
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

17

FPGA based Implementation of High Speed Double
Precision Floating Point Multiplier with Tiling

Technique using Verilog

Addanki Purna Ramesh
Department of ECE,

Sri Vasavi Engineering
College, Pedatadepalli,
Tadepalligudem, India.

A. V. N. Tilak
Professor of ECE,

V.R.Siddhartha Engineering
College, Kanuru,

Vijayawada,
India.

A.M.Prasad
Professor of ECE,

UCEK,
JNTU,

Kakinada,
India.

ABSTRACT

Floating point arithmetic is widely used in many

areas, especially scientific computation and signal

processing. For many signal processing, and graphics

applications, it is acceptable to trade off some

accuracy (in the least significant bit positions) for

faster and better implementations. However, most of

these modern applications need higher frequency or low

latency of operations with minimal area occupancy. In this

paper we describe an implementation of high speed IEEE

754 double precision floating point multiplier using tiling

technique and targeted for Xilinx Virtex-6 Field

Programmable Gate Array. Verilog is used to implement

the design. The design achieved 436.815 MFlops with

latency of seven clock cycles which is 97% fast compared

to Xilinx floating point multiplier core. It handles the

overflow, underflow cases and truncation rounding mode.

Keywords

Double precision, floating point, Multiplier, Tiling

Technique, FPGA, IEEE-754, Verilog.

1. INTRODUCTION

In the majority of digital signal processing (DSP)

applications the critical operation is the multiplication.

Floating Point Arithmetic is widely used in many

areas, especially scientific computation and signal

processing. The advantage of floating-point

representation over fixed-point and integer

representation is that it can support a much wider

range of values. The greater dynamic range and lack

of need to scale the numbers makes development of

algorithms much easier. The IEEE has standardized the

computer representation for binary floating-point numbers

in IEEE 754. The IEEE floating point standard defines

both single precision (32-bit) and double precision

(64-bit) formats.

The IEEE Standard 754 compliant floating-point adder/

multiplier can be implemented using field programmable

gate arrays [1]. The use of FPGA’s permits fast and

accurate quantitative evaluation of a variety of circuit

design tradeoffs for addition and multiplication. FPGA’s

also permit accurate assessment of the area and time costs

associated with various features of the IEEE floating-point

standard, including rounding and gradual underflow. The

design was partitioned over 4 Actel A1280 FPGA’s, with a

3-stage pipeline and a cycle time of 245 ns. Addition has 3

cycle latency, while a multiplication requires 6 cycles: 1

for the exponent stage, 4 for the significand stage, and 1

for the normalization stage. But latency for multipliers was

not reduced due to the need of 24 bit multiplier.

Single precision floating point arithmetic units are

implemented on the Splash-2 architecture, the size of the

floating point arithmetic units would increase between 2 to

4 times over the 18 bit format. A multiply unit would

require two Xilinx 4010 chips and an adder/subtractor unit

broken up into four 12-bit multipliers, allocating two per

chip. A 16x16 bit multiplier was the largest parallel integer

multiplier that could fit into a Xilinx 4010 chip. When

synthesized, this multiplier used 75% of the chip area [2].

Floating point operations are hard to implement on FPGAs

because of the complexity of their algorithms. On the other

hand, many scientific problems require floating point

arithmetic with high levels of accuracy in their

calculations. The FPGA implementations of addition and

multiplication for IEEE single precision floating-point

numbers trade-off area and speed for accuracy. The adder

is a bit-parallel adder, and the multiplier is a digit-serial

multiplier. Prototypes have been implemented on Altera,

and peak rates of 7MFlops for 32-bit addition and

2.3MFlops for 32-bit multiplication have been obtained

[3].

A group of IEEE 754-style floating point units targeted at

Xilinx VirtexII FPGA. Special features of the technology

are taken advantage of to produce optimized components.

Single-precision Pipelined designs results the latency of

1OOMHz [4].

High-precision floating-point applications on

reconfigurable hardware require large multipliers [5]. Full

multipliers are the core of floating-point multipliers.

Embedded multipliers and adders in the DSP blocks of

recent FPGAs are used for the automate generation of

reconfigurable multipliers.

