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ABSTRACT 

Floating  point  arithmetic  is  widely  used  in  many  

areas,  especially  scientific  computation  and  signal  

processing. For  many  signal  processing,  and  graphics  

applications,  it  is  acceptable  to  trade  off  some  

accuracy  (in  the  least  significant  bit  positions)  for  

faster  and  better  implementations. However, most of 

these modern applications need higher frequency or low 

latency of operations with minimal area occupancy. In this 

paper we describe an implementation of high speed IEEE 

754 double precision floating point multiplier using tiling 

technique and targeted for Xilinx Virtex-6 Field 

Programmable Gate Array. Verilog is used to implement 

the design. The design achieved 436.815 MFlops with 

latency of seven clock cycles which is 97% fast compared 

to Xilinx floating point multiplier core. It handles the 

overflow, underflow cases and truncation rounding mode. 
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1. INTRODUCTION 

In the majority of digital signal processing (DSP) 

applications the critical operation is the multiplication. 

Floating  Point  Arithmetic  is  widely  used  in  many  

areas,  especially  scientific  computation  and  signal  

processing. The  advantage  of  floating-point  

representation  over  fixed-point  and  integer  

representation  is  that  it  can  support  a  much  wider  

range  of  values. The  greater  dynamic  range  and  lack  

of  need  to  scale  the  numbers  makes  development  of  

algorithms  much  easier. The IEEE has standardized the 

computer representation for binary floating-point numbers 

in IEEE 754. The  IEEE  floating  point  standard  defines  

both  single  precision  (32-bit)  and  double  precision  

(64-bit)  formats. 

The IEEE Standard 754 compliant floating-point adder/ 

multiplier can be implemented using field programmable 

gate arrays [1]. The use of FPGA’s permits fast and 

accurate quantitative evaluation of a variety of circuit 

design tradeoffs for addition and multiplication. FPGA’s 

also permit accurate assessment of the area and time costs 

associated with various features of the IEEE floating-point 

standard, including rounding and gradual underflow. The  

design was partitioned over 4 Actel A1280 FPGA’s, with a 

3-stage pipeline and a cycle time of 245 ns. Addition has 3 

cycle latency, while a multiplication requires 6 cycles: 1 

for the exponent stage, 4 for the significand stage, and 1 

for the normalization stage. But latency for multipliers was 

not reduced due to the need of 24 bit multiplier.  

Single precision floating point arithmetic units are 

implemented on the Splash-2 architecture, the size of the 

floating point arithmetic units would increase between 2 to 

4 times over the 18 bit format. A multiply unit would 

require two Xilinx 4010 chips and an adder/subtractor unit 

broken up into four 12-bit multipliers, allocating two per 

chip. A 16x16 bit multiplier was the largest parallel integer 

multiplier that could fit into a Xilinx 4010 chip. When 

synthesized, this multiplier used 75% of the chip area [2]. 

Floating point operations are hard to implement on FPGAs 

because of the complexity of their algorithms. On the other 

hand, many scientific problems require floating point 

arithmetic with high levels of accuracy in their 

calculations. The FPGA implementations of addition and 

multiplication for IEEE single precision floating-point 

numbers trade-off area and speed for accuracy. The adder 

is a bit-parallel adder, and the multiplier is a digit-serial 

multiplier. Prototypes have been implemented on Altera, 

and peak rates of 7MFlops for 32-bit addition and 

2.3MFlops for 32-bit multiplication have been obtained 

[3]. 

A group of IEEE 754-style floating point units targeted at 

Xilinx VirtexII FPGA. Special features of the technology 

are taken advantage of to produce optimized components. 

Single-precision Pipelined designs results the latency of 

1OOMHz [4].  

High-precision floating-point applications on 

reconfigurable hardware require large multipliers [5]. Full 

multipliers are the core of floating-point multipliers. 

Embedded multipliers and adders in the DSP blocks of 

recent FPGAs are used for the automate generation of 

reconfigurable multipliers.  

