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ABSTRACT 

Nature-inspired methodologies are currently among the most 

powerful algorithms for optimization problems. This paper 

presents a recent nature-inspired algorithm named Firefly 

algorithm (FA) for automatically evolving a fuzzy model from 

numerical data. FA is a meta-heuristic inspired by the flashing 

behavior of fireflies. The rate and the rhythmic flash, and the 

amount of time form part of the signal system to attract other 

fireflies. The paper discusses fuzzy modeling for zero-order 

Takagi-Sugeno-Kang (TSK) type fuzzy systems. Simulations 

on two well known problems, one battery charger that is a 

fuzzy control problem and another Iris data classification 

problem are conducted to verify the performance of above 

approach. The results indicate that the FA is a very promising 

optimizing algorithm for evolving fuzzy logic based Systems 

as compared to some of the existing approaches.   
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1. INTRODUCTION 
Developing models of complex real-systems is an important 

topic in many fields of science and engineering. Models are 

generally used for simulation, identifying the system’s 

behavior and design of controllers etc. The principles of fuzzy 

modeling were outlined by Zadeh when he gave the concept 

of grade of membership and published his seminal paper on 

fuzzy sets that lead to the birth of fuzzy logic technology [1]. 

Fuzzy systems provide a scheme to represent the knowledge 

in a way that resembles human communication and reasoning. 

Design of fuzzy model or fuzzy model identification is the 

task of finding the parameters of fuzzy model so as to get the 

desired behavior. Two different approaches are used for the 

design of fuzzy models: Knowledge driven and Data driven 

models. In the first approach, the design is constructed from 

the knowledge acquired from the expert, while in the second; 

the input-output data is used for building model.  

In the first approach there were many problems and 

shortcomings; the interviews are generally long, inefficient 

and frustrating for both the domain experts and knowledge 

engineers, especially so in domains where experts make 

decisions based on incomplete or imprecise information. 

This knowledge acquisition phase is often the main 

bottleneck within the knowledge engineering process and 

therefore considerable effort has been expended in designing 

algorithms that automatically induce fuzzy rules from data 

[3]. Tagaki, Sugeno and Kang [4][5] developed the first 

approach for building and tuning fuzzy rules from the training 

data that laid the foundation for an important sub-area in 

fuzzy logic, referred to as fuzzy modeling or fuzzy model 

identification. Many intelligent optimization techniques such 

as neural networks, genetic algorithms, swarm intelligence, 

ant colony optimization, biogeography based optimization etc. 

have been proposed to automatically generate fuzzy rules 

from numerical data [6]-[52]. 

This paper discusses a new approach to fuzzy model 

identification problem making use of Firefly algorithm. The 

paper is set up as follows. In Section 2 a brief introduction to 

fuzzy system modeling is presented. Section 3 provides a brief 

account of FA optimization algorithm and the framework for 

fuzzy model identification through FA is presented in Section 

4. Section 5 represents simulation results considering two 

examples, one control problem and other Iris data 

classification problem. Finally, conclusions are drawn in 

Section 6. 

2. FUZZY SYSTEMS MODELING 
Fuzzy modeling is the task of identifying the parameters of 

fuzzy inference system so as to achieve a desired behaviour. 

The fuzzy model identification process involves the question 

of providing a methodology for development i.e. a set of 

techniques for obtaining the fuzzy model from information 

and knowledge about the system. 

The problem of fuzzy model identification includes the 

following issues [2]: 

 Selecting the type of fuzzy model. 

 Selecting input and output variables for the model. 

 Choosing the structure of membership functions. 

 Determining the number of fuzzy rules. 

 Identifying the parameters of antecedent and consequent 

membership functions. 

 Identifying the consequent parameters of rules. 

 Defining some performance criteria for evaluating fuzzy 

models. 

These issues can be grouped into three subproblems: structure 

identification, parameter estimation and model validation as 

shown in Figure 1. If the performance of the model obtained 

is not satisfactory, the model structure is modified and the 

parameters are re-estimated till the performance is 

satisfactory. 

 

 

 

 

Figure 1: Fuzzy Model Identification Process 

3. FIREFLY ALGORITHM 
The Firefly Algorithm (FA) is a meta-heuristic, nature-
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(flashing) behavior of fireflies. The flashing light of fireflies is 

an amazing sight in the summer sky in the tropical and 

temperate regions. The primary purpose for a firefly’s flash is 

to act as a signal system to attract other fireflies. In addition, 

flashing may also serve as a protective warning mechanism.  

