
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

38

Evaluation and Application of Package Level Metrics

in Assessing Software Quality

Vinay Singh

Usha Martin Academy,

Ranchi,India

Vandana Bhattacherjee

Birla Institute of Technology,

Ranchi, India

ABSTRACT
Today almost all the software industries are overloaded with

the maintenance work of already developed software. When

any new demand of software arrives, company matches the

new problem with the existing product, so that the new product

can be easily developed with some new modification in

existing products. The reuse of the existing product is only

possible when it is measured accurately and efficiently for a

longer period.

In this paper, first we will calculate the class level metrics viz.

CBO, RFC, WMC etc for the entire package then we will

calculate the average value for each class level metric

(selected) by dividing the value for each metric from the total

number of classes for each package. The new resultant metrics

are named as CBOavg, RFCavg, WMCavg and so on. The

importance of these metrics is to accurately measure the

complexity at package level. We then map these package level

class metrics with the quality attributes and finally validate

these metrics upon three open source projects i.e. Jedit, FreeCS

and Llamma chart. Data extraction has been done through an

automated tool JHawk and analysis of data has been done using

SPSS 10.0 as statistical tool.

General Terms

Software Engineering

Keywords

Quality model, Object Oriented Attributes, Quality

Attributes, Package metrics

1. INTRODUCTION
Software engineering metrics is the unit of measurement,

which is used to characterize software engineering products,

processes and people. If used properly they can allow us to

identify and quantify improvement and make meaningful

estimates. The need for software metrics is indeed real. Just as

any other engineering discipline, software engineering needs to

be made capable to measure the quality of the product that is

being produced and delivered to the customer. This is

important since the cost of reducing the risk of a flaw within a

program before it is coded and compiled is far lower than the

cost that might be involved when recalling a delivered product.

An important part that needs to be measured is the Object-

Oriented design phase. If one can quantify the design and

thereby increase the quality of the design, there is a lower

probability of the software being flawed.

 Software metrics measure different aspects of software

complexity and therefore play an important role in analyzing

and improving software quality. Measures of software

complexity, for example metrics for coupling or cohesion,

provide a means of quantifying its internal quality. Internal

quality measures are those, which can be performed in terms of

the software product itself, and it will be measureable during

and after the creation of the software product. However, it has

no inherent, practical meaning within itself. To give meaning

to these measures it has to be characterized in terms of the

external quality. External quality measures are evaluated with

respect to how a product relates to its environment. The

reliability, maintainability, testability, efficiency and reuse of a

product are some examples. These measures are deemed

inherently meaningful. Previous studies have indicated that

software metrics can be used to obtain useful information on

external quality aspects of software [19] [29].

The recent drive towards Object-Oriented technology forces

the growth of Object-Oriented software metrics [1] [4] [15]

[18] [22] [23] [24]. The metrics suite proposed by Chidamber

and Kemerer is one of the best-known Object-Oriented metrics

[27] [28]. Various researchers have conducted empirical

studies to validate the Object-Oriented metrics for their effects

upon program attributes and quality factors such as

development or maintenance effort [7] [20]. Alshayeb and Li

predict that Object-Oriented metrics are effective (at least in

some cases) in predicting design effort [21]. Chae, Kwon and

Bae investigated the effects of dependence variables on

cohesion metrics for Object-Oriented programs [8]. Several

other researchers have validated Object Oriented metrics for

effect of class size with the change proneness of classes [3]

[17] [29]. Li theoretically validated Chidamber and Kemerer

metrics [28] using a metric evaluation framework proposed by

Kitchenham et al and discovered some of the deficiencies of

metrics in the evaluation process and proposed a new suite of

Object-Oriented metrics that overcome these deficiencies [32].

Vinay and Bhattacherjee have studied the effect of coupling

metrics in software defect [31].

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

39

The object-oriented elements (attribute) play a key role in

measuring the quality of the software. Traditional software

metrics that evaluate product characteristics such as size,

complexity, performance and quality must be changed to rely

on some fundamentally different notions such as encapsulation,

inheritance, and polymorphism, which are inherent in object

orientation. This has led to the definition of many new metrics

to measure product using object oriented approach.

 The contribution of metrics to the overall objective of

software quality is understood and is fully recognized by the

software engineering community in general [16][26] and

particularly emphasized by the software quality community

[32].