An efficient IEEE 754 single precision floating point 

multiplier has been implemented and targeted for Xilinx 

Virtex-5 FPGA [6].The multiplier handles the overflow 

and underflow cases but rounding is not implemented. The 

design achieves 301 MFLOPs with latency of three clock 

cycles. The multiplier was verified against Xilinx floating 

point multiplier core.  

http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Integer_%28computer_science%29
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The double precision floating point multiplier presented 

here is based on IEEE-754 binary floating standard. We 

have designed a high speed double precision floating point 

multiplier using tiling technique. The design is 

implemented in Xilinx Vertex-6 FPGA using Verilog 

language. It operates at a very high frequency of 436.815 

MFlops and occupies 433 slices. It handles the overflow, 

underflow cases and truncation rounding mode. 

2. DOUBLE PRECISION FLOATING-

POINT FORMAT 

Double  precision  is  a  computer  numbering  format  that  

occupies  two  adjacent  storage  locations  in  computer  

memory.  A  double  precision  number,  sometimes  

simply  called  a  double,  may  be  defined  to  be  an  

integer,  fixed  point,  or  floating  point. The IEEE 754 

standard defines a double as 

 Sign  bit:  1  bit 

 Exponent  width:  11  bits 

 Significand  precision:  53  bits  (52  explicitly          

stored) 

The  significand  or  coefficient  or  mantissa  is  the  part  

of  a  floating-point  number  that  contains  its  significant  

digits.  Exponentiation  is  a  mathematical  operation,  

written  as  an,  involving  two  numbers,  the  base  a  and  

the  exponent  (or  power)  n.  When  n  is  a  positive  

integer,  exponentiation  corresponds  to  repeated  

multiplication. The Double Precision Floating-Point 

Format is shown in figure 1. 

 

Figure 1: Double Precision Floating-Point Format 

 

3. IMPLEMENTATION OF HIGH 

SPEED DOUBLE PRECISION 

FLOATING POINT MULTIPLIER 

The high speed double precision floating point multiplier 

performs multiplication operation. The Black box view and  

the block diagram of high speed double precision floating 

point multiplier (mult) are shown in figures 2 and 3 

respectively. It consists of seven sub operations i.e. sign bit 

calculation, exponent addition, placing the decimal point in 

the significant, multiplying the mantissa by using tiling 

technique, normalization, underflow/overflow and 

rounding. The input signals to the top level module are  

Clk, Rst, Enable, Opa (64 bits), and Opb (64 bits), where 

as the output signals are Fpout (output from operation, 64 

bits), Underflow, and Overflow. 

An 11-bit ripple carry adder is used to add the two input 

exponents. The black box view of adder module (adder1) 

is shown in Figure 4. .  

Figure 2: Black box view of   high speed double 

Precision floating point multiplier 

Figure 3: Block diagram of high speed double precision floating point multiplier (mult). 

1 - bit sign 11-bits exponent 52-bits mantissa 

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Positive_integer
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Figure 4: Black box view of adder module 

The mantissa of operand A and  operand B, and the leading 

‘1’ (for normalized numbers) are stored in the 53-bit 

registers (mul_a) and (mul_b) respectively. Multiplying all 

53 bits of mul_a by 53 bits of mul_b would result in a 106-

bit product. Depending on the synthesis tool used, this 

might be synthesized in different ways that would not take 

efficient advantage of the multiplier resources in the target 

device.  53 bit by 53 bit multipliers are not available in the 

most popular Xilinx  and Altera  FPGAs, so the multiply 

would be broken down into smaller multiplies and the 

results would be added together to give the final 106-bit 

product.  Instead of relying on the synthesis tool to break 

down the multiply, which might result in a slow and 

inefficient layout of FPGA resources, the module 

(fpu_mul) breaks up the multiply into smaller 24-bit by 17-

bit multiplies. The Xilinx Virtex6 Device contains 

DSP48E slices with 25 by 18 twos complement 

multipliers, which can perform a 24-bit by 17-bit unsigned 

multiply. 