For simplicity, the flashing characteristics of fireflies 

idealized in following three rules [53]-[55]: 

 All fireflies are unisex, so that one firefly is attracted to 

other fireflies regardless of their sex. 

 Attractiveness is proportional to their brightness, thus for 

any two flashing fireflies, the less bright one will move 

towards the brighter one. The attractiveness is 

proportional to the brightness and they both decrease as 

their distance increases. If no one is brighter than a 

particular firefly, it moves randomly. 

 The brightness of a firefly is affected or determined by 

the landscape of the objective function to be optimized. 

Based on these three rules, the basic steps of the firefly 

algorithm can be summarized as the pseudo code shown in 

Figure 2.  

In the firefly algorithm, there are two important issues: the 

variation of light intensity and formulation of the 

attractiveness. For simplicity, it is assumed that the 

attractiveness of a firefly is determined by its brightness 

which in turn is associated with the encoded objective 

function. 

3.1 Attractiveness 
The form of attractiveness function of a firefly is the 

following monotonically decreasing function [53]: 

                 
mrer   0

          1m                          (1) 

where r is the distance between any two fireflies, 
0 is the 

attractiveness at r = 0 and   is a fixed light absorption 

coefficient. 

3.2 Distance 
The distance between any two fireflies i and j at Xi and Xj, 

respectively, is the Cartesian distance as follows: 

        



d

k

kjkijiij xxXXr
1

2

,,
              (2) 

where kix , is the kth component of the spatial coordinate Xi of 

ith firefly and d is the number of dimensions. 

3.3 Movement 
The movement of a firefly i is attracted to another more 

attractive (brighter) firefly j is determined by following 

equation:

   5.0
2

0 


randXXeXX ij

r

ii
ij 

      (3) 

where the second term is due to the attraction while the third 

term is randomization with   being the randomization 

parameter. rand is a random number generator uniformly 

distributed in [0, 1]. For most cases in the implementation, 

10   and  1,0 . 

 

Figure 2: Pseudo code of the firefly algorithm 

Firefly Algorithm (FA) 

 Begin 

           /* FA parameter initialization */ 

             Define Objective function  f (X),  X= (x1,…, xd)
T;                                 

             Generate initial population of fireflies Xi (i = 1, 2,…n) 

                        Compute the light intensity Ii at Xi by f(Xi); 

                        Define light absorption coefficient γ; 

           /* End of FA parameter initialization */ 

          While not T                                                                       /* T is a termination criterion /* 

               For i = 1 : n                                                                    /* all n fireflies /* 

                    For j = 1 : i                                                                

                         If (Ij > Ii) 

                              Move firefly i towards j in d-dimension;  

                         End if 

                         Attractiveness varies with distance r via exp[− γr]; 

                             Evaluate new solutions and update light intensity; 

                  End for 

               End for 

               Rank the fireflies and find the current best; 

          End while 

               Postprocess results and visualization; 

 End 
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4. IDENTIFICATION OF FUZZY 

MODELS USING FIREFLY 

ALGORITHM 
The fuzzy model identification can be formulated as a search 

and optimization problem. It involves finding the optimal 

values of the parameters of the fuzzy model based on some 

evaluation criteria. The application of optimization algorithm 

for fuzzy model identification involves a number of important 

considerations. The first step in applying such an algorithm is 

to define solution space (ranges of variables to be optimized), 

a set of constraints and the fitness function. Another important 

consideration is the solution encoding i.e. to represent a fuzzy 

system by a firefly (set of fireflies represent a population). 

Each firefly represents a fuzzy system which consists of two 

parts: one represents membership functions of antecedents 

and consequents and second part represents rule-base. It is 

also suggested to modify the membership functions and rule-

base simultaneously, since these are codependent in a fuzzy 

system. In this paper, MSE is used as fitness function to 

evaluate the quality of fuzzy model. The ideal value of MSE 

would be zero. 