An efficient IEEE 754 single precision floating point

multiplier has been implemented and targeted for Xilinx

Virtex-5 FPGA [6].The multiplier handles the overflow

and underflow cases but rounding is not implemented. The

design achieves 301 MFLOPs with latency of three clock

cycles. The multiplier was verified against Xilinx floating

point multiplier core.

http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Integer_%28computer_science%29

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

18

The double precision floating point multiplier presented

here is based on IEEE-754 binary floating standard. We

have designed a high speed double precision floating point

multiplier using tiling technique. The design is

implemented in Xilinx Vertex-6 FPGA using Verilog

language. It operates at a very high frequency of 436.815

MFlops and occupies 433 slices. It handles the overflow,

underflow cases and truncation rounding mode.

2. DOUBLE PRECISION FLOATING-

POINT FORMAT

Double precision is a computer numbering format that

occupies two adjacent storage locations in computer

memory. A double precision number, sometimes

simply called a double, may be defined to be an

integer, fixed point, or floating point. The IEEE 754

standard defines a double as

 Sign bit: 1 bit

 Exponent width: 11 bits

 Significand precision: 53 bits (52 explicitly

stored)

The significand or coefficient or mantissa is the part

of a floating-point number that contains its significant

digits. Exponentiation is a mathematical operation,

written as an, involving two numbers, the base a and

the exponent (or power) n. When n is a positive

integer, exponentiation corresponds to repeated

multiplication. The Double Precision Floating-Point

Format is shown in figure 1.

Figure 1: Double Precision Floating-Point Format

3. IMPLEMENTATION OF HIGH

SPEED DOUBLE PRECISION

FLOATING POINT MULTIPLIER

The high speed double precision floating point multiplier

performs multiplication operation. The Black box view and

the block diagram of high speed double precision floating

point multiplier (mult) are shown in figures 2 and 3

respectively. It consists of seven sub operations i.e. sign bit

calculation, exponent addition, placing the decimal point in

the significant, multiplying the mantissa by using tiling

technique, normalization, underflow/overflow and

rounding. The input signals to the top level module are

Clk, Rst, Enable, Opa (64 bits), and Opb (64 bits), where

as the output signals are Fpout (output from operation, 64

bits), Underflow, and Overflow.

An 11-bit ripple carry adder is used to add the two input

exponents. The black box view of adder module (adder1)

is shown in Figure 4. .

Figure 2: Black box view of high speed double

Precision floating point multiplier

Figure 3: Block diagram of high speed double precision floating point multiplier (mult).

1 - bit sign 11-bits exponent 52-bits mantissa

http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Operation_(mathematics)
http://en.wikipedia.org/wiki/Radix
http://en.wikipedia.org/wiki/Positive_integer
http://en.wikipedia.org/wiki/Positive_integer

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

19

Figure 4: Black box view of adder module

The mantissa of operand A and operand B, and the leading

‘1’ (for normalized numbers) are stored in the 53-bit

registers (mul_a) and (mul_b) respectively. Multiplying all

53 bits of mul_a by 53 bits of mul_b would result in a 106-

bit product. Depending on the synthesis tool used, this

might be synthesized in different ways that would not take

efficient advantage of the multiplier resources in the target

device. 53 bit by 53 bit multipliers are not available in the

most popular Xilinx and Altera FPGAs, so the multiply

would be broken down into smaller multiplies and the

results would be added together to give the final 106-bit

product. Instead of relying on the synthesis tool to break

down the multiply, which might result in a slow and

inefficient layout of FPGA resources, the module

(fpu_mul) breaks up the multiply into smaller 24-bit by 17-

bit multiplies. The Xilinx Virtex6 Device contains

DSP48E slices with 25 by 18 twos complement

multipliers, which can perform a 24-bit by 17-bit unsigned

multiply.

The products are added together, with the appropriate

offsets based on which part of the A and B arrays they are

multiplying. For example, product_b is offset by 17 bits

from product_a when adding product_a and product_b

together. Similar offsets are used for other product when

adding them together. The summation of the products is

accomplished by adding one product result to the previous

product result instead of adding all products together in

one summation. The goal is to take advantage of the

adders in the Virtex6 DSP48E slices that follow each 24 by

17 multiply block.

4. FLOATING POINT

MULTIPLICATION ALGORITHM

The normalized floating point numbers have the form

Z = (-1S) * 2 (E - Bias) * (1.M). To multiply two floating

point numbers the following procedure is adopted.