The products are added together, with the appropriate 

offsets based on which part of the A and B arrays they are 

multiplying.  For example, product_b is offset by 17 bits 

from product_a when adding product_a and product_b 

together.  Similar offsets are used for other product when 

adding them together. The summation of the products is 

accomplished by adding one product result to the previous 

product result instead of adding all products together in 

one summation.  The goal is to take advantage of the 

adders in the Virtex6 DSP48E slices that follow each 24 by 

17 multiply block.  

 

 

4. FLOATING POINT 

MULTIPLICATION ALGORITHM 

The normalized floating point numbers have the form  

Z = (-1S) * 2 (E - Bias) * (1.M). To multiply two floating 

point numbers the following procedure is adopted. 

1. Obtaining the sign; i.e. Sa xor Sb 

2. Adding the exponents; i.e. (E1 + E2 – Bias) 

3. Multiplying the significand; i.e. (1.M1*1.M2) 

4. Placing the decimal point in the significant result 

5. Normalizing the result; i.e. obtaining 1 at the MSB of 

the results significant 

6. Rounding the result to fit in the available bits 

7. Checking for underflow/overflow occurrence 

Consider a floating point representation similar to the 

IEEE 754 double precision floating point format, but with 

a reduced number of mantissa bits to 8 (i.e. consider  

mantissa bits from 51 to 44, and the remaining bits treated 

as zeros) while still retaining the hidden ‘1’ bit for 

normalized numbers. The equations for multiplier and 

multiplicand are  

A = (-1Sa) * 2 (Ea - Bias) * (1.Ma),  

B = (-1Sb) * 2 (Eb - Bias) * (1.Mb). 

The notation of multiplication AB is  

AB = [(-1Sa) * 2 (Ea - Bias) * (1.Ma)] * [(-1Sb) * 2 (Eb - Bias) * 

(1.Mb)]. 

This can be reduced to  

AB = (-1Sa+Sb)   2 (Ea+Eb - Bias)   (1.Ma *1.Mb).            

5. MULTIPLYING THE MANTISSA BY 

USING TILING TECHNIQUE 

The mantissa multiplier will be built using the tiling 

technique. Let us consider our multiplication operands A 

and B on p and q bits respectively. Multiplication of 

multiplier (A) and multiplicand (B) can be done by  

efficient use of the DSP blocks in FPGAs. The technique 

consists in tiling a p×q rectangular board using a minimal 

number of such multipliers. Starting from the tilled board, 

the circuit equation is obtained using a simple rewriting 

technique 

 

                      (a) Xilinx                                                                              (b) Tiling Technique 

Figure 5: 53-bit multiplication using Virtex-6 DSP48E 
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Tiling is a technique for efficient use of the DSP resources 

in Field Programmable Gate Array.  

DSP blocks in the Xilinx core are shown in figure 5(a).  

Figure 5(b) shows the 24*17 Virtex-6 DSP48E signed 

multiplier. This supports rectangular tiles in order to 

optimize the use of multipliers and adders within the DSP 

blocks. Figure 5(b) shows the eight Virtex-6 multiplier 

tiles denoted by M0 to M8. Each multiplier tile performs the 

multiplication of the order 24×17 bits . 

