
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

1

New Proposed Inheritance Metrics to Measure the

Software Complexity

Preeti Gulia

Department of Computer Science & Applications
M. D. University, Rohtak-124 001, Haryana, INDIA

Rajender S. Chillar
Department of Computer Science & Applications

M. D. University, Rohtak-124 001, Haryana, INDIA

ABSTRACT

Inheritance is an important aspect of object-oriented paradigm

during software development. Inheritance supports the class

hierarchy design and relation between classes and inheritance

also has an impact on the complexity of software. Complexity

of software increases the testing and maintenance efforts. So

researchers and developer always try to reduce the software

complexity because low software complexity reduce testing and

maintainability. In this study, we propose two new inheritance

metrics based on level of methods like CCDIT (Class

Complexity due to Depth of Inheritance Tree) and CCNOC

(Class Complexity due to Number of Children) to measure the

complexity of methods in classes. Firstly we present the

Chidamber & Kemerer (C & K) metrics for class inheritance and

related work. Secondly we measure and investigate the software

complexity by generating UML diagram of software. Lastly we

present comparison of newly proposed metrics with other

inheritance metrics proposed by other researchers.

General Terms:

Design, Measurement and Experimentation.

Keywords:

Complexity, software metrics, inheritance, NOC, DIT, Object

Oriented system

1. INTRODUCTION

Software measurement is the fundamental aspect of any process

or product for its success and metrics are the unit of

measurement, which are used to describe the product, process

and people of software engineering. From last two decades,

object-oriented technologies come into existence for fast

development of software to reduce the time and cost. The recent

drive towards object-oriented technology forces the growth of

object-oriented software metrics [1]. Several metrics have been

proposed by researchers and practitioners like C & K metrics

suite, MOOD (Metrics for Object Oriented Design) metrics,

Lorenz and Kidd metrics etc. [2, 3, 4, 5, and 6]. The metric suite

proposed by C & K is one of the best known object-oriented

metrics that is used in measuring the complexity of the software.

Software complexity measures serve both as an analyzer and a

predictor in quantitative software engineering. To develop better

quality software, it is necessary to identify the complexity at

module, method and class level. Coupling, cohesion and

inheritance have an effect on complexity [7]. In this paper, our

main focus is to measure the software complexity through

inheritance by proposing two new metrics for the class

inheritance hierarchy.

2. RELATED WORK

Inheritance is the key feature of object-oriented technology as it

increases the reusability. Many studies [8, 9, and 10] have found

that use of inheritance reduces the software maintenance and

testing efforts. The reuse of software by inheritance is claimed to

make maintainable, understandable and reliable software [11,

12, and 13]. Misra et al. [14] proposed metrics to calculate the

complexity at method level by using inheritance. They also

measure complexity of a class due to method and attribute in

terms of cognitive weight. Deepti et al. [15] measure the

complexity with the help of CCI (Class Complexity due to

Inheritance) and ACI (Average Complexity of a program due to

inheritance) metrics. But Harrison, Counsell and Nithi [12]

contradict through experimental assessment that systems without

inheritance are easier to understand and modify. The main

reason is that to inherit a new class, it is necessary to understand

the implementation of parent as well as any of the parent’s

ancestors. Rather than this, inheritance within object-oriented

system is a way to increase the readability and reusability.

C & K Metrics

C & K inheritance metrics proposed by Chidamber & Kemerer

are following [1]:

2.1 DIT (Depth of Inheritance Tree)

DIT is the maximum distance from the node to the root. DIT

metric measures how many ancestor classes are affected by the

node. The deeper a class is in hierarchy, the higher the degree of

method inheritance, which makes a class more complex to

predict its behavior. Deeper trees have greater design

complexity, since more methods and classes are involved.

2.2 NOC (Number of Children)

NOC is the measure of immediate subclasses to a class in the

class hierarchy. It means it is the measure of how many

subclasses are going to inherit the methods of parent class.

Greater the number of children indicates greater the reuse, since

inheritance is a form of reuse. The number of children gives the

idea regarding the effect of class on the overall design.

