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ABSTRACT 

In this paper, a hybrid image denoising method that is based on 

locally adaptive window-based maximum likelihood (LAWML) 

and NeighShrink. The LAWML is doubly stochastic process 

models which denoise an image by exploiting the dependency 

of local wavelet coefficients within each scale. The LAWML 

needs a global optimal neighboring window. The NeighShrink 

thresholding scheme uses the immediate neighboring 

coefficients based on block thresholding. It uses a suboptimal 

universal threshold and identical neighbouring window size in 

all wavelet subbands. The NeighShrink and LAWML always 

produce an over-smoothed image like the Weiner filter in which 

many of the detail coefficients are lost during threshold 

evaluation. This proposed method overcomes these 

disadvantages and, as a result, it provides significant 

improvement in visual quality i.e. Peak-to-Signal Noise Ratio 

(PSNR) of a noisy image. 
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1. INTRODUCTION 
Developing a method that is capable of suppressing the additive 

white noise completely from a noisy image without removing 

the image details is still a challenging task. Some of the 

following vital criteria’s for designing a denoising technique 

are: the additive noise in smooth regions should completely be 

removed, the edges should not be blurred/sharpened, the texture 

details should be maintained and  the overall contrast should be 

preserved, and finally the additional artifacts should not appear 

in the restored image. It is however very difficult to develop a 

denoising method that matches all these criteria. An efficient 

signal denoising algorithm should remove the noise from the 

signal while preserving the useful information in signal as much 

as possible. In last decade and so, the non-wavelet based image 

denoising methods such as Median filter, Weiner filtering have 

been discussed that remove the noise but at the cost of blurring 

images which in turn makes the edges of blurring images which 

in turn makes the edges in pictures/images invisible [1]. These 

methods generally work well only for a smooth signal that is 

corrupted by Gaussian noise and require the information about 

spectra of noise and original signal. The wavelet based analysis 

has been demonstrated to be one of the powerful methods over 

non-wavelet methods for performing image noise reduction [2-

3]. The motivation for using a wavelet based method is that it is 

good for energy compaction since the small and large 

coefficients are more likely due to the noise and important 

signal features, respectively. Recently, there have been 

discussed many denoising methods that take local 

characteristics into account [4-10], [15-19]. The most 

commonly used approaches for denoising are: hard and soft 

thresholding [4]. Due to their effectiveness and simplicity, these 

approaches are frequently used in literature. The main idea 

behind thresholding based methods is to subtract the threshold 

value from all the coefficients that are larger than the threshold 

and set all other coefficients to zero. The VisuShrink uses well-

known threshold that is known as the universal threshold [4-5]. 

Cai and Silverman have discussed two thresholding schemes: 

NeighCoeff and NeighBlock. These schemes take immediate 

neighboring coefficients into account [6]. They have shown 

experimentally that the thresholding of neighboring coefficients 

is better than the traditional term-by-term wavelet thresholding. 

Chen and Bui have developed the NeighShrink method which 

follows VisuShrink threshold [7-8]. Mahqak et al. have 

discussed an efficient denoising method that is known as locally 

adaptive window-based maximum likelihood (LAWML) 

method [9-10]. In this method, the wavelet coefficients satisfy 

the Gaussian distribution with zero-mean. The variance of the 

wavelet coefficients is obtained by maximum likelihood 

estimation in square neighborhood and the denoised wavelet 

coefficients are obtained by using minimum mean squared 

error-like (MMSE-like) estimation. This proposed method deals 

with ‘local’ spatially adaptive statistical model based on 

LAWML and NeighShrink with new shrinkage factor. It 

overcomes the limitations of LAWML and NeighShrink 

methods and performs better than these methods. The structure 

of the paper is organized in five sections. In section 2, we 

discuss about the wavelet analysis and section 3 reviews the 

related work. The proposed method is presented in section 4. In 

section 5, simulation results are presented and discussions of 

the proposed method. Finally, the conclusion is given in section 

6. 

