
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.20, November 2012

48

Enhancing Application Performance through

GORM Optimizations

Soumya Sen Gupta

Centre for Development of Advanced Computing,
C-56/1 Sector 62, Noida,

Uttar Pradesh, India

P Govind Raj
Centre for Development of Advanced Computing,

C-56/1 Sector 62, Noida,

Uttar Pradesh, India

ABSTRACT

GORM (Grails Object Relational Mapping) is an Object

Relational Mapping Framework for the Grails web

framework. Object Relational Mapping (ORM) frameworks

reduce the problems arising out of the object-relational

impedance mismatch between the object oriented design

model and the relational database design. Unlike other ORM

frameworks which require application programmers to

configure a lot of XML files, GORM sits transparently

between the application logic and the database relieving the

programmer from maintaining any sort of configuration files.

The default ORM provided by Grails through GORM

introduces performance issues in a web application especially

when it experiences large loads. This paper identifies

problems faced when applying default GORM to application

which includes the N+1 select problem, issues with handling

one-to-many relationships, bulk insertions as well as problems

related to bulk mail transfer and keeping the query cache

unused. The paper also suggests optimization techniques

which could be applied to each of the problems in order to

improve the overall performance of a web application using

GORM as its ORM solution.

General Terms

Relational Database, Object Oriented Design, Object

Relational Mapping

Keywords

ORM, Grails, GORM, CRUD, Hibermate.

1. INTRODUCTION
When a programmer uses an Object Oriented Language like

Java, Grails, etc. to interact with a Relational database such as

Oracle, MySQL etc., he/she often encounters difficulties in

mapping the Object Oriented Design to the Relational

Database Design. These difficulties are often termed as Object

Relational Impedance Mismatch [1]. Object Relational

Mapping (ORM) [2] is a programming technique that allows

reducing this Object Relational Impedance Mismatch by

managing the CRUD (Create, Read, Update, Delete)

operations. Currently ORM frameworks are available for a lot

of languages like QDjango for C++, Athena Framework for

Flex, Hibernate, OpenJPA, iBATIS etc for Java. A list of

available ORM frameworks and their comparison can be

found at [3]. This paper focuses on GORM [4] which is an

ORM framework for Grails [5].

GORM maps the domain classes in grails to corresponding

tables in a database. GORM brings in huge set of advantages

by abstracting the object relational mapping mechanisms

without using large amount of xml configuration as in case of

other ORM solutions like Hibernate. But it also comes with

certain side effects which are capable of reducing the

performance of an application to a huge extent. GORM

depends on the domain classes of an application to generate

the corresponding database table structures. These domain

classes are modelled using Object Oriented Analysis and

Design techniques [6] like Composition, Inheritance etc. The

way in which the domain classes are modelled will have an

influence in how data is Created, Read and Updated.

Therefore, if these domain classes are not properly modelled

and designed, it can result in performance issues in the

application. This paper discusses the design level

optimizations, which when performed at the GORM level,

improves the application performance. The paper discusses

certain key problems that arise when ORM frameworks like

GORM are used in designing Web Applications. The paper

also provides solutions in the form of design optimization for

these problems. It also provides a comparison in the

application performance before and after each of the

optimizations has been applied. The paper has been divided

into 8 sections. Section 2 deals with the N+1 select problem

which causes an unprecedented number of queries to fire. The

problems of using default one-to-many relationships in

GORM have been identified in Section 3. Section 4 and 5

focuses on the advantages of using query cache and

asynchronous mail transfer respectively. Section 6 discusses

the problems occurring in case of bulk insertions and how to

overcome the same. Section 7 concludes the paper.

2. N+1 SELECT PROBLEM
ORM solutions often run into the infamous N+1 select

problem [7] as a result of non-optimal fetching strategies. An

example would better explain the problem. Suppose there is

an entity 'Author' which has a one-to-one relation with another

entity named 'Location' which holds the residential address of

the author and there is a requirement to find the name of all

the authors and their corresponding house addresses.

