
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.22, November 2012

40

Cooperative Cache implementation using Dynamic Hash

Scheme in Partitioned Networks

Mehdi Mohtashamzadeh
Department of Computer

Engineering
Soosangerd Branch, Islamic

Azad University
Soosangerd, IRAN

ABSTRACT

Caching is a popular mechanism for enhancing performance

of memory access speed. To achieve such enhancement,

cached data should have enough locality in time. Locality is

an inseparable property of data in standalone computers, but

do network traffic patterns have sufficient locality so that

caches can take advantage from? Although individual IP

addresses do not show significant locality, IP prefixes in a

network (especially close to hosts which comprise hot

documents) are dominantly repetitive and local, so caches

may work based on IP prefixes instead of entire IP addresses.

Considering the locality of IP prefixes, there is still another

challenge which should be overcome. According to memory

constraints hosts are faced with, caches can include limited

proportion of information that they really need to. To acquire

non-cached information, nodes have to communicate with

corresponding servers which is time and resource consuming.

To effectively deal with such issue networks can be enhanced

with cooperative caching by which every node provides its

cache contents to others when they submit requests.

This paper outlines an improved cooperative caching method

which functions based on IP prefixes to divide network to

several partitions. Experiments indicate that the proposed

mechanism would noticeably improve cache hit, cache load,

and CPU load parameters.

Keywords

cooperative caching; IP prefix; Static and dynamic hashing.

1. INTRODUCTION
The main duty of caches is to store data so that future requests

for that data can be served faster. The greater the number of

requests that can be served from the cache, the higher the

overall performance becomes. Since quantity of entries which

can be cached is limited, caches can cooperate with each other

to improve overall performance of networks. Cooperative

caching aims to form a unified cache in the file cache

hierarchy and has been proposed to reduce disk accesses [1].

Technology advances in hardware, namely processor design

and network technology have significantly highlighted the

importance of cooperative caching. In the meantime, disk

technology has not experienced such giant improvements. In

other words the performance gap between disk speed and

processors is increasing unpleasantly. A case in point is

transferring blocks of data between hosts in an Infiniband or

10 Gigabit Ethernet network which can be done two orders of

magnitude faster than reading such blocks from nowadays

disks.

 To have efficient cooperative caches several issues should be

considered. The geographical location of caches, the number

of caches to form a group, allocating caches to appropriate

groups, and cooperation among groups are the main

challenges which should be tackled.

2. Related works
This research has taken advantage of two distinct concepts,

cooperative caching and Route prefix caching. Related works

in each area are listed below.

2.1 Related works on cooperative caching
Dynamic web content caching, which aims to move data and

application closer to internet users, has become a

controversial field to research communities and several

contributions have been made [2, 3, 4]. In [5] a thorough

analysis of different caching approaches and pros and cons of

each has presented. Cooperation among caches was first

discussed in [1, 6, 7, 8]. Shah et al. [9] have proposed a

dynamic data propagation mechanism among cooperative

caches, in which each data is allocated a dissemination tree.

The server circulates the update to the data item through this

tree. The main focus of last two mentioned researches was on

consistency maintenance of caches.

Authors of [10] have proposed a dynamic hash-based

cooperation scheme for efficient document lookups and

updates. They have also presented a document placement and

replacement scheme to place documents among caches of a

cache cloud. In this research, each cooperative cache group

consists of several sub-groups. An entry which is supposed to

settle in the sub-group K may be hosted by different caches

(in sub-group k) in different periods based on the capacity and

load of caches in the sub-group.

Furthermore, researchers have worked on various challenges

related to dynamic caching, namely reducing consistency

function overheads and performance analysis of caching

schemes [2, 11, 12, 13].

2.2 Related works on route prefix caching
IP router needs to inspect every packet header for destination

IP address, then it will lookup routing table for next hop

address in order to determine where to forward the packet.

This process may become a bottleneck since it must be done

for each packet. In contrast, if a router be capable of

performing Longest Prefix Matching (LPM) based on the

destination IP address then the process might be lighter and

faster. In this case routers need to maintain a table of prefixes

rather than exact IP addresses. Upon address lookup, the

longest prefix that matches the beginning of the IP address is

chosen.