 As software applications grow in size and complexity, they

require some kind of high-level organization. Classes, while a

very convenient unit for organizing small applications, are too

finely grained to be used as the sole organizational unit for

large applications [25]. This is where packages come in; the

purpose of a package is to increase the design quality of large

applications. By grouping classes into packages, one can

reason about the design at a higher level of abstraction. The

main goal while defining a new package structure of a software

system is how to partition classes into packages. There are

different ways to do this, in [25] Robert C. Martin propose a

number of package cohesion principle that addresses the goal

of package structuring mentioned above. Martin argues that

classes that are reused together should be in the same package

and classes that are being affected by the same changes should

be in the same package. If a class in a package is reusable then

all of the classes in that package must be reusable according to

Martin.

Another possible approach of package structuring is to group

classes into packages in terms of functionality. For instance,

the customer determines a system that releases one version

with a given functionality A and some time another

functionality B. In this case, each function could put in a

package of its own to simplify the constructed and developed

processes.

One of the most influencing factors of software systems

quality, where metrics can play an important role, is the

software coding. Being able to predict some software quality

characteristics based on package level design is one of our

greatest motivation.

In this paper, the QMPOOD (Quality metric of package level

in object-oriented design) metrics were validated by three open

source java projects [9] [10] [11]. We are measuring the

package level design for predicting class failure-proneness. The

rest of the paper is organized as follows: section 2 focuses on

the existing quality model, section 3 gives our proposed

QMPOOD model, section 4 discusses the results, section 5

presents analysis and discussion and finally section 6 concludes

the paper.

2. EXISTING QUALITY MODELS
Software quality is still a vague and multifaceted concept,

which means different thing to different people. Typically, the

way we measure quality depends on the viewpoint we take [2].

This makes the direct assessment of quality very difficult. In

order to better quantify quality, researchers have developed

indirect models that attempt to measure software product

quality by using a set of quality attributes, characteristics, and

metrics. An important assumption in defining these quality

models is that internal product characteristics (internal quality

indicator) influence external product attribute (quality in use),

and by evaluating a product’s internal characteristics some

reasonable conclusion can be drawn about the product’s

external quality attributes. Software-metrics advocates

frequently adopt this product-based approach because it offers

an objective and context independent view of quality [2].

 One of the earliest software product quality models was

suggested by McCall [13] and his colleagues. McCall’s quality

model defines software-product qualities as a hierarchy of

factors, criteria and metrics and was first of the several models

of the same form. An international effort has also led to the

development of a standard for software product quality

measurement, ISO 9126. All of these models vary in their

hierarchical definition of quality, but they share the common

difficulty. The models are vague in their definition of the lower

level details and metric needed to attain a quantitative

assessment of product quality. This lack of specifics in these

models offers little guidance to software developers who need

to build quality products.

Another difficulty with earlier models was the inability to

account for dependency among quality attributes. While

several high-level attributes [12] were used to refer to product

quality, generally, only a subset of these attributes would be

relevant for each different viewpoint, since the influence of

individual attributes on overall quality might be contradicting.

For example, a quality goal for higher flexibility makes it

harder to achieve a goal of lower maintainability.

Product based quality model has been developed by Dormey

[5] [6]. The author addresses some of the problems of the

earlier models such as McCall’s and ISO 9126. Dormey’s

quality framework, like the earlier models, relies on the

decomposition of high-level quality attributes into tangible,

quality carrying properties of a product’s components

(requirement, design and implementation). Dormey’s generic

quality models are having three principal elements: product

properties that influence quality, a set of high-level quality

attributes, and a means of linking them [6].

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

40

Bansiya [14] and his colleagues propose an excellent model in

the context of earlier models. Their model defines the new

design size metrics, relationships, and evaluates the weights.

All the models defined so far measured the software at class

level either in design size or code level which is not very

significant in predicting the quality of the software. It is to

overcome the drawback that we propose our QMpOOD

(Quality metric of package level in object-oriented design)

model. This model is presented in the next section.

3. MODEL DEVELOPMENT
Recently, a long needed framework for building product based

quality model has been developed by Dormey [5], [6]. This

quality framework, like earlier models relies on the

decomposition of high-level quality attributes into tangible,

quality-carrying properties of a product’s components

(requirements, design, and implementation). The model used in

the development of the Quality metric of package level in

object-oriented design (QMpOOD) extends Bansiya’s quality

model for object oriented design and involves the steps shown

in Fig 1.