Fig 1: 'Has-A' Relationship between Author & Location

A simple solution to the problem can be defined as follows:

location

hasA

Author

String name

String emailId

Location

String address

String contact

Author.list().each {

 a -> println a.name

 println a.location.address

}

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.20, November 2012

49

This fetches all the authors from the ‘Author’ table and then

iterates over each author to find out the corresponding

address. Supposing that there are 1000 authors in the ‘Author’

table, GORM will issue an unexpected 1001 number of

queries to print all the details. This is because it will fire one

query to the database to fetch all the authors from the

‘Author’ table and next, it will fire another 1000 queries to the

database to find the location of each of the 1000 authors. This

is the N+1 select problem. One query fetches N number of

parent objects followed by N number of select queries, one for

each of the referenced parent objects to get the child objects

associated with them. Such strategy results in too many select

statements being issued and acts as catalyst for degradation in

application performance.

A probable solution to avoid the unnecessary issuing of select

statements is to fetch the parent and the child object together.

Setting Lazy Initialization [1] to false and using Join Fetch [8]

can help to avoid the N+1 select problem. It will fetch the

Location object pertaining to each author along with the

‘Author’ object itself. This will reduce the total number of

select statements issued from N+1 to only 1 as now there is no

need to issue extra queries to fetch the address of each of the

authors.

A comparison of the performances, before and after the

optimization has been applied, is provided in Fig 2 and Fig 3.

Fig 2: Time taken to fetch Data

Fig 3: Number of Queries Fired

It can be seen that the time required to fetch the necessary

details got drastically reduced from 590 milliseconds to 22

milliseconds after application of proper optimization strategy

and the number of queries also got reduced from 1001 to 1.

3. IMPROPER MAPPING OF ONE-TO-

MANY RELATIONSHIP
A normal one-to-many relationship [9] in Grails is shown in

Fig 4.

Fig 4: 'One-to-many' relationship between University &

Student

The 'University' class has a collection of class ‘Student'. Also

each 'Student' class belongs to 'University' class. It depicts a

one-to-many [9] relationship between a parent and a child

class. By default when a relationship like one-to-many is

defined with GORM, a java.util.Set [10] type collection is

used which is an unordered collection that cannot contain

duplicates. Thus the ‘students’ property that GORM injects is

a java.util.Set. Problem occurs when we try to add another

‘Student’ object to an already existing collection of ‘students’

belonging to a ‘University’ object. Every time, when a new

‘Student’ object is being added to a ‘University’, GORM

loads all the students already in the collection of the particular

university and compares each of them with the new one to

maintain uniqueness before finally adding it to the existing

collection of students. This is a performance bottleneck

especially when there is a university having thousands of

students. In order to avoid this problem the whole of ‘has-

many’ and ‘belongs-to’ can be replaced with a simple 'has-a'

relationship as shown in Fig 5.

Fig 5: 'hasA' relationship between University & Student

The changed relation now conveys that a Student “has a”

University (Composition). However, with this, the easy access

to the collection of child items from the parent is lost. Now, to

add a Student to a University, a new Student item is to be

created which contains the University and saved in database.

Also to delete a Student from a University, the required

Student item needs to be found from the ‘Student’ record and

deleted. But this little overhead becomes quite acceptable if

one wants to avoid the loading up of all the child items each

time one wants to add a new child to the parent.

Tests showed that to insert a student to a university which

already has a collection of 2000 students, it took 33

milliseconds in case a 'hasMany' relationship exists between

university and student, university being the parent, whereas it

took just 3 milliseconds to do the same job if the collection is

removed from University and each Student is made to be

associated with an University.