2. WAVELET ANALYSIS 
Wavelet-based tools are now indispensable in many areas of 

modern statistics, especially in regression, density and function 

estimation, factor analysis, modeling and forecasting of time 

series, functional data analysis and classification, with ranges of 

application areas in science and engineering [11]. A wavelet 

transform can help localizing a signal well in both time and 

scale (frequency). The wavelet transforms adaptively distribute 

the time-frequency precision by their innate nature [12].  

In a wavelet transform, the decomposition of a signal with a 

family of real orthonormal bases )(, xnm  is obtained through 

translation and dilation of a kernel function ψ(x), known as the 

mother wavelet [13] i.e.  

                 
)2(2)( )2/(

, nxx mm

nm                                   

(1) 
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where, m and n are integers. 

The wavelet coefficients of a signal f(x) obey the orthonormal 

property and can be easily computed as follows: 






 dxxxfC nmnm )()( ,,                                (2) 

and the synthesis formula is given by: 

 nm nmnm xCxF
, ,, )()(                               (3) 

To construct the mother wavelet, ψ(x), a scaling function 

)(x is needed that satisfies two scale difference equation as 

given below: 

)2()(2)( kxkhx
k

                         (4) 

The wavelet ψ(x) is related to the scaling function as given 

below: 

)2()(2)( kxkgx
k

  
                    

     (5)   

where, g(k) = (-1)k h(1-k)                                                                                                                            

The Jth level wavelet decomposition can be written as: 

    
K

k

J

j kjkjkjkjkoko xdxCxCxF ))()(()()(
0 ,1,1,1,1,,        (6) 

The coefficients Co,k are given. These are indeed samples of 

original signal. The coefficients Cj+1 and dj+l, k are at (j+1)th  

scale that are related to the coefficients Cj,k at jth scale via 

)2(
.,1 nkhCC
kjknj 

    
                                 (7) 

)2(
.,1 nkgCd
kjknj 

 
0 ≤ j ≤ J                     (8) 

Thus, it provides recursive algorithm for wavelet decomposition 

through h(k) and g(k) and the final outputs include a set of Jth 

level wavelet coefficients dj,n, 1 ≤ j ≤ J and the coefficients Cj,n 

for low resolution component )(, xkj . By using a similar 

approach, we can derive recursive algorithm for synthesis based 

on its wavelet coefficients dj,n , 1 ≤ j ≤ J and Cj,n 

          
)2()2(

.1.1, nkgdnkhCC
njnnjnkj 

 
               

(9) 

It is convenient to view the decomposition as passing the signal 

through a pair of filters H and G with impulse responses h(n) 

and g(n), respectively, and down-sampling the filtered signals 

by two, where the functions h(n) and g(n) are even i.e.  

              h(n) = h(-n) &  g(n) = g(-n)                                  (10) 

 

The pair of filters H and G corresponds to the half-band low 

pass and high pass filters, respectively, and is also called the 

quadrature mirror filters in the signal processing terminology as 

it is shown in Fig. 1 [14]. The reconstruction procedure is 

implemented by up-sampling the sub signals Cj+1 and dj+1 

(inserting zero between the neighboring samples) and filtering 

with h(n) and g(n), respectively, and finally, adding these two 

filtered signals together. Usually, the signal decomposition 

scheme is performed recursively to the output of low pass filter 

h. It leads to conventional wavelet transform that is also called 

pyramid structured wavelet decomposition. 

     The wavelet equation produces different wavelet families 

like Daubechies, Symlet, Haar, coiflets, etc. They are also 

classified into a family by the number of vanishing moments. 

Within each family of wavelets, there are wavelet subclasses 

distinguished by the number of coefficients and the level of 

iterations. The wavelet decomposition of an image is done as 

follows. In first level of decomposition, the image is split into 

four subbands, namely HH, HL, LH and LL subbands as shown 

in Fig. 2. The HH and HL subbands give diagonal and 

horizontal feature details of the image, respectively, while the 

LH subband represents the vertical structures. The LL subband 

is the low resolution residual consisting of low frequency 

components and it is the only subband which is further split at 

higher levels of composition. 