3.1 Identifying Quality Properties

Quality attribute – “Reusability”, “flexibility”,

“understandability”, “functionality”, “extendibility” and

“effectiveness” were selected as the initial set of quality

attribute in our model.

Reusability is the process of creating a new product from an

existing one without significant effort. The new product can

contain the feature of the old one but should also have new

features in it. Software is said to be reusable if it is good to

understand and less complexity.

Software is said to be flexible if any changes made is

adaptable, the ability of a design to be adapted to provide

functionally related capabilities.

Understandability is directly related to the complexity of the

design structure. Good design of a package and classes tends to

be more understandable.

Functionality defines the responsibilities assigned to the classes

and packages. Packages having too much functionality are

difficult to understand and maintain.

Extendibility allows for the incorporation of new requirements

in the design, more flexibilities are tends to be more extendible.

Effectiveness is the ability to achieve the desired functionality

and behavior using object oriented concepts and technique.

3.2 Identifying Object Oriented Attribute

Object oriented concept plays an important role in well-

designed program. The designed properties of abstraction,

encapsulation, polymorphism, coupling, cohesion are

frequently used as being representative of design quality

characteristics in both structural as well as object-oriented

development. Packaging of classes and method is an important

role of the programmer’s in object-oriented design. In this

context, the need for optimized packaging is getting more and

more importance.

The definition of key object-oriented terms for metrics are

given as follows

 Cohesion – The degree to which the methods with in

a class are related to one another.

 Coupling – Object X is coupled to Object Y if and

only if X sends a message to Y.

 Encapsulation – class X is said to be encapsulated if

the methods and attribute of the class is tied

together.

Design Quality

Attributes

Object Oriented

Design Properties

Object Oriented

Design Metrics

Open Source Object

Oriented Project

Extracting Data from

Projects through

Automated Tool

Validated Metric in

package level

Analysis of metrics

through SPSS

Figure1. QMpOOD Model

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

41

 Abstraction – the percentage of private properties of

the class, higher the percentage of private properties

higher the abstraction is.

 Polymorphism – The ability of an object to became

many different form the lower the value of WMC

more the class is polymorphic.

3.3 Suite of Package level metrics for object-

oriented design

We now present the definition of the package level metrics

used for validation

 Number of classes in a package

Average number of classes (NOCLavg) in a package

is defined as

 𝑃𝑖
𝑛
𝑖=1

𝑛

Where pi is the number of classes in package i

NOCLavg is the average number of classes in the package, large

number of classes in the package indicates that the package is

heavily loaded hence may be difficult to maintain, where as the

package, which are, having very few classes implies that the

package is doing nothing and need to be restructured.

 Number of statements in a package

Average number of statements (NOSAvg) in a

package is defined as

 𝑁𝑂𝑆𝑖
𝑛
𝑖=1

𝑛

Where, NOS I is the number of statements in a package i, N is

the number of classes in a package.

NOSAvg can be calculated by counting the Number of

statements in a package. This is the total number of statements

in the package and the number of statements for each class

defined in the package. Large the number of statements in a

package indicates that the package is more stable.

 Weighted method per class in a package

Average number of WMC of classes (WMCAvg) in a

package i is defined as

 𝑀𝑖
𝑛
𝑖=1

𝑛

Where Mi is the count of the number of methods in classes in

package i.

WMCAvg can be calculated as counting the number of methods

in a specific package dividing by the number of classes in

package. WMC can be used as a predictor of how much time

and effort is required to develop and maintain the class. A large

value of WMC will have a great impact on the children of the

class. Package with large WMCAvg value limit the possibility

of reuse. High number of average method in a package can be

an indicator that the package is doing much, hence testability

and maintainability is difficult.

 Lack of cohesion of methods (LCOMavg)

Average number of Lack of cohesion of methods of classes

(LCOMavg) in a package I is defined

1

𝐼𝑁𝑆𝑇
 ∗ 𝑁𝑢𝑚𝑟𝑒𝑓 −𝑊𝑚𝑐 𝑛

𝑖=1 /(1−𝑊𝑚𝑐))

𝑛

Where, Numref is the sum of the number of attribute

references in each of the methods in the class

 Inst is the number of instance variables defined in the class.

Wmc is the number of methods in the class.