            MSE =     
2

1

~1




N

k

kyky
N

                         (4) 

where, 

 ky  = Actual output as given in data set 

 ky~  = Computed output of model 

N = number of data points taken for model validation 

For the purpose of encoding, we consider a multi-input single-

output system with n number of inputs with labels x1, 

x2,……………, xn and the number of fuzzy sets for these inputs 

are m1, m2,……………., mn respectively. Our encoding is based on 

the following assumptions: 

a. Fixed number of triangular membership functions are 

used for both input and output variables and placed 

symmetrically over corresponding universes of 

discourse. The universe of discourse or simply universe 

is the working range of variable. 

b. First and last membership functions of each input and 

output variable are represented with z-type and sigma-

type membership functions respectively. 

c. Complete rule-base is considered, where all possible 

combinations of input membership functions of all the 

input variables are considered for rule formulation. 

d. Overlapping between the adjacent membership functions 

for all the variables is ensured through some predefined 

constraints. 

4.1 Encoding Method (Membership 

functions) 
Let’s assume that a variable is represented by three fuzzy sets 

as in Figure 3. The vertices are indicated by Ei’s in this figure, 

where E1 (i=1) represent vertex of first fuzzy set and so on. 

Then the constraints to ensure the overlapping between the 

adjacent membership functions for all the input variables for 

the zero-order TSK fuzzy model (Sugeno Model, pp. 418, [2]) 

can be represented as below: 

  

 

 

  

 

 

 

 

 

 

 

Figure 3: Representation of a variable with 3 membership 

functions with overlapping between the adjacent 

membership functions 

             
max21min ... XEEEX

nm                    (5) 

where mn represents number of fuzzy sets for nth input 

variable and 
minX and 

maxX are the minimum and maximum 

value of the variable respectively. 

As stated earlier each firefly consists of two parts; the first 

constituent part consists of membership functions of all the 

input variables. The number of membership functions (from 

Figure 3) while considering the assumptions made earlier, can 

be computed as follows: 

Number of membership functions (size of first constituent 

part)  

          = 


n

j

jm
1

                  (6) 

where n is the number of input variables, and 
jm the number 

of fuzzy sets for jth input variable. 

4.2 Encoding Method (Rule-base) 
The second constituent part consists of rule-base represented 

by a set of consequents selected from a given set. The size of 

rule-base can be computed as follows:  

Size of rule-base (second constituent part)  

         = 


n

l

lm
1

                                                  (7) 

Hence, size of each firefly required to encode the zero-order 

TSK fuzzy model is the sum of equations (6) and (7). 

Firefly Size (Sugeno model) = 


n

j

jm
1

+


n

l

lm
1

                (8) 

Each firefly represents one fuzzy model whose performance is 

evaluated in terms of MSE as defined in Eq. 4. This MSE is 

used as the fitness function for rating the fuzzy model. 

Our optimization algorithm adjusts membership function 

parameters and consequents in such a way so as to minimize 

the objective function i.e. MSE. Now the whole problem of 

system identification boils down to a minimization problem as 

stated below: 

  

     E1 
 E2      E3 

xmin   xmax 

Parameters to be modified 
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Minimize objective function (MSE) 

MSE =  
2

1

1




N

k

COAO
N

                    

Subject to the constraint that 

              Ck   {specified set of consequents};                    (9) 

where AO is the actual output, CO is the computed output,

N is number of data points taken for model validation and Ck 

is constant set of chosen consequents. 

The process for the identification of fuzzy model using firefly 

algorithm is represented as pseudo–code in Figure 4. 

Begin 

      Define operating parameters for firefly algorithm; 

      Iteration = 0; 

      Generate a random set of fireflies (initial population);                        

  While Iteration ≤ Maximum Iteration 

      Constraint Population; 

      Build fuzzy model corresponding to each firefly;  

      Evaluate each fuzzy model for its fitness (MSE) using  

      Eq. (4); 

      Call FA algorithm to determine new position of each       

      firefly by using Eq. (3) (as in Section III); 

     Iteration = Iteration + 1; 

  End 

     Display optimized fuzzy model;  

End 

Figure 4: Pseudo-code for Identification of Optimized 

Fuzzy Model 

5. SIMULATION RESULTS 

Problem 1: Battery Charger 

The suggested approach has been applied for identification of 

fuzzy model for the rapid Nickel-Cadmium (Ni-Cd) battery 

charger [56]. The objective of this charger was to charge 2AA 

Ni-Cd batteries as quickly as possible but without causing any 

damage to them. Input-output data consists of 561 points is 

available at http://www.research.4t.com. For this charger, the 

two input variables used to control the charging rate (Ct) are 

absolute temperature of the batteries (T) and its temperature 

gradient (dT/dt). Charging rates are expressed as multiple of 

rated capacity of the battery, e.g. C/10 charging rate for a 

battery of C=500 mAh is 50 mA [57]. The input and output 

variables identified for rapid Ni-Cd battery charger along with 

their universes of discourse are given in Table 1. 