3. PROPOSED METRICS

A class is composed of attributes and methods. In this proposal,

inheritance is to be measured in terms of sum of methods at each

level or for each class. For CCDIT, it is the sum of methods for

maximum length from the node to the root of the tree. This

measures the complexity depth wise. For CCNOC, this is the

sum of methods of children including the methods of parent

class. We propose two metrics for inheritance namely CCDIT

(Class Complexity due to Depth of Inheritance Tree) and

CCNOC (Class Complexity due to Number of Children). With

the help of these metrics, we can measure the complexity

according to depth and breadth. The definitions of these metrics

are as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

2

Figure

Move

Select

Rotate

Display

Zero Dimension One Dimension

Scale

Two Dimension

Scale Fill

Line

Display

Arc

Display

Spline

Display

Point

Display

Polygon

Display

Circle

Display Rotate

3.1 CCDIT (Class Complexity Due To Depth

 of Inheritance Tree)

It is the sum of methods for maximum length from the node to

the root of the tree.

M

ij

1

)i(Pitoni

)i(Node

Where n is maximum distance or length node entry

M is number of methods in node I or class

3.2 CCNOC (Class Complexity Due To

Number of Children)

It is the sum of methods of children including the methods of

parent class.

j,1i

n

1j

MMi

Where Mi is method of node at level i

Mi+1 = number of method at level (i + 1)

These metrics are calculated with the help of an example for

different classes. In this example figure of shapes is taken by us

that contains the name of the class and methods of that class.

With the help of this, we can calculate the complexity of

different classes.

We can calculate the metrics values according to the given

definitions. For example: The figure 4.1 consists of the hierarchy

of shapes. It consists of classes like figure, zero dimensional, one

dimensional, two dimensional, point, line arc, spline, polygon,

circle etc. and the classes also contain their own functions or

methods such as move(), select(), rotate() and display() for the

class figure. According to the given definition, the values for

different classes for the CCDIT are as follows:

 Figure 4.1 hierarchy of Shape

For the Class Figure as shown in Figure 4.1: the length of this

class is zero and it consists of 4 methods, therefore, the value for

the metric is 4, because CCDIT is the sum of methods for the

maximum length from the node to root of the tree. Like this, the

values for different classes are as follows:

Zero dimensional = 0+4 =4.

One dimensional = 1+4 =5.

Two dimensional = 2+4 =6.

Point = 1+0+4 = 5.

Line = 1+1+4 = 6.

Arc = 1+1+4 = 6.

Spline = 1+1+4 = 6.

Polygon = 1+2+4 = 7.

Circle = 2+2+4 = 8.

Now, we calculate the values for different classes for CCNOC

according to the definition i.e. the sum of methods of children

including the methods of parent class. The calculation is as

follows:

For the class figure as shown in Figure 4.1: class figure consists

of three children or subclasses, therefore the value for this class

is the sum of method of classes figure, zero dimensional, one

dimensional and two dimensional i.e. CCNOC for class figure is

= 4+0+1+2 = 7.

Zero dimensional = 0+1 = 1.

One dimensional = 1+1+1+1 =4.

Two dimensional = 2+1+2 =5.

Point = 1

Line = 1

Arc = 1

Spline = 1

Polygon = 1.

Circle = 2.

In the last six classes i.e. point, line, arc, spline, polygon, circle,

the values are taken from single class because these classes do

not comprise any child or subclass. The values or complexity of

different classes is shown in Table 3.1.

Table 3.1 Complexity Values of Proposed Metrics

Name of the Class CCDIT CCNOC

Figure 4 7

Zero Dimen. 4 1

One Dimen. 5 4

Two Dimen. 6 5

Point 5 1

Line 6 1

Arc 6 1

Spline 6 1

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

3

Polygon 7 1

Circle 8 2

4. COMPARISON WITH OTHER

INHERITANCE METRICS:

The proposed metrics are compared with some other inheritance

metrics. Following are some inheritance metrics with which

comparison is shown:

4.1 Inheritance Metrics by C & K [8]:

Depth of inheritance tree (DIT): This is the depth of the

inheritance

Number of Children (NOC): This is the number of immediate

subclasses of a super class.

4.2 Inheritance Metrics by Li [17]:

Number of Ancestor Classes (NAC): This is the total number of

ancestor classes from which a class inherits.

Number of Descendent Classes (NDC): This specifies total

number of Descendent classes (subclasses) of a class.

Values of different metrics including proposed metrics for

different classes shown in figure 4.1 are presented in the table

4.1 that is given below

Table 4.1 Comparison of different Metrics

Class DI

T

NOC NAC NDC CCDIT CCNOC

Figure 0 3 0 9 4 7

Zero

dimen.

1 1 1 1 4 1

One

dimen.

1 3 1 3 5 4

Two

dimen.