 

 

 

 

 

 

 

 

 
Fig. 2: 2D-DWT with 2-Level decomposition 

3. RELATED WORK 
     Wiener filtering is a non-wavelet method, which can 

remove noise while protecting the edges in an image [1]. 

However, this method performs poorly in the presence of signal 

dependent noise. The Wiener filter in Fourier domain is given 

as follows: 

),(

),(
),(

),(
),(

2

*

jiP

jiP
jiH

jiH
jiG

s

n



          

(11) 

where, MxM (1 ≤ i, j ≤ M) is the number of image pixels, H(i, j) 

denotes degradation function, H*(i, j) its conjugate; Pn(i,j), Ps(i, 

j), and 

),(

),(

jiP

jiP

s

n  denote power spectral density of noise, non-

degraded image, and reciprocal of the signal-to-noise ratio, 

respectively. To overcome the above weaknesses of the Wiener 

filtering, Donoho and Johnstone have discussed a wavelet based 

denoising scheme [4-5]. They have given a mechanism to find 

the threshold value, which is known as VisuShrink [4]. The 

VisuShrink threshold is evaluated by the following formulae:          

TVisu = σ Mlog2
                                            

(12) 
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Fig. 1: Wavelet decomposition (Analysis) and reconstruction 

(Synthesis) filter model 
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 where, σ2 is the noise variance that defines the median absolute 

deviation as given below: 

2

12

6745.0

),(










jiHHmedian


                        

(13) 

The VisuShrink has been found to yield an overly smoothed 

image since the estimate is derived under the constraint with 

high probability. 

 

Fig. 3: Wavelet coefficients in neighborhood 3x3 window 

Mahqak et al. have developed an image denoising method: 

LAWML, however, this method is not efficient because it does 

not determine a local optimal neighboring window size [9]. 

They obtain 2

, ji the signal variance by using a locally adaptive 

window-based maximum likelihood (LAWML) estimation that 

gives reasonably good results and it is given by: 

2

, ji = max















 ),(

22

,

,

1
,0

jiNS

nji

ji

S
b

                   (14) 

where, N(i, j) represents a local window of size L×L, having b 

as the number of its coefficients. Here L is a positive odd 

number, for example, the window size can be 3×3, 5×5 and so 

on. The 3×3 neighborhood window N(i, j)is shown in Fig. 3, 

whose center is a wavelet coefficient to be thresholded.  

      Suppose that the wavelet coefficients satisfy the Gaussian 

distribution with zero-mean, the variance of wavelet 

coefficients can be computed by maximum likelihood 

estimation in square neighborhood. The denoised wavelet 

coefficient, denoted by
jiS ,

ˆ , of the wavelet coefficients jiS , is 

given by: 

jiS ,
ˆ = 

22

,

2

,

nji

ji






jiS ,                                                   (15) 

where,
2

, ji is the signal variance for the wavelet coefficient 

jiS , that is assumed to be an independent Gaussian variable of 

the noisy coefficient.  

     The NeighShrink method [7-8] also incorporates 

neighboring coefficients in the thresholding process by 

considering a local window (square) of length L (a positive odd 

number), but it uses Universal threshold (refer Fig. 3). The 

coefficients of different subbands are thresholded 

independently; however, the threshold and neighbouring 

window size are kept unchanged in all subbands. Let 
2

, jiSum

denote the sum of square of the wavelet coefficients jiS , in the 

neighboring window N(i, j) i.e.   

              

2

, jiSum = 
 ),(

2

,

, jiNS

ji

ji

S

 

                                           (16)

                                         

   

Now shrink the wavelet coefficients according to James-Stein 

(JS) rule that is defined below [7-8]: 

jiS ,
ˆ = 
































2

,

2

, 1
ji

Visu
ji

Sum

T
S                               (17) 

here, + sign at the end of the formula means to keep the positive 

value, and set it to zero when it is negative. 