0

200

400

600

Before
Optimization

After
Optimization

0

500

1000

1500

Before
Optimization

After
Optimization

University

String name

String

address

Student

String name

 int age

 belongsTo

universit

y

hasMany

students

*

 University Student

String name

String address

String name

 int age

university

hasA

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.20, November 2012

50

Fig 6: Comparison of time taken (in milliseconds) to fetch

data with and without using collections

4. NON-USAGE OF CACHE
The query cache [11] stores the text of a SELECT statement

together with the corresponding result that was sent to the

client. If the same query is fired again then the results will be

taken out of the cache instead of the database. This

considerably reduces the fetching time of the query. The

query cache can be shared across sessions. So, the cached

results of a query can be sent in response to requests made by

many other users. In order to test the effect of the query cache,

a test was set up which would fire the same query three times

and compare the results of the test between a cached and a

non-cached environment. In cached environment, the first

query resulted in a cache miss but subsequent queries resulted

in the cache being hit whereas in the non-cached environment

all the queries resulted in the database being hit. The outcome

of the test has been provided in Fig 7 and Fig 8.

Fig 7: Database hits with and without using query cache

Fig 8: Time taken (in milliseconds) to fetch queries with

and without using query cache

As expected, it can be seen that query cache has provided a

major performance boost to the application. It can be seen that

there is a significant reduction in the time taken to execute the

queries in the two environments. The query cache is

particularly useful for queries like fetching data from Master

Tables which rarely change like name of countries, pin codes

of locations etc. i.e. for data which do not change or change

rarely.

5. SENDING MAILS

SYNCHRONOUSLY CAN BE A

BOTTLENECK
Emails are generally sent through SMTP [12] which uses

synchronous methods to deliver the messages to an SMTP

server. This works well with a small number of concurrent

users. But when the number of users increases, the process of

sending mails becomes a bottleneck for the application. Each

process that involves a mail transfer has to spend a significant

proportion of its time waiting for the SMTP server to respond

and also there is always a chance that the SMTP server is

down for. The user may be unaware of this problem with the

mail server and will try again and again to resend the mails

until he finally gives up. This results in significant downtime

when the number of users is large.

To avoid such a problem mails can be sent asynchronously to

the SMTP server. This will not block the currently running

process as mail sending will now be done through a separate

thread. The user process need not wait for the mail to be

actually sent but will issue a separate thread for it and

continue its work. The mails will be sent as and when the mail

server is available. Grails has an asynchronous mail plugin

[13] which stores mail messages in database and sends them

in scheduled job. It allows reacting to user's actions faster. If

SMTP server can't be available in time then messages can be

sent later on, when the server will be available.

With this plugin, one can set the maximum attempts to send a

mail, the interval between each attempt, maximum number of

messages to be sent at once etc. This drastically reduces the

downtime related to sending of mails.

6. PROBLEMS WITH BULK

INSERTIONS
The most basic way of inserting 10,000 objects into database

through grails would be

For the first 500 inserts, everything goes fine but gradually the

rate of insertion goes down as more and more number of

insertions take place. There is a sharp increase in the time

taken to insert every 500 books thereafter. With the current

configuration, the first 500 insertions take place in about 2

seconds; the next 500 insertions take place in 2.5 seconds and

so on. The last 500 insertions take an incredible 4.5 seconds

and the total time taken to insert 5000 books is 33 seconds.

This is because GORM caches all the newly created instances

in the session level cache [11] which requires a huge amount

of processing to maintain Moreover grails application also

contains a map called the PropertyInstanceMap which holds

references to newly created instances and thus prevents them

from getting garbage collected. The best thing to do in order

to get rid of this situation is to regularly clear the session level

cache and the map, say after every 500 insertions. This

number can vary according to application environment.

0

10

20

30

40

Before
Optimization

Time taken in ms

0

1

2

3

Query
Cache

Off

Query
Cache

On

Database
Hits

0

100

200

Query
Cache

Off

Query
Cache

On

Time taken in
ms

for (i in 1..10000)

{

 Book b1 = new

Book(title:"Book"+i, price:"1000");

 bookService.saveBook(b1);

}

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.20, November 2012

51

This improves the situation in the way that every 500

insertions now take almost the same amount of time, between

1 and 1.5 seconds. The total time taken to make 5000

insertions now is 13 seconds compared to 33 seconds earlier.