The LCOMavg value was calculated for each class by dividing

the number of classes in a package. This version of LCOM has

value in the range 0 to 2.Lower values are better any value over

1 should be viewed as indicator of poor code. Effective object-

oriented designs maximize cohesion in order to promote

encapsulation. A large number of LCOM implies that the class

is attempting to model more than a single concept and thus

may need to be decomposed into several classes.

 Coupling Between Object(CBOavg)

Average number of Coupling between object (CBOavg) in a

package is defined as

Let Ai be the set of classes which class I references

and Bi be the set of classes which references class i.

 A i∩B i 𝑛
𝑖=1

𝑛

The more independent a class is, the easier it is to reuse it in

another application. The large number of couplings the higher

the sensitivity of changes would have to other parts of the

design, and therefore maintenance is more difficult. High CBO

values for a class suggest that it will be difficult to reuse as it

indicates that the package within the classes is too dependent

on the other class.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

42

 Response for class (RFCavg)

Average number of Response for class in a

package is defined as

 NOMT +EXT𝑛

𝑖=1

𝑛

3.4 Mapping of Object-Oriented design

principle with metrics

Where, NOMT is the number of method declared in the class

and EXT is the number of methods external to the class.

Response for class was calculated by totaling the number of

methods declared in the class and the number of methods

external to the class called from code within the class.

i.e.NOMT +EXT.

A high value for RFC indicates a class that is more complex

and therefore more difficult to test and maintain.

 Number of packages imported by class (PackAvg)

Average Number of packages imported by class (Packavg) is

defined as

 𝑃𝑎𝑐𝑘𝑖𝑚𝑝𝑛

𝑖=1

𝑛

Where, Packimp is the Number of packages imported by this

class. Classes that import a large number of packages become

more difficult to maintain due to this interdependencies

Quality
Attribute

Object Oriented Design Principle

Functionality Cohesion Coupling Polymorphism Complexity Design Size Abstraction Encapsulation Inheritance

Reusability LCOMavg RFCavg,EXTavg,
PACKavg,CBOav

g

 WMCavg
NOCLavg
NOSavg

Flexibility RFCavg,EXTavg,
PACKavg,CBOav

g

RFCavg
WMCavg

 WMCavg,

LCOMavg

Understandabilit
y

LCOMavg RFCavg
WMCavg

RFCavg

LCOMavg

WMCavg
NOCLavg
NOSavg

WMCavg,

LCOMavg
WMCavg,

LCOMavg
WMCavg

Functionality LCOMavg RFCavg
WMCavg

 WMCavg
NOCLavg
NOSavg

Extendibility RFCavg,EXTavg,
PACKavg,CBOav

g

RFCavg
WMCavg

 WMCavg,

LCOMavg
 NOCLavg

Effectiveness RFCavg
WMCavg

 WMCavg,

LCOMavg
WMCavg,

LCOMavg
NOCLavg

Table 1 Mapping of object oriented design principle with Metrics

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

43

3.5 Mapping of Object-Oriented design principle

with Quality Attributes

Table 2 summarizes the design metrics and influence of each

of the design properties on the quality attribute. The reviewed

information indicates that the cohesion property has a

significant influence on reusability, understandability and

functionality. Design size metrics is viewed to promote

reuability, understandability and functionality. Low coupling

and high cohesion is considered good for reusability. Low

upling with High Polymorphism and high encapsulation

increases flexibility. Understandability is directly infuenced by

complexity, abstraction, design size, polymorphism and

cohesion. High abstraction, large design size and high

complexity has adversely influenced understandability. The

quality attribute effectiveness is directly influence by higher

abstraction, encapsulation, polymorphism and inheritance.

Interpretation of NOSavg Metrics

Nosavg metric is used to count the average number of

executable statement in a package. Very less number of

statement indicates that the package is doing nothing. After

analyzing all the three projects we observed that JEdit has

some of the classes in a package having very few executable

statements (minimum of 6 statements). This indicates that the

functionality defined in the package is not uniformely

distributed. Very large number of statement is also not good

as it indicates that the package is too overloaded (in case of

FreeCS maximum of 5079 statements) hence difficult to

understand and maintain.

Interpretation of WMCavg Metrics

WMCavg is the design size metrics. High WMC value increases

reusability, and will decrease the understandability of the

project. Some of the classes in JEdIT projects has average wmc

value 1 which indicates the poor reusability. There may be

chance of improvement by merging these classes with some

other classes with in the same package without affecting the

LCOM values, that is without affecting the encapsulation of

the classses. FreeCS is having High Lcom value which is the

indication of poor understandability.

