second layer is 

 
1

2 32 /    which decreases with k . 

     For = 2 , a normal solution does not exist which is similar 

to the result obtained by Thornley [8] in her study of non-

torsional oscillations of an infinite plate rotating in accordance 

with a viscous fluid. This is due to the fact that the whole liquid 

is affected by the motion of the plate and the oscillation is not 

confined to a well-defined Ekman layer near the disk. 

    To study the effects of frequency parameter on the velocity 

distributions we have presented the radial velocity 1u  and the 

azimuthal velocity 1v  against   in Fig.2 for several values of 

frequency parameter  . It is observed from Fig.2 that the 

radial velocity 1u  decreases whereas the azimuthal velocity 1v  

increases and they oscillates away from the disc with an 

increase in frequency parameter  .  

 
Figure 2. Velocities 1u  and 1v  for different   when 

= 0.05k  

The transverse shearing stress on the disk = 0z  is  

    0
0

0

,z
z

z

u
k

t z
   
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

   
   

   
                                     (32) 
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1

2
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i

i
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
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  

    

  

    






 

      

 
 



       

(33) 

The torque required to overcome this transverse shear stress on 

one side of the rotating disk of radius a (which is large enough 

to neglect the edge effects) is  

    
0

0
2 .

a

z z
N r r dr 


                 (34) 

Substituting the value of  
0z z


 from the equation (33) in the 

equation (34), we get  

1cos( ),N R                                                   (35) 

 where  

    
     

1/ 21
14 1/ 22 2 2 2 2

1

2
1 4 ,

4

a
R k

 
  

         
 
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    ( ) ( )
tan for > 2,

( ) ( )

a b k a b

a b k a b


 



  


  
                        (36) 

        
1

4 1/ 21/ 22 2 22 2
1 1 3 1 3

2
1

4

a
R k

 
    

 
     

  

       
   
   

1 3 1 3

1 3 1 3

and tan for < 2.
k

k

    
 

    

  


  
         (37) 

It is interesting to note from (36) and (37) that the amplitude of 

the torque is affected by the elasticity of the fluid. It is seen 

from the equation (36) that 1R  increases with increase in either 

k  or   for > 2 . The values of 1R  for < 2  have been 

given in Table 1 for different values of k  and  . It is observed 

that 1R  increases with an increase in either k  or  . 

Table 1. Amplitude 1R  for different values of k  when 

< 2    

 \ k    0.02   0.04  0.06  0.08  0.10  

 0.5  

1.0  

1.5  

2.00006  

2.00021  

2.00045  

2.00021  

2.00080  

2.00180  

2.00045  

2.00177  

2.00403  

2.00080  

2.00319  

2.00716  

2.00125 

2.00498 

2.01115 

  

In Fig.3 we have plotted tan  versus k  for various values of 

 . We observe that the tangent of phase tan  decreases with 

an increase in either   or k . It may be noted that the torque 

has always a phase lead. 
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Figure 3. Tangent of phase tan  for different values of     

 

From the equation (26), we get the axial velocity ( )w   as  

 

 
1

2

( )
= sin( ),

/

w
R

n

 

 






                 

(38) 

 where the values of R  and   are given by equations (27) and 

(28) for both the cases > 2  and < 2  respectively. It is seen 

from the equation (27) that the amplitude R  increases with an 

increase in k  when > 2 . Table 2 shows that R  increases 

with an increase in either k  or   for < 2 .  

Table 2. Amplitude R  for different values of k  when 

< 2   

 

The values of phase   have been plotted versus k  for several 

values of   in Figs.4 and 5. It is observed that for < 2 , the 

phase   is always negative while for > 2 , the phase   is 

always positive. Hence we conclude that the axial velocity 

( )w   has a phase advance for 2   and a phase lag for 

2  . 

   
Figure 4. Phase   for different values of    

  

 
Figure 5. Phase   for different values of    
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