1. Obtaining the sign; i.e. Sa xor Sb

2. Adding the exponents; i.e. (E1 + E2 – Bias)

3. Multiplying the significand; i.e. (1.M1*1.M2)

4. Placing the decimal point in the significant result

5. Normalizing the result; i.e. obtaining 1 at the MSB of

the results significant

6. Rounding the result to fit in the available bits

7. Checking for underflow/overflow occurrence

Consider a floating point representation similar to the

IEEE 754 double precision floating point format, but with

a reduced number of mantissa bits to 8 (i.e. consider

mantissa bits from 51 to 44, and the remaining bits treated

as zeros) while still retaining the hidden ‘1’ bit for

normalized numbers. The equations for multiplier and

multiplicand are

A = (-1Sa) * 2 (Ea - Bias) * (1.Ma),

B = (-1Sb) * 2 (Eb - Bias) * (1.Mb).

The notation of multiplication AB is

AB = [(-1Sa) * 2 (Ea - Bias) * (1.Ma)] * [(-1Sb) * 2 (Eb - Bias) *

(1.Mb)].

This can be reduced to

AB = (-1Sa+Sb) 2 (Ea+Eb - Bias) (1.Ma *1.Mb).

5. MULTIPLYING THE MANTISSA BY

USING TILING TECHNIQUE

The mantissa multiplier will be built using the tiling

technique. Let us consider our multiplication operands A

and B on p and q bits respectively. Multiplication of

multiplier (A) and multiplicand (B) can be done by

efficient use of the DSP blocks in FPGAs. The technique

consists in tiling a p×q rectangular board using a minimal

number of such multipliers. Starting from the tilled board,

the circuit equation is obtained using a simple rewriting

technique

 (a) Xilinx (b) Tiling Technique

Figure 5: 53-bit multiplication using Virtex-6 DSP48E

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

20

Tiling is a technique for efficient use of the DSP resources

in Field Programmable Gate Array.

DSP blocks in the Xilinx core are shown in figure 5(a).

Figure 5(b) shows the 24*17 Virtex-6 DSP48E signed

multiplier. This supports rectangular tiles in order to

optimize the use of multipliers and adders within the DSP

blocks. Figure 5(b) shows the eight Virtex-6 multiplier

tiles denoted by M0 to M8. Each multiplier tile performs the

multiplication of the order 24×17 bits .

Each rectangle represents the product between a range of

bits from A and B. i.e. M1 = a[23:0] × b[16:0], M2 =

a[23:0] × b[33:17], M3 = a[16:0] × b[52:34], M4 = a[33:17]

× b[52:34], M5 = a[52:34] × b[52:41], M6 = a[52:34] ×

b[40:24], M7 = a[52:41] × b[23:0], M8 = a[40:24] ×

b[23:0], and M0 = a[33:24] × b[33:24]. For each rectangle,

A and B axis represents the number of bits of A and B

respectively. A rectangle has a weighted contribution to

the final product, the weight being equal to the sum of its

upper right corner axis range. The tiling technique

multiplication equation is

 AB = 20+0 M1 + 20+17M2 + 20+34M3 + 217+34M4 +

 234+41M5+234+24M6 + 241+0M7 +224+0M8 +224+24 M0.

Rewriting the above equation as

AB = (M1 + 217M2 + 234M3 + 251M4) S0

 + 224 (M8 + 217M7 + 234M6 + 251M5) S1

 + 248 M0 …………………………………. (1)

Multiply the each sub tile and get product length of all tiles

as

M1 = a[23:0] × b[16:0] = 41 product bits

M2 = 41 bits,

M3 = 36 bits,

M4 = 36 bits,

M5 = 31 bits,

M6 = 36 bits,

M7 = 36 bits,

M8 = 41 bits, and

M0 = 20 bits.

Figure 6: Black box view of combinational multiplier

module

The black box view of combinational multiplier module is

shown in Figure 6. M1, M2, M3 and M4 rectangles are

added with each right shift of 17 bits and sum is stored in

S0 register which is the length of 87 bits shown in figure

7(a).

Figure 7(a): Output of S0 register (Shift and Sum of M1,

M2, M3, M4 Multiplier tiles)

M8, M7, M6 and M5 rectangles are added with each right

shift of 17 bits and sum is stored in S1 register which is the

length of 82 bits shown in below figure 7(b). Finally S0

and S1 are added to M0 with the right shift of 24 bits which

gives final output with a length of 106 bits as shown in

figure 7(c).