1 2 1 2 6 5

Point 2 0 2 0 5 1

Line 2 0 2 0 6 1

Arc 2 0 2 0 6 1

Spline 2 0 2 0 6 1

Polygo

n

2 0 2 0 7 1

Circle 2 0 2 0 8 2

It is evident that at the lower level in the inheritance tree classes

are more complex. Because understanding of these classes

require understanding of the implementation of parent as well as

the ancestors of the parents. To determine the complexity of a

class according to the depth, Depth of Inheritance Tree (DIT),

Number of Ancestor Classes (NAC), and our proposed metric

Class Complexity due to Depth of Inheritance tree (CCDIT) are

more suitable since the metric values are higher for the lower

level classes. To determine the complexity according to breadth,

Number of Children (NOC), Number of Descendent Class

(NDC) and proposed metric Class Complexity due to Number of

Children are suitable. The thing which makes our proposed

metrics different from other inheritance metrics is that the

proposed metrics measure the complexity according to number

of methods present in a class. And on the basis of present

methods in a class, complexity can be determined in better

manner.

5. CONCLUSION

Complexity measure can be used to check the quality of

software system. Complexity of the class depends on methods

and attributes. Testing efforts and maintenance can be reduced

with less complexity. In this paper, we calculate the complexity

with the methods. The proposed metrics are defined and

calculated with the help of example and compared with other

inheritance metrics. To prove that why proposed metrics Class

Complexity due to Inheritance Tree (CCDIT) and Class

Complexity due to Number of Children (CCNOC) are better

than other metrics, reasons are also given.

6. REFERENCES

[1] Booch. G. 1991. Object-Oriented Design and Application,

Benjamin/Cummings, Mento Park, CA.

[2] Bieman. J. M and B.K. Kang 1995. “Cohesion and Reuse

in an Object-Oriented System”, in Proc. Symp. Software

Reliability, 259-26.

[3] Briand. L. C, Daly. J. W and Wust. J. K. 1998. “A Unified

Framework for Cohesion Measurement in Object-

Oriented Systems”, Empirical Software Eng., 1, 1, 65-

117.

[4] Brotoeabreu. F. 1995. D Metrics Set”, in Proc.

ECOOP’95 Workshop Metrics.

[5] Chae, H.S, Kwon. Y. R and Bae.D.H. 2000. Cohesion

Measures for Object-Oriented Classes”, Software practice

and Experiences, 30, 12, 1405-1431.

[6] Churcher. N. I and Sheppered. M. J. 1995. Comments on

“A Metric Suite for Object-Oriented Design”, IEEE

Trans. on Software Engineering. 21, 263-265.

[7] El-Emam, K. 2002. Object-oriented metrics: A review of

theory and practice. In: Erdogmus, H., Tanir, O. (eds.)

Advances in Software Engineering, pp. 23–50. Springer,

New York.

[8] Chidamber, S.R. and Kemerer, C.F. 1994. A metrics suite

for object oriented design. IEEE Transactions on Software

Engineering 20(6), 476-493.

[9] Basili, V.R. 1990. Viewing maintenance as reuse oriented

software development. IEEE software 7(1), 19-25.

[10] Cartwright, M. and Shepperd, M. 1996. An empirical

analysis of object oriented software in industry. In:

Bournemouth Metrics Workshop, Bournemouth, UK.

[11] Basili, V.R., Briand, L.C. and Melo, W.L. 1996. A

validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering,

22(10), 751-761.

[12] Basili, V.R., Briand, L.C. and Melo, W.L. 1996. How

reuse influences productivity in object oriented systems.

Commun. ACM 39(10), 104-116.

[13] Briand, L., Bunse, L., Daly, J. and Differding, C. 1997.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.21, November 2012

4

An experimental comparison of the maintainability of

object-oriented and structured design documents. In:

Proceedings of Empirical Assessment in Software

Engineering (EASE), Keele, UK.

[14] Misra, S. and Akman, I. 2008. “Weighted Class

Complexity: A Measure of Complexity for Object

Oriented System”, JISE.

[15] Mishra, D. and Mishra, A. 2009. “Object Oriented

Inheritance Metrics: Cognitive Complexity Perspective”,

Springer Verlag,

[16] Harrison, R., Counsell, S. and Nithi, R. 2000.

Experimental assessment of the effect of inheritance on

the maintainability of object-oriented systems. Journal of

Systems and Software, 52, 173-179.

[17] Li, W. 1998. “Another Metric Suite for Object-Oriented

Programming” Journal of System and Software, 44, 155-

162.

[18] Blaha, M., Rambaugh 2005. “Object Oriented Analysis

and Design with UML2”