The idea of using IP prefixes is based on following ideas [14]:

first, the possible number of IP routing prefixes is much

smaller than the number of possible individual IP addresses. A

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.22, November 2012

41

check of routing prefixes from The university of Oregon

Route View project [15] showed 61832 entries as compared to

up to 2^32 possible distinct IP addresses. Secondly, Web

content servers are increasingly being hosted in central data

centers. With World Wide Web dominating Internet traffic it

is not surprising that a large portion of the traffic will be

moving towards data centers. These centers host thousands of

web sites, but only share one single routing prefix. Last but

not least, Caching routing prefix can benefit from routing

table compaction techniques [16].

Considering above facts, usage of IP prefixes can undoubtedly

lead to better results. Current research has taken advantage of

IP prefixes to direct various packets to different parts of

network.

3. Architecture of the cooperative cache

and design ideas
Network can comprise several partitions. These partitions are

supposed to be located in parts of network which are selected

to deploy caches. Hence, each partition has its own caches.

There may be k main caches inside each partition which are

responsible for initial caching of data. In addition, there are

few caches (four caches in our implementation) for each main

cache in four directions of partitions (North, South, East, and

West) which are called boundary caches in this research.

These caches are used to maintain copies of data items in

main caches to achieve efficient response times and fault

tolerance.

Simulation results show that each partition deals with limited

number of IP prefixes. Putting forward this view, networks

can be configured in a way that packets with different

destination addresses may be directed to various partitions for

processing. The belief that such data separation may

efficiently improve cache performance, since caches in a

specific partition would deal with limited IP addresses. In this

case experiencing repeated requests (which their info exists in

caches) by the partitions is highly probable.

Each partition has a central manager and some boundary cells.

Boundary cells are responsible for incoming traffic diffusion.

Shortly after network startup, boundary cells start to save IP

prefixes for a while. In the next step, collected data would be

sent from boundary cells to their corresponding central

managers. Managers can extract IP prefix ranges by analyzing

received data. Finally, each manager should send the acquired

range to its boundary cells and other partitions’ managers.

Each packet’s IP prefix would be checked on its entrance to a

partition. The packet can enter the partition if a boundary cell

evaluates its IP related to IP ranges of the current partition;

otherwise the packet would be rerouted to another partition.

However, cache lookup process will start for received

requests. The dynamic hash function by which an appropriate

cache is selected to perform lookup process is described in the

next section. Afterwards, the specified cache (by the mean of

the dynamic hash function) will be searched using complete

IP address and in case of a hit data can be extracted from this

cache. Since data may also exist in one of the other four

boundary caches related to the current cache, in order to

eliminate congestion inside the partition, data items would be

retrieved from one of these caches instead of the main cache.

Suitable boundary cache to access is the nearest to the entry

point of the request. However, in case of a miss data can be

fetched from corresponding servers to a main cache which the

hash function shows.

Table 1. Applied algorithm for boundary cells

Pick a packet from router queue;

PART A

If (a normal packet for routing is picked) then

 Extract “IP Prefix”;

 If (“IP Prefix” is not related to the current partition) then

 Reroute packet to an adjacent partition;

 Else If (manager has declared congestion and has asked for

temporary rerouting) then

 Set “rerouted packet” flag in the packet to 1;

Set “source partition number” field in the packet with the

number of current partition;

 Reroute packet to an adjacent partition;

 Else

 Commence cache lookup process;

 End if;

PART B

Else if (a “congestion status request (sent from manager)” is

picked) Then

 If (congestion controller detects congestion) then

 Set “congestion status Response” flag to ‘1’;

 Else

 Set “congestion status Response” flag to ‘0’;

 End if;

 Send “congestion status Response” packet to manager;

PART C

Else if (a “Reroute request (sent from manager)” is picked)

then

Set “Rerouted packet” flag of all packets in router

queue to 1;

Set “Source partition Number” field of all packets in

the queue with number of current partition;

 Reroute packets in the queue to adjacent partition;

End if;

Restart the algorithm;

Algorithm which Boundary cells have taken advantage of is

presented in Table 1. As it can be seen in “PART B” of the

algorithm, a manager can get aware of congestion status in

different parts of its partition and in case of congestion

detection manager may ask specific boundary cells to reroute

requests to adjacent partitions temporarily (PART C).