4. PROPOSED METHOD 
      Suppose S is the noisy observed image of the original 

image R corrupted by noise N.  The noise N is assumed to be an 

independent and identically distributed (i.i.d) white Gaussian 

noise with zero mean and finite variance
2

n . It can be written 

S = R+ N                                                                (18) 

Let W (.) and W-1(.) denote the forward and inverse wavelet 

transform operators [14] and D(. , T) denote the denoising 

operator with threshold T. Now apply W (.) to the noisy image 

S, followed by D(. , T) and finally apply W-1(.) to the resultant. 

To carry out these steps, firstly we need to estimate the 

shrinkage factor that is discussed below. 

4.1 Parameter Estimation 

     The estimation of shrinkage factor, ji , that requires the 

threshold estimator value λ is given below: 








































2

,

2

,
1

1
ji

ji
Sumn

n 


+  

         (19) 

where, n, noise reduction factor, is a positive integer i.e., 0 < n 

<∞. The choice of n is independent to image, noise, subband, or 

scale. It has been observed that for high noise level, the higher 

value of n gives good quality of image i.e. high PSNR. The 

threshold estimator λ depends on the noise variance and size of 

subband and it is given as follows:  

 = )ˆlog(2 M                                            (20) 

where, M̂ = M/2l; 1 ≤ l ≤ J, here J represents the number of 

decomposition levels. 

Now, shrink the wavelet coefficients according to the following 

expressions: 

          jiS ,
ˆ = jijiS ,,                                                            (21) 
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Fig. 4: Original test images of size 512×512 pixels: (a) Lena 

(b) Mandrill (c) Barbara (d) Goldhill (e) Cameraman 

 

Once obtaining the shrinkage factor, apply the denoising 

procedure, which is discussed below. In this method, we use 

wavelet transform to obtain the wavelet coefficients of the 

image and then modify these coefficients. Finally, apply inverse 

wavelet transform to obtain an approximation of the original 

image. 

4.2 Denoising Procedure 
(i)  Apply 2-D Wavelet Transformation W on the degraded 

image S to generate J decomposition levels. 

(ii)  For each subband except LLk, for  2/1 Jk  , 

apply (15) and, for   JkJ 12/ , apply (21), to 

get the noiseless coefficients R from the noisy image S. 

(iii)  Perform the inverse wavelet transformation W-1 to R , 

modified coefficients, to obtain the denoised estimate 

image Ŝ . 

5. EXPERIMENTAL RESULTS 
To test the superiority of this proposed method, the 

experimental study has been performed on the following 

images: Lena, Mandrill, Barbara, Goldhill, and Cameraman, 

each of size 512x512 (refer Fig. 4). These images are corrupted 

by the additive zero-mean Gaussian noise with different noise 

levels: 10, 20, 30, 50, 75, and 100. In our experiments, we have 

used Symlet wavelet of length eight up to four decomposition 

levels is used and the square–shaped windows of sizes 3x3, 

5x5, and 7x7 have been employed to find different estimations 

for 2

, ji and 2

, jiSum . The experimental results are evaluated for 

both objective and subjective quality of the images as these two 

parameters are widely used for statistical computations. The 

peak signal-to-noise ratio (PSNR) and visual quality of the 

restored images are considered for objective and subjective 

comparisons, respectively. In the proposed method, it is 

suggested to take the large values of n and the neighboring 

window size when the noise level is high.  

      It is observed that the proposed method outperforms the 

Weiner Filter in terms of PSNR for all window sizes: 3x3, 5x5, 

and 7x7, for all values of n (n=1, 2, and 4), and at all noise 

levels: 10, 20, 30, 50, 75, and 100 for all test images under 

consideration (refer Table 1 and Figs. 5(a)-(c)). Furthermore, 

our proposed method outperforms the NeighShrink and 

LAWML in terms of PSNR for window size 3x3, all values of n 

(n =1, 2, 4) and at all noise levels: 10, 20, 30, 50, 75, and 100 

for all test images (refer Fig. 5(a)). 