The graph below compares the time taken to insert every 500

books between the optimized and non-optimized environment.

Fig 9: Time taken in milliseconds to insert 500

records each time

7. CONCLUSION

GORM provides a layer of abstraction in mapping object

oriented domain classes to corresponding tables in relational

databases. This makes programming quite easier as the

developer is relieved of maintaining the configuration files

related to the mapping of the classes. Though it seems to be

quite useful at the first glance, using default configurations

without proper insight into the behaviour of GORM can prove

to be disastrous as it could lead to serious performance

degradation. Both the domain classes and service methods of

the application sometimes need to be tuned or configured in a

certain manner to get the best performance out of GORM.

Although most of the optimization techniques described here

has been provided in the background of GORM and Grails,

most of them can also be applied in any Object Relational

Mapping framework to boost up the performance of the

application independent of any programming language or

database being used. There are available tools like p6Spy [14]

and others which can be used to view the number of queries

fired to the database and time taken for each transaction. Such

tools, if integrated with the application at the time of

performance evaluation, can provide insights into specific

transactions responsible for performance bottlenecks. They

are also quite useful in performance evaluation (both in

respect to the time taken and number of queries fired) before

and after any optimization procedure has been applied. It can

be seen that each of the techniques works best in certain

scenarios but they can also become an overhead for the

application if the situation does not suit the particular

optimization. It would be best to carefully study each and

every scenario which may seem to pose a threat to an

application and then apply the proper optimization which suits

the best.

8. REFERENCES
[1] Roderic Geoffrey Galton Cattell. Object data

management: object-oriented and extended relational

database systems. Addison-Wesley Pub. Co., 1994, pp.

122.

[2] Elizabeth J. O'Neil. “Hibernate and the entity data model

(edm),” in Proceedings of the ACM SIGMOD

international conference on Management of data, 2008.

[3] Wikipedia. [Online] 28 8 2012.

http://en.wikipedia.org/wiki/List_of_object-

relational_mapping_software.

[4] Robert Fischer. Grails Persistence with Gorm and Gsql.

Apress, 2009.

[5] Christopher M. Judd, Joseph Faisal Nusairat, James

Shingler. Beginning Groovy and Grails. Apress, 2008

[6] Erich Gamma, Ralph Johnson, John Vlissides, Richard

Helm. Design Patterns: Elements of Reusable Object-

Oriented Software. s.1. Pearson Education.

[7] Graeme Rocher, Jeff Brown. The Definitive Guide to

Grails. Apress. 2007, pp. 78-79.

[8] Christian Bauer, Gavin King. Java Persistence with

Hibernate. s.l. : Manning Publications, 2009, pp. 588-

589.

[9] C. J. Date, A. Kannan, S. Swamynathan. An Introduction

to Database Systems. s.1. : Pearson Education. 2009, pp.

345-346

[10] Paul J. Deitel, Harvey M. Deitel. Java for Programmers.

s.1. Pearson Education. 2012, pp. 606-607.

[11] Eric Pugh, Joseph D. Gradecki. Professional Hibernate.

s.1. : Wrox Publishing. 2004, pp. 215-216.

[12] Wikipedia. [Online] 28 8 2012.

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Pro

ocol.

[13] Grails. [Online] 28 8 2012.

http://grails.org/plugin/asynchronous-mail

[14] [Sourceforge. [Online]. 28 8 2012.

http://sourceforge.net/projects/p6spy/

0

1000

2000

3000

4000

5000

1st 3rd 5th 8th 10th

for (i in 1..10000)

{

index++;

Book b1 = new Book(title:"Book"+i,

price:"1000");

bookService.saveBook(b1);

if((index% 500)==0){

 def session =

sessionFactory.currentSession

 session.flush()

 session.clear() }

}

http://grails.org/plugin/asynchronous-mail