Interpretation of LCOMavg Metrics

LCOMavg metric influences the quality factor such as

encapsulation and abstraction , high lcom value is a serious

issue as it indicates the poor encapsulation. Among all the three

projects FreeCS has the highest Average Lcom value at

package level indicating poor encapsulation. It may introduce

possibility of error in case of reuse of packages in

development

Object Oriented Design
Principle

Metrics

Coupling RFCavg,EXTavg,Packavg,CBOavg

Cohesion LCOMavg

Design Size WMCavg, NOCLavg, NOSavg

Polymorphism RFCavg, WMCavg

Abstraction WMCavg, LCOMavg

Inheritance DITavg,NOCavg

Complexity WMCavg,NCPavg,RFCavg,LCOMavg

Encapsulation WMCavg, LCOMavg

Table2. Mapping of Metrics Quality Attribute

Site Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 2 8.57 6.51 3.09

JEdit 37 1 26.14 5.98 4.57

FreeCS 17 2 69 12.34 15.37

Site Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 7 88.11 50.47 41.27

JEdit 37 6.33 240 56.33 47.30

FreeCS 17 47 5079 1173.35 1389.88

4. RESULTS

To validate the package level metrics we have taken three

large opensource projects[9][10][11] namely Llamachart,

JEDIT and FreeCS . below is the statistics and the

interpretation of individual metrics taken with the open

sourse projects. After that we have found the comparison of

design size metrics (WMCavg , NOSavg and NOCLavg)

with other metrics (CBOavg, RFCavg, LCOMavg and

PCkavg) using JFree chart. The analysis has been done

using SPSS 10.0.

Table 3 SUMMARY SATISTICS FOR NOSavg

Table 4 SUMMARY SATISTICS FOR WMCavg

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

44

Interpretation of CBOavg Metrics

CBOavg is to count the number of classes that is coupled with

other classes in a package. There can be high coupling

between classes in a package but the package may have low

coupling between other packages in a system. Low coupling is

desirable as it increases the maintainability, reusability and

understandability.

Amongst the three projects Llama chart is the best in quality(in

case of maintainability, reusability and understandability)

having low coupling, minimum of 2.44 and maximum of 8.5.

Next is the Jedit with minimum of 0 and maximum of 12.59.

In FreeCS project the packages are more dependent as it is

having very high coupling with a minimum of 8 and maximum

of 416 indicating that the system is difficult to maintain and

reuse.

Interpretation of RFCavg Metrics

RFCavg is to count the average number of sum of local methods

and methods called by local methods in a package. The data

from all the projects except FreeCS suggest that most of the

classes in a package invoke a small number of methods

indicating high encapsulation hence increasing

understandability and maintainability.

Interpretation of NOCLavg Metrics

The NOCLavg metric is to count the number of classes in a

package,. Very few number of classes in a package suggest that

the package need to merge with other packages without

affecting the CBO, RFC and LCOM. In JEDIT and FreeCS the

classes is not uniformely distributed amon the package. Some

package has large number of classes as seen in JEDIT and

FreeCS(maximum of 231 and 56 number of classes) .Packages

having very large number of classes(say more than 50) are

difficult to understand and maintain.

5. ANALYSIS AND DISCUSSION

In this section we present the inter relationship of various

metrics for the FreeCS project

.

SITE Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 2.92 31.11 19.18 13.22

JEdit 37 2 88 19.97 15.1

FreeCS 17 28 1607 350.05 447.97

SITE Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 2.44 8.50 5.08 2.51

JEdit 37 0 12.59 4.48 3.08

FreeCS 17 8 416 99.25 121.62

Site Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 0.1 0.46 0.34 0.16

JEdit 37 0 1.49 0.24 0.27

FreeCS 17 0.02 15.68 3.92 4.39

Table 7 SUMMARY SATISTICS FOR RFCavg

SITE Number

Of

Packages

Min Max Mean Std.Dev

Llama

Chart

4 2 13 7.75 4.57

JEdit 37 1 231 33.13 46.27

FreeCS 17 1 56 11.7 12.97

Figure 2 Relationship of design size metrics (NOSavg) with coupling and

cohesion metrics

Table 5 SUMMARY SATISTICS FOR LCOMavg

Table 6 SUMMARY SATISTICS FOR CBOavg

Table 8 SUMMARY SATISTICS FOR NOCLavg

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

45

Figure 2 shows the distribution point of NOSavg metric with

other metric ie; PCKavg, WMCavg, LCOMavg, CBOavg, RFCavg

and EXTavg. The relationship between NOSavg metric with the

PCKavg shows very high fluctuation of PCKavg when Number

of executable statements is between 0-200. The PCKavg

becomes more stable when NOSavg has increased to over 200.