     For window size 5x5 and NeighShrink, noise levels higher 

than 20 and any value of n, this proposed method performs 

better than the NeighShrink for the Lena & Goldhill images and 

for noise levels 10 & 20, it has no better performance. For 

Mandrill, Barbara, Cameraman images and noise level higher 

than 30 the performance of our method is better than the 

NeighShrink and for noise levels 10, 20 & 30, it is comparable 

(refer Fig. 5(b)). 

     In comparison to LAWML with Window size 5x5, the 

proposed method has no better results for Lena, Mandrill, 

Barbara, Cameraman images for any value of n and noise level 

10, but for noise level higher than 10, it provides better results. 

For noise level 10 and n=1 in Goldhill image, it has comparable 

performance, but for noise level higher than 10, it provides 

better results (refer Fig. 5(b)).     

     For Window size 7x7 and NeighShrink, the proposed 

method gives better results than the NeighShrink for noise level 

10 and for any value of n (=1, 2, and 4) in all test images. 

     For n=1, our results are no better for Lena, Barbara, 

Goldhill, and Cameraman when noise level is 20 or more. In 

Mandrill for n=1, our results are better for noise levels 50 and 

75, whereas our results are no better for noise levels: 20, 30, 

and 100. 

     For n=2 and Lena, and Mandrill images, our results are 

better for noise levels 50 & 75 and for noise levels 20, 30, and 

100, they are comparable.  For Barbara and Cameraman 

images, our results perform better for noise level 75 and, for 

noise levels 20, 30, and 50, it is no better.  For noise level 100, 

our results are better for Cameraman image and, for Barbara 

image, they are no better. For Goldhill image, our results are 

better for noise level 50 and, for noise levels 20, 30, 75 & 100, 

they are comparable.  

For n=4 and Lena, Mandrill & Barbara images, our results 

are better for noise levels 50 or more  and for noise levels  20 & 

30, they are no better. For Goldhill image, our results are better 

for noise levels 50 & 75 and for noise levels 20, 30 & 100, they 

are comparable.  For Cameraman image, our method performs 

better for noise levels: 75 & 100 and, for noise levels 20, 30 & 

50, they are no better (refer Fig. 5(c)). 

In comparison to LAWML with window size 7x7, for n=1 

and Lena images, our results are better than that of the 

LAWML for noise level 30, 50 and 75 and for noise levels 10, 

20 and 100 they are comparable. For Cameraman images, our 

results are better than that of the LAWML for noise level 30 or 

more and for noise levels 10 and 20 they are comparable. For 

Mandrill & Barbara images and noise levels 20, 30, 50, and 75, 

ours are better and for noise levels 10 & 100, they are 

comparable. For Goldhill image and noise levels 20, 30, and 50, 

ours are better and for noise levels 10, 75 & 100, they are 

comparable. 

     For n=2 and Mandrill & Goldhill images, our results are 

better for noise levels 20, 30, 50 and 75, and for noise levels 10 

& 100, they are comparable. For Barbara image, our results are 

better noise level 20 or more and comparable for noise level 10. 

For Lena and Cameraman images, our method performs better 

for noise level is 30 or more and for noise levels 10 & 20, they 

are comparable.  
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     For n=4 and Lena, Mandrill & Cameraman images, our 

results are better for noise level 30 or more and for noise levels 

10 & 20, they are comparable. For Barbara image, ours are 

better noise level 20 or more and for noise level 10, they are 

comparable.  For Goldhill image, our method performs better 

for noise levels 20, 30, 50 & 75 and for noise levels 10 and 100, 

they are comparable (refer Fig. 5(c)). 