Each rectangle represents the product between a range of 

bits from A and B. i.e. M1 = a[23:0] × b[16:0], M2 = 

a[23:0] × b[33:17], M3 = a[16:0] × b[52:34], M4 = a[33:17] 

× b[52:34], M5 = a[52:34] × b[52:41], M6 = a[52:34] × 

b[40:24], M7 = a[52:41] × b[23:0], M8 = a[40:24] × 

b[23:0], and M0 = a[33:24] × b[33:24]. For each rectangle, 

A and B axis represents the number of bits of A and B 

respectively. A rectangle has a weighted contribution to 

the final product, the weight being equal to the sum of its 

upper right corner axis range. The tiling technique 

multiplication equation is  

 AB =  20+0 M1   +   20+17M2  +   20+34M3   +   217+34M4   +  

            234+41M5+234+24M6 + 241+0M7 +224+0M8 +224+24 M0.                                             

Rewriting the above equation as 

AB = ( M1   +  217M2  +  234M3  +  251M4 )   S0 

          + 224 (M8 + 217M7 + 234M6 + 251M5)   S1   

          + 248 M0           …………………………………. (1) 

Multiply the each sub tile and get product length of all tiles 

as 

M1 = a[23:0] × b[16:0] = 41 product bits 

M2 = 41 bits, 

M3 = 36 bits, 

M4 = 36 bits, 

M5 = 31 bits, 

M6 = 36 bits, 

M7 = 36 bits, 

M8 = 41 bits, and 

M0 = 20 bits. 

 

Figure 6: Black box view of combinational multiplier 

module 

The black box view of combinational multiplier module is 

shown in Figure 6. M1, M2, M3 and M4 rectangles are 

added with each right shift of 17 bits and sum is stored in 

S0 register which is the length of 87 bits shown in figure 

7(a). 

 

Figure 7(a): Output of S0 register (Shift and Sum of M1, 

M2, M3, M4 Multiplier tiles)  

M8, M7, M6 and M5 rectangles are added with each right 

shift of 17 bits and sum is stored in S1 register which is the 

length of 82 bits shown in below figure 7(b). Finally S0 

and S1 are added to M0 with the right shift of 24 bits which 

gives final output with a length of 106 bits as shown in 

figure 7(c). 

 

 

 

 

 

 

 

 

 

 

Figure 7(b): Output of S1 register (Shift and Sum of 

M5, M6, M7, M8 Multiplier tiles)  

Equation 1 is used to make full use of the Virtex-6 internal 

DSP adders. Due to the fixed 17-bit shifts between the 

operands, each sub-sum S0 and S1 may be computed 

entirely using DSP block resources. So in this algorithm 

the number of adders required for adding partial products 

are reduced to three (i.e. addition of S0, S1, M0). 

6. UNDERFLOW/OVERFLOW 

DETECTION 

Overflow/underflow means that the result’s exponent is 

too large/small to be represented in the exponent field. The 

exponent of the result must be 11 bits in size, and must be 

between 1 and 2046 otherwise the value is not a 

normalized one. An overflow may occur while adding the 

two exponents or during normalization. Overflow due to 
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exponent addition may be compensated during subtraction 

of the bias, resulting in a normal output value (normal 

operation). An underflow may occur while subtracting the 

 

   Figure 7(c): Final output (Shift and Sum of S0 and S1 registers, Multiplier tile M0) 

 

bias to form the intermediate exponent. If the intermediate 

exponent < 0 then it’s an underflow that can never be 

compensated. If the intermediate      exponent = 0 then it’s 

an underflow that may be compensated during 

normalization by adding 1 to it. 

When an overflow occurs an overflow flag signal goes 

high and the result turns to ±Infinity (sign determined 

according to the sign of the floating point multiplier 

inputs). When an underflow occurs an underflow flag 

signal goes high and the result turns to ±Zero (sign 

determined according to the sign of the floating point 

multiplier inputs).  Denormalized numbers are signaled to 

Zero with the appropriate sign calculated from the inputs 

and an underflow flag is raised. Assume that E1 and E2 are 

the exponents of the two numbers A and B respectively, 

the result’s exponent is calculated by using the equation           

Eresult = E1 + E2 – 1023. 

E1 and E2 can have the values from 1 to 2046, resulting in 

Eresult having values from -1021 (2-1023) to 3069 (4092-

1023), but for normalized numbers, Eresult can only have 

the values from 1 to 2046. Table 1 shows the E result for 

different values of exponent and the effect of 

normalization on it.  