Figure 7(b): Output of S1 register (Shift and Sum of

M5, M6, M7, M8 Multiplier tiles)

Equation 1 is used to make full use of the Virtex-6 internal

DSP adders. Due to the fixed 17-bit shifts between the

operands, each sub-sum S0 and S1 may be computed

entirely using DSP block resources. So in this algorithm

the number of adders required for adding partial products

are reduced to three (i.e. addition of S0, S1, M0).

6. UNDERFLOW/OVERFLOW

DETECTION

Overflow/underflow means that the result’s exponent is

too large/small to be represented in the exponent field. The

exponent of the result must be 11 bits in size, and must be

between 1 and 2046 otherwise the value is not a

normalized one. An overflow may occur while adding the

two exponents or during normalization. Overflow due to

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

21

exponent addition may be compensated during subtraction

of the bias, resulting in a normal output value (normal

operation). An underflow may occur while subtracting the

 Figure 7(c): Final output (Shift and Sum of S0 and S1 registers, Multiplier tile M0)

bias to form the intermediate exponent. If the intermediate

exponent < 0 then it’s an underflow that can never be

compensated. If the intermediate exponent = 0 then it’s

an underflow that may be compensated during

normalization by adding 1 to it.

When an overflow occurs an overflow flag signal goes

high and the result turns to ±Infinity (sign determined

according to the sign of the floating point multiplier

inputs). When an underflow occurs an underflow flag

signal goes high and the result turns to ±Zero (sign

determined according to the sign of the floating point

multiplier inputs). Denormalized numbers are signaled to

Zero with the appropriate sign calculated from the inputs

and an underflow flag is raised. Assume that E1 and E2 are

the exponents of the two numbers A and B respectively,

the result’s exponent is calculated by using the equation

Eresult = E1 + E2 – 1023.

E1 and E2 can have the values from 1 to 2046, resulting in

Eresult having values from -1021 (2-1023) to 3069 (4092-

1023), but for normalized numbers, Eresult can only have

the values from 1 to 2046. Table 1 shows the E result for

different values of exponent and the effect of

normalization on it.

7. FLOW CHART OF HIGH SPEED

DOUBLE PRECESSION FLOATING

POINT MULTIPLIER

The flow chart of high speed double precession floating

point multiplier is shown in figure 8.

 Table 1: Normalization effect on Eresult’s exponent and overflow/underflow detection

 Eresult Category Comments

-1021≤ Eresult

<0

Underflow Can’t be compensated during normalization

Eresult =0 Zero May turn to normalized number during normalization (by adding 1 to it)

1≤ Eresult <2046 Normalized

number

May result in overflow during normalization

2047≤ Eresult Overflow Can’t be compensated

8. SIMULATION RESULTS

The high speed double precision floating point multiplier

design based on tiling technique was simulated in

Modelsim 6.6c and synthesized using Xilinx ISE 13.1i

which was mapped on to Virtex-6 FPGA. The simulation

results of 64-bit high speed double precision floating point

multiplier are shown in figure 9. The ‘a’ and ‘b’ are the

inputs and ‘fpout’ is the output. Table 2 shows the device

utilization for implementing the circuit on Virtex-6 FPGA.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

22

Table 3 shows the Timing Summary of high speed double

precision floating point multiplier. Table 4 shows the area

and operating frequency comparison between the High

Speed Double Precision Floating Point Multiplier, [6] and

Xilinx Core respectively.

The whole multiplier was tested against the Xilinx floating

point multiplier core generated by Xilinx core and [6].The

high speed double precision floating point multiplier

targeting on Virtex-6 xc6vlx75t-3ff484 with a frequency of

436.815 MHz, area 433 slices, and latency of seven clock

cycles

.