Table 1. Input and Output variables for rapid Ni-Cd 

battery charger alongwith their universes of discourse 

INPUT VARIABLES 
MINIMUM 

VALUE 

MAXIMUM 

VALUE 

Temperature (T)[0C] 

Temperature Gradient 

(dT/dt)[0C/sec] 

0 

0 

50 

1 

 

OUTPUT VARIABLE 

Charging Rate (Ct)[A] 

 

0 

 

8C 

Let us assume that the temperature with the universe of 

discourse ranging from 0-50 degree centigrade has been 

partitioned into 3 fuzzy sets namely temperature low, med 

(medium), and temperature high. The temperature gradient is 

partitioned into 2 fuzzy sets (membership functions) namely 

low and high. Initially we set the parameters of membership 

functions of input variables using modified FCM clustering 

technique [58]. Once fuzzification of the inputs is carried out, 

we get the 6 combinations of input membership functions 

(3*2 = 6) representing 6 antecedents of rules. These 6 rules 

form the rule base for the system under identification. The 

rule base is yet incomplete as for each rule the consequent 

need to be found out. From the datasets of Battery Charger 

(Appendix 1), we find that there are only 5 consequents that 

form the set of consequents from where we have to choose 

one particular element as the consequent for a particular rule. 

The specified set of consequents in this case are C1= Trickle = 

0.1 Amp, C2=Low = 1 Amp, C3= Med = 2 Amp, C4= High= 3 

Amp and, C5= Ultrafast = 4 Amp. We have to choose 

parameters of antecedent and consequents in such a way so as 

to fulfill condition given by expression (9). 

In this problem the size of a firefly to encode a Sugeno type 

fuzzy model for battery charger may be calculated from 

equation (8) as follows: 

Firefly Size (Sugeno model) = 


2

1j

im + 


2

1l

im  

               = (3+2) + (3*2) = 5 + 6 = 11 

Simulation Results and Discussions: 

We have implemented the proposed approach of fuzzy model 

identification in Matlab on Intel Core i5-450M @ 2.4 GHz HP 

ENVY14 laptop with 4GB of RAM.  

To obtain suitable parameters for algorithm, a large number of 

experiments were conducted with different parameters 

settings. The final parameters that were obtained through 

experimentation are as follows: α = 0.5, β = 0.2, γ = 1, number 

of fireflies = 50 and maximum iterations = 500. With the 

above parameters settings, the large numbers of sets of trials 

were conducted. A set of 10 trials is given in Table 2. The 

performance of all the sets is nearly the same as given in 

Table 2. We found that the proposed approach evolved 

optimized fuzzy model with average MSE of 0.008 in average 

time of 13 seconds. Further we observed from figure 5 that 

FA stabilizes the evolved fuzzy system to its optimum value 

in lesser number of iterations (in less than 100 iterations). 

This performance is for training data set (Appendix 1). For 

training purposes we selected 14 training examples out of 561 

data points. The performance of obtained fuzzy system is then 

checked using the test data set. For testing purpose, we have 

chosen 20 points excluding those in the training data set. 

Figure 6 presents the performance of evolved model on test 

data set. It is clear that the computed output (using FA) is 

approaching actual output which is given in the data set with 

MSE of 0.06. 

The performance for the evolved fuzzy system was compared 

with that available in the literature and the same is given in 

Table 3. It can be observed that FA gives excellent model 

performance as compared to other approaches. 
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Table 2. Performance of FA algorithm in a set of 10 trials 

 

Figure 5: Graph of Generations vs MSE for FA 

 

Figure 6: Performance of evolved fuzzy model on test data 

set 

Table 3. Comparison of the Proposed Approach with 

Other Approaches 

Problem 2: Iris data set classification problem 

The Iris data set [62] contains 150 patterns with four features 

that belong to three classes (Iris Setosa, Iris Versicolour and 

Iris Virginica). The four features are the sepal length, the 

sepal width, the petal length and the petal width. All the four 

features are specified in centimeters. The data set contains 

three classes, each of 50 patterns; each class refers to a type of 

Iris plant. We choose only 20 percent data (30 out of 150 

patterns) as training examples to form the training data set as 

given in Appendix 1. The system was trained using training 

data set and the system performance was evaluated using 

entire data set of 150 patterns. The parameters settings of FA 

algorithm for classification problem are same as that of 

battery charger problem. 

