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ABSTRACT 

Caching is a popular mechanism for enhancing performance 

of memory access speed. To achieve such enhancement, 

cached data should have enough locality in time. Locality is 

an inseparable property of data in standalone computers, but 

do network traffic patterns have sufficient locality so that 

caches can take advantage from? Although individual IP 

addresses do not show significant locality, IP prefixes in a 

network (especially close to hosts which comprise hot 

documents) are dominantly repetitive and local, so caches 

may work based on IP prefixes instead of entire IP addresses. 

Considering the locality of IP prefixes, there is still another 

challenge which should be overcome. According to memory 

constraints hosts are faced with, caches can include limited 

proportion of information that they really need to. To acquire 

non-cached information, nodes have to communicate with 

corresponding servers which is time and resource consuming. 

To effectively deal with such issue networks can be enhanced 

with cooperative caching by which every node provides its 

cache contents to others when they submit requests. 

This paper outlines an improved cooperative caching method 

which functions based on IP prefixes to divide network to 

several partitions. Experiments indicate that the proposed 

mechanism would noticeably improve cache hit, cache load, 

and CPU load parameters. 
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1. INTRODUCTION 
The main duty of caches is to store data so that future requests 

for that data can be served faster. The greater the number of 

requests that can be served from the cache, the higher the 

overall performance becomes. Since quantity of entries which 

can be cached is limited, caches can cooperate with each other 

to improve overall performance of networks. Cooperative 

caching aims to form a unified cache in the file cache 

hierarchy and has been proposed to reduce disk accesses [1]. 

Technology advances in hardware, namely processor design 

and network technology have significantly highlighted the 

importance of cooperative caching. In the meantime, disk 

technology has not experienced such giant improvements. In 

other words the performance gap between disk speed and 

processors is increasing unpleasantly. A case in point is 

transferring blocks of data between hosts in an Infiniband or 

10 Gigabit Ethernet network which can be done two orders of 

magnitude faster than reading such blocks from nowadays 

disks. 

 To have efficient cooperative caches several issues should be 

considered. The geographical location of caches, the number 

of caches to form a group, allocating caches to appropriate 

groups, and cooperation among groups are the main 

challenges which should be tackled. 

2. Related works 
This research has taken advantage of two distinct concepts, 

cooperative caching and Route prefix caching. Related works 

in each area are listed below. 

2.1 Related works on cooperative caching 
Dynamic web content caching, which aims to move data and 

application closer to internet users, has become a 

controversial field to research communities and several 

contributions have been made [2, 3, 4]. In [5] a thorough 

analysis of different caching approaches and pros and cons of 

each has presented. Cooperation among caches was first 

discussed in [1, 6, 7, 8]. Shah et al. [9] have proposed a 

dynamic data propagation mechanism among cooperative 

caches, in which each data is allocated a dissemination tree. 

The server circulates the update to the data item through this 

tree. The main focus of last two mentioned researches was on 

consistency maintenance of caches. 

Authors of [10] have proposed a dynamic hash-based 

cooperation scheme for efficient document lookups and 

updates. They have also presented a document placement and 

replacement scheme to place documents among caches of a 

cache cloud. In this research, each cooperative cache group 

consists of several sub-groups. An entry which is supposed to 

settle in the sub-group K may be hosted by different caches 

(in sub-group k) in different periods based on the capacity and 

load of caches in the sub-group. 

Furthermore, researchers have worked on various challenges 

related to dynamic caching, namely reducing consistency 

function overheads and performance analysis of caching 

schemes [2, 11, 12, 13]. 

2.2 Related works on route prefix caching 
IP router needs to inspect every packet header for destination 

IP address, then it will lookup routing table for next hop 

address in order to determine where to forward the packet. 

This process may become a bottleneck since it must be done 

for each packet. In contrast, if a router be capable of 

performing Longest Prefix Matching (LPM) based on the 

destination IP address then the process might be lighter and 

faster. In this case routers need to maintain a table of prefixes 

rather than exact IP addresses. Upon address lookup, the 

longest prefix that matches the beginning of the IP address is 

chosen. 

The idea of using IP prefixes is based on following ideas [14]: 

first, the possible number of IP routing prefixes is much 

smaller than the number of possible individual IP addresses. A 
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check of routing prefixes from The university of Oregon 

Route View project [15] showed 61832 entries as compared to 

up to 2^32  possible distinct IP addresses. Secondly, Web 

content servers are increasingly being hosted in central data 

centers. With World Wide Web dominating Internet traffic it 

is not surprising that a large portion of the traffic will be 

moving towards data centers. These centers host thousands of 

web sites, but only share one single routing prefix. Last but 

not least, Caching routing prefix can benefit from routing 

table compaction techniques [16]. 

Considering above facts, usage of IP prefixes can undoubtedly 

lead to better results. Current research has taken advantage of 

IP prefixes to direct various packets to different parts of 

network. 