As stated before, there are four caches for each main cache in

four geographical directions of partitions. Each entry in the

main cache has four counters, each for one of the boundary

caches (N counter, S counter, E counter, and W counter).

Each time data retrieval is performed using a boundary cache

instead of the main cache, one of these counters would be

increased according to geographical position of the used

boundary cache. If one of the counters exceeds the threshold,

from then on all requests for this entry must be served from

corresponding boundary cache considering the fact that next

requests would enter the partition from this geographical

direction; as a result if such requests could be served in the

borders of partition, congestion inside the partition could be

plummeted. Such decisions is made and broadcast to all

boundary cells by managers. Hence, entering plenty of

requests, boundary cells can do lookup operation in one of the

boundary caches and refer to the main cache only in case of

misses.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.22, November 2012

42

It is worth noting that if data in servers are changed, these

changes could be announced to main caches. In the meantime,

boundary caches can get their contents consistent with main

caches.

3.1 Dynamic hash function
A basic solution to cache assignment is to use a hash function

which uniquely maps a requested URL to a specified cache in

a collection of caches. This method is known as static

hashing. The main drawback of this mechanism is that it

cannot provide fair cache load balance since performance

parameters such as cache load, CPU capacity, and network

load are not considered.

On the other hand, dynamic hashing can uniformly disperse

incoming requests in the cache group. “CPU Load”, “cache

capacity”, and “workload” on the cache are dynamic

parameters in our implementations since they can largely

affect cache performance. In this work caches were

configured to periodically compute and send their current

CPU load, cache capacity, and cache load information to

central manager. Analyzing received info, central manager

can determine the node which is less busy and can handle

more requests. Manager broadcasts this node’s address to

others. Firstly Caches are hashed using following hash

function:

MD5 (requested URL) mod k

Requested URL information should be fetched from main

servers if they do not exist in the hashed cache. Before putting

the fetched data into the hashed cache “CPU Load”, “cache

capacity”, and “workload” parameters are checked. If the

values have not exceeded their thresholds, it is permitted to

assign cache entries to the fetched data; otherwise, an indirect

caching process should take place. In this case, the cache

which is recently introduced by central manager is designated

to hold the fetched data. Towards this end, the “indirect” flag

of the hashed cache entry (the entry which was supposed to be

assigned to the fetched data) would be set to ‘1’; the address

of designated cache should be saved in the mentioned entry of

the hashed cache and the fetched date should be sent to

designated cache. In case of future requests for the discussed

URL, the cache is again hashed by “MD5 (requested URL)

mod k” function. Lookup process would retrieve the entry

which comprises the indirect flag equal to ‘1’; hence the

address of designated cache would be extracted and used to

fetch relevant data.

When the manager broadcasts address of a cache (to be used

as designated cache by other caches), all caches look for

indirect cached data in their entries (which their source is the

same as the address broadcast by manager) and send found

items back to its main source. Take for example “cache A” is

introduced by manager and an entry which in fact is related to

“cache A” is found in “cache B”. “Cache B” then tries to send

back the indirect cached data to “cache A” considering the

fact that from now on “cache A” can serve its own requests

and there is no need for indirect cache accesses anymore.

4. Simulation results
Three cache configurations have been considered in

simulations. Firstly, cache architecture without network

partitioning and with static hashing mechanism, secondly,

cache architecture with network partitioning and static

hashing and finally, cache architecture with partitioned

network and dynamic hashing function. Furthermore, requests

were all saved in a file and induced into the network in

specified timelines. Presented results in the following are

related to 10000 requests (cache update and lookup) from the

trace file.

Fig. 1 depicts the percentage of cache hits for three discussed

configurations. X-axis presents number of caches. It is evident

that despite from quantity of caches, hit ratio for the non-

partitioned network with static hashing is noticeably lower

compared to two other cases. Not only network partitioning

improves cache hits (according to IP prefix disaggregation

and directing each packet to an appropriate region) but also

usage of dynamic hashing and increase in number of caches

enhance the cache hits.

It can be seen in Fig. 1 that hit ratio of the non-partitioned

network with static hash function which deploys hefty 20

caches is almost the same as the hit ratio of partitioned

scheme with dynamic hash function with 5 caches.