Figure 8: Flow chart of high speed double precision floating point multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

23

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

24

Figure 9: Simulation results of high speed double precision floating point multiplier

Table 2: Device utilization summery of high speed double precision floating point multiplier

 Device utilization summary

 Logic Utilization Used Available Utilization

Number of Slice Registers 433 93120 0%

Number of Slice LUTs 238 46560 0%

Number of fully used LUT-FF pairs 197 474 41%

Number of bonded IOBs 197 240

82%

Number of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48E1s

9 288 3%

 Table 3: Timing Summary of double precision floating point multiplier

Sl. No. Parameter

Value

1 Minimum period (ns) 2.274

2 Maximum Frequency (MHz) 439.696

3 Minimum input arrival time before clock (ns) 0.947

4 Maximum output required time after clock (ns) 0.562

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

25

Table 4: Area and Frequency Comparison between the High Speed Double Precision Floating Point Multiplier, [6] and

Xilinx Core

Device parameters Present Work (Virtex-6) M.Al-Ashrafy,

A.Salem and

W.Anis [6]

Xilinx Core

No. of slices 433 604 266

No. of Flip flops 197 293 241

Maximum Frequency (MHz) 436.815

301.114 221.484

9. CONCLUSION

The high speed double precision floating point multiplier

supports the IEEE 754 binary interchange format, targeted

on a Xilinx Virtex-6 xc6vlx75t-3ff484 FPGA. It achieves

436.815 MFLOPs which is 30.9% and 97% fast compared

to [6] and Xilinx core respectively. This design occupies

433 slices which is 28% less compared to [6] and 38.6%

more compared to Xilinx core. In terms of number of used

flip flops, this design uses 197 flip flops i.e. 32.7% and

18% less compared to [6] and Xilinx core. This design

handles the overflow, underflow, and truncation rounding

mode.

10. REFERENCES

 [1] B. Fagin and C. Renard, “Field Programmable Gate

Arrays and Floating Point Arithmetic”, IEEE

Transactions on VLSI, vol. 2, no. 3, pp. 365–367,

1994.

[2] N. Shirazi, A. Walters, and P.Athanas, “Quantitative

Analysis of Floating Point Arithmetic on FPGA

Based Custom Computing Machines”, Proc. of the

IEEE Symposium on FPGAs for Custom Computing

Machines (FCCM‟95), pp.155–162, 1995.

[3] L. Louca, T. A. Cook, and W.H.

Johnson,“Implementation of IEEE Single Precision

Floating Point Addition and Multiplication on

FPGAs” , Proc. of the 83rd IEEE Symposium on

FPGAs for Custom Computing Machines

(FCCM‟96), pp. 107–116, 1996.

[4] B. Lee and N. Burgess, “Parameterisable Floating-

point Operations on FPGA”, Conference Record of

the Thirty-Sixth Asilomar Conference on Signals,

Systems, and Computers, 2002

 [5] Sebastian Banescu,Florent de Dinechin, Bogdan

Pasca “Multipliers for Floating-point Double

Precision and Beyond on FPGAs”, Proc. of First

International Workshop on Highly Efficient

Accelerators and Reconfigurable Technologies

(HEART2010),Tsukuba, Ibaraki, Japan, June 1, 2010.

[6] M.Al-Ashrafy, A.Salem and W.Anis, “An

Efficient Implementation of Floating Point

Multiplier”, Proc. of Electronics Communications and

Photonics Conference (SIECPC) 2011, Saudi

International, pp.1-5, 2011.

AUTHORS PROFILE

Addanki Purna Ramesh has more than 14 years of

experience in teaching. He is presently working as

Associate professor of Electronics and Communication

Engineering at Sri Vasavi Engineering College,

Tadepalligudem. He is Life Member of MIETE, Associate

Member in Institute of Engineers (India).

A. V. N Tilak has more than 25 years of teaching and

research experience. He obtained his Master’s degree from

Indian Institute of Technology, Kanpur and Ph.D. from

Indian Institute of Technology, Madras during 1984 and

1997 respectively. He is presently working as a professor

of Electronics and Communication Engineering at

V.R.Siddhartha Engineering College, Vijayawada. He is

Member of IEEE, Fellow of Institution of Electronics and

Communication Engineers (IETE), Fellow of Institute of

Engineers (India). He is also life member of Indian Society

for Technical Education (ISTE).

Dr. A. Mallikarjuna Prasad has more than 22 years of

experience in teaching. He is presently working as a

professor of Electronics and Communication Engineering

at JNTUK, Kakinada. He is Life Member of ISTE, IETE,

ISI, and Society of EMC. He won best teacher award by

student evaluation of 2008 batch outgoing students. He has

guided about 40 students in M.Tech Instrumentation

Engineering and presently guiding 8 research students for

their PhD works. His areas of interest are Antennas and

Process control Instrumentation. He has 25 publications in

various International and National Journals and

conferences. He has conducted a “National Workshop on

Electromagnetic field applications” in the year 2004.