The similar nature is also observed with the WMCavg which is

unstable between 0-200 NOS but becomes more stable when

NOSavg increases. The LCOMavg metric goes down to negative

as the NOSavg increased and there is high flutuation between 0-

200 NOS. The CBOavg metric becomes stable when NOS

increases above 300. This means that the class has more

number of executable statements which are capable of

operating seperately without referencing other classes. There is

a linear relationship as shown with RFCavg. The relationship

with EXTavg is almost same as that of RFCavg As the number of

NOS increases the relationship becomes linear.

nt the

that

Figure 3 shows the comparison of different design size metric

NOCLavg (Average Number of classes) with other metrics ie;

PCKavg, WMCavg, LCOMavg, CBOavg, RFCavg . Relationship

with WMCavg shows that there is a high fluctuation of WMC in

class size 0-10 but as the class size increases, say up to 50

classes the relationship becomes stable. Relationship with

LCOMavg is almost similar to the WMCavg in that as the class

size increases the LCOMavg becomes more stable, but when

the size is more than 50 it becomes little unstable. Relationship

with CBOavg is that the lower the number of classes more the

classes are dependent so as the number of classe increases the

relationship becomes more stable. The same relationship is

shown with the RFCavg, the less the number of classes the

relationship becomes more unstable.

ects we observed that JEdit of the classes in a

package having very few executable statements (min

Figure 4 shows the relationship of design size metric WMCavg

with the other metrics ie; PCKavg, LCOMavg, CBOavg, RFCavg

and EXTavg . Relationship with LCOMavg shows that there is

very high fluctuation of LCOMavg when WMC size is 0-10 but

as the size of WMC increases, say up to 60 classes the

relationship becomes more stable and reaching towards 0.

Relationship with CBOavg seems to be unpredicatble.

However as WMC reaches above 20 the relationship becomes

inversely linear. The same relationship is shown with the

RFCavg, EXTavg, and NOSavg.

6. CONCLUSION

In this paper we have calculated the average package level

metrics then a mapping of these metrics with object- oriented

design properties and quality attributes has been done. Finally

these metrics have been validated upon three open source

projects.

After interpretation of all metrics it was observed that metrics

for FreeCs had the maximum coefficient of variation (NOSavg -

118%, WMCavg – 124% , CBOavg – 122%, LCOMavg – 112%,

RFCavg – 128%) reflects inconsistency among the samples

within the group and hence we chose this project for analysis

and discussion in section 5. It was further observed that most of

the metrics value stablized when the number of classes in a

package exceeds 200.

We conclude that the prediction or outcome of FreeCs software

is far away from standards. Therefore this software should be

re-evaluated and corrected for better results. Hence we can

conclude that well formulated metrics can be used as prediction

tools for software quality.tes that the functionality defined

in the p

ackage nt is also not good as it

Figure 4 Relationship of WMCavg with Coupling and Cohesion

metrics

Figure 3 Relationship of NOCLavg with Coupling and Cohesion metrics

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

46

7. REFERENCES

[1] B. Henderson-Sellers and J.M. Edwards, “Books Two of

Object oriented Knowledge : The Working Object”,

Prentice-Hall Sydney, 1994.

[2] B. Kitchenham and S.L. Pfleeger, “Software Quality: The

Elusive Target, “IEEE Software vol. 13, no. 1, pp. 12-21,

s1996.

[3] E. Arishlom, L.C. Briand., Foyen, “A Dynamic coupling

measures for Object Oriented Software”, IEEE Trans. On

Software Engineering, 30, 8(2004) 491-506.

[4] F. Brotoeabreu, “The MOOD Metrics Set”, in Proc.

ECOOP 95 Workshop Metrics, 1995.

[5] G.R. Dormey “A model for Software Product Quality, “

IEEE Trans. Software Eng., vol 21, no. 2, pp. 146-162,

Feb. 1995.

[6] G.R. Dormey , “Cornering the Chimer, “IEEE Software,

vol. 13, no. 1, pp. 33-43, 1996.