Fig. 1: Percentage of hit rates for 5, 10, and 20 caches and

three cache configurations. X-axis and Y-axis present

number of caches and hit ratio percentage, respectively.

In next step, a network with 5 caches was simulated and three

above mentioned cache configurations were tested. For

simulations network was partitioned to two regions. One of

the partitions which included first, second, and third caches

(on X-axis) dealt with 70% of entire requests, while the other

region absorbed 30% of cache requests. Results of this

simulation are presented in Fig. 2. Cache requests consist of

lookup and update functions. Static hash function in the non-

partitioned network uniformly spread requests among all

caches, since the cache load parameter for all caches revolves

around 2000. The partitioned static hashed network has

experienced unfair load balance in both regions since it

efficiently defuses packets according to their IP prefixes but

disseminates requests entered a partition in an inefficient

static manner.

Fig. 2. Cache loads on 5 caches in three cache

configurations. X-axis and Y-axis are cache numbers and

quantity of requests received by each cache, respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.22, November 2012

43

Lastly, the partitioned dynamic hash based network has

shown more adequate cache load results compared to the

previous approaches since it provides a closely uniform

dispersal of cache loads in each partition. Although loads of

requests are fairly shared among caches in the first scheme, it

could not be considered as a suitable mechanism according to

the results presented in Fig.1 and considering the fact that this

mechanism cannot consider time-variant dynamic properties

of caches.

5. Conclusion
In this research a cooperative caching method has been

introduced. The proposed method takes advantage of IP

prefixes to divide networks into some partitions, assuming

that each partition deals with few IP addresses. Considering

this fact, caching improves and requests are processed faster.

Experiments indicate that the proposed mechanism would

noticeably improve cache hit, cache load, and CPU load

parameters.

6. REFERENCES
[1] M. Dahlin, R. Wang, T. E. Anderson, and D. A.

Patterson. Cooperative caching: Using remote client

memory to improve file system performance. In

OSDI’94, 1994.

[2] Edge Side Includes - Standard Specification.

http://www.esi.org.

[3] IBM WebSphere Edge Server.

http://www3.ibm.com/software/webservers/edgeserver/.

[4] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar.

Application Specific Data eplication for Edge Services.

In WWW-2003.

[5] C. Yuan, Y. Chen, and Z. Zhang. Evaluation of Edge

Caching/Offloading for Dynamic Content Delivery. In

WWW-2003.

[6] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R.

Dhanidina, K. Iwamoto, B. Kim, L. Matkins, and Y.

Yerushalmi. Web Caching with Consistent Hashing. In

WWW-8, 1997.

[7] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond

Hierarchies: Design Considerations for Distributed

Caching on the Internet. In ICDCS-1999.

[8] A. Wolman, G. M. Voelkar, N. Sharma, N. Cardwell, A.

Karlin, and H. M. Levy. On the scale and performance of

cooperative web proxy caching. In SOSP 1999.

[9] S. Shah, K. Ramamritham, and P. Shenoy. Resilient and

Coherence Preserving Dissemination of Dynamic Data

Using Cooperating Peers. IEEE-TKDE, July 2004.

[10] L. Ramaswamy, L. Liu, and A. Iyengar. Cache Clouds:

Cooperative Caching of Dynamic Documents in Edge

Networks. 25th IEEE International Conference on

Distributed Computing Systems (ICSCS’05).

[11] W.-S. Li, W.-P. Hsiung, D. V. Kalshnikov, R. Sion, O.

Po, D. Agrawal, and K. S. Candan. Issues and

Evaluations of Caching Solutions for Web Application

Acceleration. In VLDB-2002.

[12] D. A. Menasce. Scaling Web Sites Through Caching.

IEEEInternet Computing, August 2003.

[13] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering

Web Cache Consistency. ACM-TOIT, August 2002.

[14] H. Liu, “Routing prefix caching in network processor

design,” in Proc. ICCCN, Phoenix, AZ, 2001.

[15] University of Oregon Route Views Project,

http://www.antc.uoregon.edu/route-views/

[16] H. Liu, “Reducing Routing Table Size using Ternary-

CAM”, Proc. Hot Interconnect, Stanford, 2001.