      We have shown the graphs for the denoised image of Lena 

in Fig. 5(a)-(c) for noise levels: 10, 20, 30, 50, 75, and 100 

which gives a remarkable improvement over the Wiener filter, 

NeighShrink, and LAWML methods. Table 1 and Fig. 5(a) of 

suggest window of size 3x3. Furthermore, it is suggested to take 

the lower/higher value of n when the noise level is 

lower/higher, respectively, from the above discussion. Here, we 

have considered only Lena image for graph purpose. We have 

obtained similar types of PSNR curves for other images since 

the repetitive nature of results; we have not shown their graphs.  

 

 
(a) Window size 3x3 

 
(b) Window size 5x5 

 
(c) Window size 7x7 

Fig. 5: PSNR gain vs. Noise level of Proposed (n=1, 2 & 4), 

Weiner Filter, NeighShrink, and LAWMAL methods for 

Lena with window size 3x3 in Fig. (a), 5x5 in Fig. (b) and 

7x7 in Fig. (c) 

5. CONCLUSION 
      In this paper, we have discussed a hybrid image 

denoising method based on LAWML and NeighShrink 

methods. This proposed method removes the noise from the 

noisy image significantly. It has either better performance than 

or comparable in terms of PSNR to the Weiner filter, 

NeighShrink, and LAWML. In future, we try to extend this 

method for multichannel /medical images, and video. 
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Table 1. Denoising numerical results (PSNR in db) for Lena, Mandrill, Barbara, Goldhill, and 

Cameraman with window sizes 3x3, 5x5, and 7x7 for Weiner Filter, NeighShrink, and LAWML 

methods with noise levels: 10, 20, 30, 50, 75, and 100 and n=1, 2 & 4 

 

Im
a

g
e 

N
a

m
e 

N
o

is
e 

le
v

el
s 

Weiner Filter NeighShrink  LAWML Proposed Method with value of n value  

PSNR 

3 x 3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7 3 x 3 5x5 7x7 3x3 5x5 7x7 3x3 5x5 7x7 

n=1 n=2 n=4 

L
en

a 

  

10 33.55 32.67 31.37 33.29 34.22 31.37 33.48 34.14 34.46 33.59 33.99 34.23 33.62 34.01 34.25 33.64 34.03 34.26 

20 28.99 30.01 29.33 28.59 30.40 30.97 28.77 29.52 29.99 29.70 29.70 29.82 29.76 29.77 29.86 29.78 29.83 29.89 

30 25.70 27.83 27.74 26.09 27.58 28.70 26.13 26.71 27.08 28.23 27.74 27.51 28.29 27.88 27.60 28.29 27.98 27.66 

50 21.40 24.48 25.37 23.47 24.59 25.43 23.64 23.83 24.02 26.92 25.92 25.26 26.92 26.27 25.48 26.83 26.50 25.65 

75 17.95 21.51 23.09 22.51 22.93 23.52 22.60 22.62 22.66 25.59 24.29 23.12 25.44 24.89 23.53 25.23 25.23 23.85 

100 15.49 19.26 21.23 22.06 22.09 22.49 22.09 22.07 22.06 24.45 23.10 21.47 24.20 23.89 22.06 23.98 24.27 22.52 

 

M
an

d
ri

ll
 

   

10 26.50 24.50 23.57 28.12 29.86 28.12 27.97 29.31 30.02 28.06 29.32 30.00 28.06 29.32 30.00 28.06 29.32 30.00 

20 24.79 23.54 22.83 22.12 24.60 25.32 22.08 23.12 23.99 22.58 23.35 24.07 22.58 23.35 24.08 22.58 23.36 24.08 

30 23.08 22.60 22.09 20.16 21.47 22.86 20.18 20.60 21.06 21.18 21.28 21.48 21.17 21.29 21.49 21.16 21.31 21.50 

50 20.13 21.00 20.95 19.37 19.60 20.07 19.38 19.44 19.51 20.55 20.41 20.27 20.50 20.48 20.32 20.44 20.52 20.36 