7. FLOW CHART OF HIGH SPEED 

DOUBLE PRECESSION FLOATING 

POINT MULTIPLIER  

The flow chart of high speed double precession floating 

point multiplier is shown in figure 8. 

 

 

             Table 1: Normalization effect on Eresult’s exponent and overflow/underflow detection 

 

         Eresult         Category                                                    Comments 

-1021≤ Eresult 

<0 

Underflow Can’t be compensated during normalization 

Eresult =0 Zero May turn to normalized number during normalization (by adding 1 to it) 

1≤ Eresult <2046 Normalized 

number 

 

May result in overflow during normalization 

2047≤ Eresult Overflow Can’t be compensated 

 

8. SIMULATION RESULTS  

The high speed double precision floating point multiplier 

design based on tiling technique was simulated in 

Modelsim 6.6c and synthesized using Xilinx ISE 13.1i  

 

which was mapped on to Virtex-6 FPGA. The simulation 

results of 64-bit high speed double precision floating point 

multiplier are shown in figure 9. The ‘a’ and ‘b’ are the 

inputs and ‘fpout’ is the output. Table 2 shows the device 

utilization for implementing the circuit on Virtex-6 FPGA.  
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Table 3 shows the Timing Summary of high speed double 

precision floating point multiplier. Table 4 shows the area 

and operating frequency comparison between the High 

Speed Double Precision Floating Point Multiplier, [6] and 

Xilinx Core respectively. 

The whole multiplier was tested against the Xilinx floating 

point multiplier core generated by Xilinx core and  [6].The 

high speed double precision floating point multiplier 

targeting on Virtex-6 xc6vlx75t-3ff484 with a frequency of 

436.815 MHz, area 433 slices, and latency of seven clock 

cycles

.  

Figure 8: Flow chart of high speed double precision floating point multiplier
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Figure 9: Simulation results of high speed double precision floating point multiplier 

Table 2: Device utilization summery of high speed double precision floating point multiplier 

                                  Device utilization summary 

 Logic Utilization Used Available Utilization 

Number of Slice Registers 433 93120 0% 

Number of Slice LUTs 238 46560 0% 

Number of fully used LUT-FF pairs 197 474 41% 

Number of bonded IOBs 197 240 

 

82% 

Number of BUFG/BUFGCTRLs 1 32 3% 

Number of DSP48E1s 

 

9 288 3% 

 

                                         Table 3: Timing Summary of double precision floating point multiplier  

Sl. No. Parameter 

 

Value 

1 Minimum period (ns) 2.274 

2 Maximum Frequency (MHz) 439.696 

3 Minimum input arrival time before clock (ns) 0.947 

4 Maximum output required time after clock (ns) 0.562 
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Table 4: Area and Frequency Comparison between the High Speed Double Precision Floating Point Multiplier, [6] and   

Xilinx Core 

Device parameters  Present Work (Virtex-6) M.Al-Ashrafy, 

A.Salem and 

W.Anis  [6] 

Xilinx Core 

No. of slices 433 604 266 

No. of  Flip flops 197 293 241 

Maximum Frequency (MHz) 436.815 

 

 

301.114   221.484 

 

9. CONCLUSION 

The high speed double precision floating point multiplier 

supports the IEEE 754 binary interchange format, targeted 

on a Xilinx Virtex-6 xc6vlx75t-3ff484 FPGA. It achieves 

436.815 MFLOPs which is 30.9% and 97% fast compared 

to [6] and Xilinx core respectively. This design occupies 

433 slices which is 28% less compared to [6] and 38.6% 

more compared to Xilinx core. In terms of number of used 

flip flops, this design uses 197 flip flops i.e. 32.7% and 

18% less compared to [6] and Xilinx core. This design 

handles the overflow, underflow, and truncation rounding 

mode. 
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