Simulations were carried out to design a fuzzy classification 

system using FA algorithm for the Iris data set. Three 

membership functions were associated with each input 

variable. This algorithm successfully generates a fuzzy 

system, which yields only two misclassifications. The 

classification rates on training patterns and test patterns using 

proposed method are summarized in Table 4. Table 5 

compares our results with the results in [63], [64] for the Iris 

classification problem. From the simulation results for the Iris 

classification problem, it is clear that the FA based fuzzy 

classification system has high generalization ability. 

Table 4. Simulation results of the proposed method for the 

Iris data set   

Classification rate 

on training patterns 

Classification rate on test 

patterns 

100% 98.66% 

Table 5. Comparison of the proposed method with the 

existing methods  

6. CONCLUSIONS 
This paper presents a frame work to evolve a complete fuzzy 

model from available data using relatively new nature inspired 

algorithm based on flashing behavior of fireflies. The 

proposed algorithm successfully generated optimized fuzzy 

models from training data. The proposed approach was 

successfully validated on two problems. For control problem, 

FA appears to be more efficient in terms of computational 

time and MSE as compare to other approaches. Simulation 

results show that FA generated a fuzzy model in less than 100 

iterations with average MSE of 0.008. For classification 

problem, the simulation results show that the proposed 

method evolved fuzzy classification system with high 

classification rate of 98.66 % (two misclassifications).  
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APPENDIX – 1

 

 

Data 

Point 

 

Sepal 

length 

(in cm.) 

Sepal 

width 

(in cm.) 

Petal 

length 

(in cm.) 

Petal 

width  

(in cm.) 

Class 

1 49 30 14 2 1 

2 50 36 14 2 1 

3 49 31 15 1 1 

4 54 37 15 2 1 

5 54 34 15 4 1 

6 44 30 13 2 1 

7 50 35 16 6 1 

8 50 33 14 2 1 

9 64 32 45 15 2 

10 55 23 40 13 2 

11 59 30 42 15 2 

12 59 32 48 18 2 

13 63 25 49 15 2 

14 64 29 43 13 2 

15 67 30 50 17 2 

16 54 30 45 15 2 

17 62 29 43 13 2 

18 51 25 30 11 2 

19 71 30 59 21 3 

20 65 30 58 22 3 

21 49 25 45 17 3 

22 67 25 58 18 3 

23 64 27 53 19 3 

24 57 25 50 20 3 

25 65 30 55 18 3 

26 69 32 57 23 3 

27 67 33 57 21 3 

28 64 28 56 21 3 

29 64 28 56 22 3 

30 59 30 51 18 3 

Data 

Point 

Input 1 

 

Input 2  

 

Actual 

Output 

1 0 0.1 4.0 

2 5 1.0 4.0 

3 10 0.5 4.0 

4 20 0.2 4.0 

5 30 0.9 4.0 

6 37 0.8 4.0 

7 37 1.0 4.0 

8 38 0.4 3.0 

9 38 1.0 3.0 

10 40 0.8 3.0 

11 41 0.7 2.0 

12 42 0.5 2.0 

13 42 0.6 2.0 

14 43 0.4 2.0 

15 44 0.2 0.1 

16 44 1.0 0.1 

17 45 0.8 0.1 

18 48 0.1 0.1 

19 50 0.1 0.1 

20 50 1.0 0.1 

Data 

Point 

Input 1 

 

Input 2  

 

Actual 

Output 

1 0 0.0 4.0 

2 30 1.0 4.0 

3 37 0.2 4.0 

4 40 0.0 3.0 

5 40 1.0 2.0 

6 41 0.5 2.0 

7 42 1.0 1.0 

8 43 0.5 1.0 

9 43 1.0 0.5 

10 44 0.0 0.1 

11 44 0.4 0.1 

12 45 0.1 0.1 

13 45 0.5 0.1 

14 50 1.0 0.1 

Input 1 – Temperature 

Input 2 – Temperature Gradient 

Actual Output - Charging Current 

Class 1 – Iris Setosa 

Class 2 – Iris Versicolour 

Class 3 – Iris Virginica 

 

Training Data Set for Battery Charger 

 

Test Data Set for Battery Charger 

Training Data Set for Iris Plants 

 