3. Architecture of the cooperative cache 

and design ideas 
Network can comprise several partitions. These partitions are 

supposed to be located in parts of network which are selected 

to deploy caches. Hence, each partition has its own caches. 

There may be k main caches inside each partition which are 

responsible for initial caching of data. In addition, there are 

few caches (four caches in our implementation) for each main 

cache in four directions of partitions (North, South, East, and 

West) which are called boundary caches in this research. 

These caches are used to maintain copies of data items in 

main caches to achieve efficient response times and fault 

tolerance. 

Simulation results show that each partition deals with limited 

number of IP prefixes. Putting forward this view, networks 

can be configured in a way that packets with different 

destination addresses may be directed to various partitions for 

processing. The belief that such data separation may 

efficiently improve cache performance, since caches in a 

specific partition would deal with limited IP addresses. In this 

case experiencing repeated requests (which their info exists in 

caches) by the partitions is highly probable. 

Each partition has a central manager and some boundary cells. 

Boundary cells are responsible for incoming traffic diffusion. 

Shortly after network startup, boundary cells start to save IP 

prefixes for a while. In the next step, collected data would be 

sent from boundary cells to their corresponding central 

managers. Managers can extract IP prefix ranges by analyzing 

received data. Finally, each manager should send the acquired 

range to its boundary cells and other partitions’ managers. 

Each packet’s IP prefix would be checked on its entrance to a 

partition. The packet can enter the partition if a boundary cell 

evaluates its IP related to IP ranges of the current partition; 

otherwise the packet would be rerouted to another partition. 

However, cache lookup process will start for received 

requests. The dynamic hash function by which an appropriate 

cache is selected to perform lookup process is described in the 

next section. Afterwards, the specified cache (by the mean of 

the dynamic hash function) will be searched using complete 

IP address and in case of a hit data can be extracted from this 

cache. Since data may also exist in one of the other four 

boundary caches related to the current cache, in order to 

eliminate congestion inside the partition, data items would be 

retrieved from one of these caches instead of the main cache. 

Suitable boundary cache to access is the nearest to the entry 

point of the request. However, in case of a miss data can be 

fetched from corresponding servers to a main cache which the 

hash function shows. 

 

Table 1. Applied algorithm for boundary cells 

Pick a packet from router queue; 

 

PART A 

If (a normal packet for routing is picked) then 

  Extract “IP Prefix”; 

  If (“IP Prefix” is not related to the current partition) then 

      Reroute packet to an adjacent partition; 

  Else If (manager has declared congestion and has asked for 

temporary rerouting) then 

      Set “rerouted packet” flag in the packet to 1; 

Set “source partition number” field in the packet with the 

number of current partition; 

      Reroute packet to an adjacent partition; 

  Else 

      Commence cache lookup process; 

  End if; 

PART B 

Else if (a “congestion status request (sent from manager)” is 

picked) Then 

    If (congestion controller detects congestion) then 

           Set “congestion status Response” flag to ‘1’; 

    Else 

           Set “congestion status Response” flag to ‘0’; 

    End if; 

           Send “congestion status Response” packet to manager; 

PART C 

Else if (a “Reroute request (sent from manager)” is picked) 

then 

Set “Rerouted packet” flag of all packets in router 

queue to 1; 

Set “Source partition Number” field of all packets in 

the queue with number of current partition; 

 Reroute packets in the queue to adjacent partition; 

End if; 

Restart the algorithm; 

 

Algorithm which Boundary cells have taken advantage of is 

presented in Table 1. As it can be seen in “PART B” of the 

algorithm, a manager can get aware of congestion status in 

different parts of its partition and in case of congestion 

detection manager may ask specific boundary cells to reroute 

requests to adjacent partitions temporarily (PART C). 

As stated before, there are four caches for each main cache in 

four geographical directions of partitions. Each entry in the 

main cache has four counters, each for one of the boundary 

caches (N counter, S counter, E counter, and W counter). 

Each time data retrieval is performed using a boundary cache 

instead of the main cache, one of these counters would be 

increased according to geographical position of the used 

boundary cache. If one of the counters exceeds the threshold, 

from then on all requests for this entry must be served from 

corresponding boundary cache considering the fact that next 

requests would enter the partition from this geographical 

direction; as a result if such requests could be served in the 

borders of partition, congestion inside the partition could be 

plummeted. Such decisions is made and broadcast to all 

boundary cells by managers. Hence, entering plenty of 

requests, boundary cells can do lookup operation in one of the 

boundary caches and refer to the main cache only in case of 

misses. 
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It is worth noting that if data in servers are changed, these 

changes could be announced to main caches. In the meantime, 

boundary caches can get their contents consistent with main 

caches. 

3.1 Dynamic hash function 
A basic solution to cache assignment is to use a hash function 

which uniquely maps a requested URL to a specified cache in 

a collection of caches. This method is known as static 

hashing. The main drawback of this mechanism is that it 

cannot provide fair cache load balance since performance 

parameters such as cache load, CPU capacity, and network 

load are not considered. 