[7] H.Kabaili, R.K. Keller and F.Lustman, “Cohesion as

changeability indicator in object-Oriented System”, in

Proc. Fifth European Conf. Software Maintenance and

Reengineering, 2001.

[8] H. S. Chae, Y.R. Kwon and D.H. Bae, “Improving

Cohesion Metrics for Classes by considering Dependent

Instanse Variables“ , IEEE Trans on Software

Engineering, 20, 6 (1994), 476-493.

[9] Source code of freeCS is taken from the URL

http://sourceforge.net/projects/FreeCS

[10] Source code of Llama chart is taken from URL

http://sourceforge.net/projects/Llamachart

[11] Source code of Jedit is taken from URL

http://sourceforge.net/projects/jedit

[12] I. Sommerville. “Software Engineering” (4th edition),

Addison-Wesley, 1992.

[13] J.A. McCall, P.K. Richard, and G.F. Walters, “Factors in

software Quality”, Vol 1,2 and 3, AD/A-049-014/015/055

Nat’1 Tech. Information Service, Springfield, Va., 1977.

[14] J.Bansiya, C.G.Davis , “A Hierarchical Model for Object-

Oriented Design Quality assessment,” IEEE Trans. On

Software Engineering , vol 28. no 1, 2002

[15] J. M. Bieman and B.K. Kang “Cohesion and Reuse in an

Object-Oriented System”, in Proc. Symp. Software

Reliability, 1995, pp.259-262

[16] J. Vincent, A. Walters, and J.Sinclair, Software Quality

Assurance, Vol. 1. Prentice Hall, 1988.

[17] K. EL. Emam, S. Benlarbi, N. Goel, and S.N.Rai, “The

Confounding effect of the Class size on the Validity of

Object-Oriented Metrics”, IEEE Trans. On Software

Engineering, 27, 7,(2001).

[18] L.C.Briand, J.W. Daly and J.K. Wust, “A unified

Framework for Cohesion Measurement in Object-

Oriented Systems” Empirical Software eng, 1, 1 (1998),

65-117.

[19] L.C.Briand, “Empirical Investigation of Quality Factors in

Object-Oriented Software”, Empirical studies of software

Engineering, ottawa, Canada, 1999.

[20] L.C. Briand and J.K.Wust , “Modeling Development

effort in Object-Oriented system using Design properties”,

IEEE Trans on Software Enginerring , 27, 11(2001), 963-

986

[21] M. Alshayeb and Li. W, “An empirical Validation of

Object oriented Metrics in two different Iterative Software

1043-1049

[22] M. Hitz and B.Montazeri, Correspondance, Chidamber

and Kemerer’s Metric Suite. “ A Measurement Theory

Prespective”, “IEEE Trans. On Software Engineering, 22,

4 (1996), 267-271

 [23] M. Lorenz, and J.Kidd, “Object oriented software

Metrics”, A practical Guide, 1994

[24] N.I. Churcher and M.J. Sheppered, Comments on “A

Metric suite for Object-Oriented Design”, IEEE Trans. On

Software engineering, 21 (1995), 263-265

[25] Robert C. Martin , agile Software Development, Pearson

Education Inc, 2003.

[26] R. Pressman. Software Engineering a Practitioner’s

Approach” 3rd edition), McGraw-Hill, 1992

[27] S.R. Chidamber and C.F. Kemerer, “Towards a Metric

Suite for Object-Oriented Design”, in Proc Sixth

OOPSLA Conf., (1991), 197-211.

[28] S.R. Chidamber and C.F. Kemerer, “A Metric Suite of

Object-Oriented design”, IEEE Trans on Software

Engineering, 20, 6(1994), 476-493

[29] V.R Basil, LC.Briand,WL.Melo, “A Validation of Object

oriented Design as Quality Indicators”, IEEE Trans on

Software Engineering, Vol. 22, No.10, 1996, pp. 751-761

[31] Vinay,Bhattacherjee and Sandeep, “An Analysis Of

Dependency of Coupling On Software Defects”, ACM

SIGSOFT Software Engineering Notes”, January 2012

Volume 37 Number 1.

[32] W. Humphery. “Managing the Software Process” , SEI

Series in Software Engineering, Addison-Wisley, 1989.

indicates l, LC.Briand,WL.Melo, “A Valire

Engineering Noteanuame 37 Number 1.