75 17.30 19.29 19.83 19.14 19.20 19.33 19.15 19.14 19.15 20.05 19.82 19.43 19.94 19.99 19.58 19.84 20.07 19.69 

100 15.10 17.77 18.80 19.04 19.04 19.05 19.04 19.04 19.04 19.63 19.30 18.62 19.51 19.58 18.89 19.43 19.69 19.09 

 

B
ar

b
ar

a 

    

10 29.87 28.03 27.17 31.28 32.51 30.58 31.35 32.36 32.73 31.48 32.31 32.64 31.49 32.32 32.65 31.50 32.33 32.65 

20 26.82 26.24 25.81 25.33 27.71 28.52 25.35 26.48 27.20 25.86 26.72 27.25 25.88 26.76 27.27 25.88 26.78 27.29 

30 24.29 24.71 24.63 22.58 24.48 25.92 22.66 23.33 23.92 23.61 23.91 24.23 23.62 23.96 24.26 23.62 23.99 24.29 

50 20.66 22.38 22.95 21.07 21.74 22.36 21.13 21.30 21.47 22.89 22.50 22.21 22.87 22.64 22.31 22.82 22.73 22.38 

75 17.55 20.18 21.36 20.39 20.53 21.11 20.44 20.45 20.46 22.26 21.66 21.01 22.16 21.96 21.25 22.05 22.12 21.42 

100 15.25 18.38 19.99 20.18 20.22 20.32 20.18 20.19 20.20 21.64 20.95 19.91 21.48 21.40 20.31 21.33 21.60 20.60 

 

G
o

ld
h
il

l 

10 31.78 30.30 28.97 30.79 32.22 30.41 30.86 31.77 32.35 31.06 31.77 32.28 31.07 31.78 32.29 31.07 31.79 32.29 

20 28.26 28.57 27.77 26.73 28.21 29.08 26.72 27.31 27.77 27.79 27.83 27.95 27.81 27.87 27.97 27.81 27.89 27.99 

30 25.35 26.92 26.69 24.80 26.11 26.99 24.85 25.30 25.66 26.79 26.52 26.37 26.80 26.61 26.43 26.76 26.67 26.47 

50 21.27 24.06 24.81 23.43 23.91 24.63 23.45 23.61 23.75 25.73 25.09 24.59 25.67 25.36 24.77 25.55 25.52 24.90 

75 17.89 21.29 22.78 22.67 22.99 23.32 22.72 22.77 22.83 24.65 23.71 22.72 24.50 24.22 23.09 24.32 24.49 23.37 

100 15.45 19.12 21.03 22.20 22.26 22.44 22.23 22.23 22.21 23.76 22.68 21.21 23.57 23.38 21.77 23.41 23.71 22.19 

 

C
am

er
am

an
 10 32.77 31.47 30.39 32.72 33.87 31.23 32.88 33.77 34.05 32.95 33.61 33.83 32.98 33.63 33.84 33.00 33.65 33.86 

20 28.73 29.14 28.49 26.96 28.81 29.71 27.05 27.76 28.22 27.58 27.84 28.08 27.62 27.89 28.11 27.63 27.93 28.13 

30 25.52 27.11 26.83 24.59 26.08 27.05 24.73 25.22 25.52 25.88 25.73 25.67 25.92 25.82 25.72 25.93 25.89 25.76 

50 21.23 23.91 24.40 21.89 22.82 24.13 21.88 22.33 22.53 24.36 23.86 23.44 24.37 24.07 23.58 24.32 24.20 23.68 

75 17.82 21.06 22.21 20.37 20.72 21.74 20.32 20.50 20.69 23.34 22.52 21.71 23.24 22.90 21.99 23.11 23.10 22.19 

100 15.39 18.93 20.52 19.87 19.99 20.63 19.86 19.90 19.98 22.51 21.63 20.41 22.31 22.16 20.85 22.13 22.41 21.18 