On the other hand, dynamic hashing can uniformly disperse 

incoming requests in the cache group. “CPU Load”, “cache 

capacity”, and “workload” on the cache are dynamic 

parameters in our implementations since they can largely 

affect cache performance. In this work caches were 

configured to periodically compute and send their current 

CPU load, cache capacity, and cache load information to 

central manager. Analyzing received info, central manager 

can determine the node which is less busy and can handle 

more requests. Manager broadcasts this node’s address to 

others. Firstly Caches are hashed using following hash 

function: 

MD5 (requested URL) mod k 

Requested URL information should be fetched from main 

servers if they do not exist in the hashed cache. Before putting 

the fetched data into the hashed cache “CPU Load”, “cache 

capacity”, and “workload” parameters are checked. If the 

values have not exceeded their thresholds, it is permitted to 

assign cache entries to the fetched data; otherwise, an indirect 

caching process should take place. In this case, the cache 

which is recently introduced by central manager is designated 

to hold the fetched data. Towards this end, the “indirect” flag 

of the hashed cache entry (the entry which was supposed to be 

assigned to the fetched data) would be set to ‘1’; the address 

of designated cache should be saved in the mentioned entry of 

the hashed cache and the fetched date should be sent to 

designated cache. In case of future requests for the discussed 

URL, the cache is again hashed by “MD5 (requested URL) 

mod k” function. Lookup process would retrieve the entry 

which comprises the indirect flag equal to ‘1’; hence the 

address of designated cache would be extracted and used to 

fetch relevant data.  

When the manager broadcasts address of a cache (to be used 

as designated cache by other caches), all caches look for 

indirect cached data in their entries (which their source is the 

same as the address broadcast by manager) and send found 

items back to its main source. Take for example “cache A” is 

introduced by manager and an entry which in fact is related to 

“cache A” is found in “cache B”. “Cache B” then tries to send 

back the indirect cached data to “cache A” considering the 

fact that from now on “cache A” can serve its own requests 

and there is no need for indirect cache accesses anymore. 

4. Simulation results 
Three cache configurations have been considered in 

simulations. Firstly, cache architecture without network 

partitioning and with static hashing mechanism, secondly, 

cache architecture with network partitioning and static 

hashing and finally, cache architecture with partitioned 

network and dynamic hashing function. Furthermore, requests 

were all saved in a file and induced into the network in 

specified timelines. Presented results in the following are 

related to 10000 requests (cache update and lookup) from the 

trace file. 

Fig. 1 depicts the percentage of cache hits for three discussed 

configurations. X-axis presents number of caches. It is evident 

that despite from quantity of caches, hit ratio for the non-

partitioned network with static hashing is noticeably lower 

compared to two other cases. Not only network partitioning 

improves cache hits (according to IP prefix disaggregation 

and directing each packet to an appropriate region) but also 

usage of dynamic hashing and increase in number of caches 

enhance the cache hits. 

It can be seen in Fig. 1 that hit ratio of the non-partitioned 

network with static hash function which deploys hefty 20 

caches is almost the same as the hit ratio of partitioned 

scheme with dynamic hash function with 5 caches. 

 

Fig. 1: Percentage of hit rates for 5, 10, and 20 caches and 

three cache configurations. X-axis and Y-axis present 

number of caches and hit ratio percentage, respectively. 

In next step, a network with 5 caches was simulated and three 

above mentioned cache configurations were tested. For 

simulations network was partitioned to two regions. One of 

the partitions which included first, second, and third caches 

(on X-axis) dealt with 70% of entire requests, while the other 

region absorbed 30% of cache requests. Results of this 

simulation are presented in Fig. 2. Cache requests consist of 

lookup and update functions. Static hash function in the non-

partitioned network uniformly spread requests among all 

caches, since the cache load parameter for all caches revolves 

around 2000. The partitioned static hashed network has 

experienced unfair load balance in both regions since it 

efficiently defuses packets according to their IP prefixes but 

disseminates requests entered a partition in an inefficient 

static manner. 

 

Fig. 2. Cache loads on 5 caches in three cache 

configurations. X-axis and Y-axis are cache numbers and 

quantity of requests received by each cache, respectively. 
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Lastly, the partitioned dynamic hash based network has 

shown more adequate cache load results compared to the 

previous approaches since it provides a closely uniform 

dispersal of cache loads in each partition. Although loads of 

requests are fairly shared among caches in the first scheme, it 

could not be considered as a suitable mechanism according to 

the results presented in Fig.1 and considering the fact that this 

mechanism cannot consider time-variant dynamic properties 

of caches. 

5. Conclusion 
In this research a cooperative caching method has been 

introduced. The proposed method takes advantage of IP 

prefixes to divide networks into some partitions, assuming 

that each partition deals with few IP addresses. Considering 

this fact, caching improves and requests are processed faster. 

Experiments indicate that the proposed mechanism would 

noticeably improve cache hit, cache load, and CPU load 

parameters. 
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