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ABSTRACT 
Efficient discovery of frequent itemsets in large datasets is a 

crucial task of data mining. In recent years, several 

approaches have been proposed for generating high utility 

patterns, they arise the problems of producing a large number 

of candidate itemsets for high utility itemsets and probably 

degrades mining performance in terms of speed and space. 

Recently proposed compact tree structure, viz., UP-Tree, 

maintains the information of transactions and itemsets, 

facilitate the mining performance and avoid scanning original 

database repeatedly. In this paper, UP-Tree (Utility Pattern 

Tree) is adopted, which scans database only twice to obtain 

candidate items and manage them in an efficient data 

structured way. Applying UP-Tree to the UP-Growth takes 

more execution time for Phase II. Hence this paper presents 

modified algorithm aiming to reduce the execution time by 

effectively identifying high utility itemsets.  

General Terms 
Algorithms, Performance, Evaluation.  

Keywords 
High utility itemsets, Transaction Weight Utilization, Utility 

Mining, Discarding. 

1. INTRODUCTION 
Association rules mining (ARM) [6] is one of the most widely 

used techniques in data mining and knowledge discovery and 

has tremendous applications like business, science and other 

domains. Make the decisions about marketing activities such 

as, e.g., promotional pricing or product placements. 

A high utility itemset is defined as: A group of items in a 

transaction database is called itemset. This itemset in a 

transaction database consists of two aspects: First one is 

itemset in a single transaction is called internal utility and 

second one is itemset in different transaction database is 

called external utility. The transaction utility of an itemset is 

defined as the multiplication of external utility by the internal 

utility. By transaction utility, transaction weight utilizations 

(TWU) can be found. To call an itemset as high utility itemset 

only if its utility is not less than a user specified minimum 

support threshold utility value; otherwise itemset is treated as 

low utility itemset. 

To generate these high utility itemsets mining recently in 

2010, UP-Growth (Utility Pattern Growth) algorithm [11] was 

proposed by Vincent S. Tseng et al. for discovering high 

utility itemsets and a tree based data structure called UP-Tree 

(Utility Pattern tree) which efficiently maintains the 

information of transaction database related to the utility 

patterns. Four strategies (DGU, DGN, DLU, and DLN) used 

for efficient construction of UP-Tree [11] and the processing 

in UP-Growth [11]. By applying these strategies, can not only 

efficiently decrease the estimated utilities of the potential high 

utility itemsets (PHUI) but also effectively reduce the number 

of candidates. But this algorithm takes more execution time 

for phase II (identify local utility itemsets) and I/O cost. 

In this paper, the existing UP-Growth algorithm is improved 

to generate high utility itemsets efficiently for large datasets 

and reduce execution time in phase II compared with existing 

UP-Growth algorithm. In the experimental section, 

experiments are conducted on our improved algorithm and 

existing algorithm with variety of synthetic and real-time 

datasets. 

2. RELATED WORK 
Association rule mining is considered to be an interesting 

research area and studied widely [1-9] by many researchers. 

In the recent years, some relevant methods have been 

proposed for mining high utility itemsets from transaction 

databases. 

In 1994, Agrawal .R et al. [1] proposed Apriori algorithm by 

exploit “downward closure property”, which is the pioneer for 

efficiently mining association rules from large databases. This 

algorithm generated and tested candidate itemsets iteratively. 

This may scan database multiple times, so the computational 

cost is high. In order to overcome the disadvantages of 

Apriori algorithm and efficiently finds frequent itemsets 

without generating candidate itemsets, a frequent pattern 

Growth (FP-Growth) is proposed by Han .J et al. [5].  

The FP-Growth was used to compress a database into a tree 

structure which shows a better performance than Apriori. 

Although it has two limitations: (i). It treats all items with the 

same price. (ii). In one transaction each item appears in a 

binary (0/1) form, i.e. either present or absent. In the real 

world, each item in the supermarket has a different prices and 

single customer may take same item multiple times. 

Therefore, finding only traditional frequent patterns in a 

database cannot fulfill the requirement of finding the most 

valuable customers/itemsets that contribute the most to the 

total profit in a retail business. Later different algorithms 

proposed like Two-Phase [7], IIDS [6] and IHUP [2]. 

In 2006, H. Yao et al. proposed UMining [8] algorithm to find 

almost all the high utility itemsets from an original database. 

But it suffers to capture a complete set of high utility itemsets. 

Later, In 2010 V. S. Tseng et al. [11] proposed UP-Growth 

algorithm to rectify the problems of FP-Growth. 

3. PROPOSED METHOD 
The goal of utility mining is to discover all the high utility 

itemsets whose utility values are beyond a user specified 

threshold in a transaction database.  
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3.1 UP-Growth Algorithm 
The UP-Growth [11] is one of the efficient algorithms to 

generate high utility itemsets depending on construction of a 

global UP-Tree.  In phase I, the framework of UP-Tree 

follows three steps: (i). Construction of UP-Tree [11]. (ii). 

Generate PHUIs from UP-Tree. (iii). Identify high utility 

itemsets using PHUI. 

The construction of global UP-Tree [11] is follows, (i). 

Discarding global unpromising items (i.e., DGU strategy) is to 

eliminate the low utility items and their utilities from the 

transaction utilities. (ii). Discarding global node utilities (i.e., 

DGN strategy) during global UP-Tree construction. By DGN 

strategy, node utilities which are nearer to UP-Tree root node 

are effectively reduced. The PHUI is similar to TWU, which 

compute all itemsets utility with the help of estimated utility. 

Finally, identify high utility itemsets (not less than min_sup) 

from PHUIs values. The global UP-Tree contains many sub 

paths. Each path is considered from bottom node of header 

table. This path is named as conditional pattern base (CPB). 

3.2 Improved UP-Growth 
Although DGU and DGN strategies are efficiently reduce the 

number of candidates in Phase 1(i.e., global UP-Tree). But 

they cannot be applied during the construction of the local 

UP-Tree (Phase-2). Instead use, DLU strategy (Discarding 

local unpromising items) to discarding utilities of low utility 

items from path utilities of the paths and DLN strategy 

(Discarding local node utilities) to discarding item utilities of 

descendant nodes during the local UP-Tree construction. Even 

though, still the algorithm facing some performance issues in 

phase-2. To overcome this, maximum transaction weight 

utilizations (MTWU) are computed from all the items and 

considering multiple of min_sup as a user specified threshold 

value as shown in algorithm. By this modification, 

performance will increase compare with existing UP-Tree 

construction also improves the performance of UP-growth 

algorithm. An improved utility pattern growth is abbreviated 

as IUPG. 

IUPG-Algorithm: 

Input: Transaction database D, user specified threshold. 

Output: high utility itemsets. 

 

Begin 

1. Scan database of transactions Td ϵ D 

2. Determine transaction utility of Td in D and TWU of                      

    itemset (X) 

3. Compute min_sup (MTWU * user specified threshold) 

4. If (TWU(X) ≤ min_sup) then Remove Items from  

    transaction database 

5. Else insert into header table H and to keep the items in  

    the descending order. 

6. Repeat step 4 & 5 until end of the D. 

7. Insert Td into global UP-Tree 

8. Apply DGU and DGN strategies on global UP- tree 

9. Re-construct the UP-Tree 

10. For each item ai in H do 

11. Generate a PHUI Y= X U ai 

12. Estimate utility of Y is set as ai’s utility value in H 

13. Put local promising items in Y-CPB into H 

14. Apply strategy DLU to reduce path utilities of the paths 

15. Apply strategy DLN and insert paths into Td 

16. If Td ≠ null then call for loop 

End for 

End 

4. EXPERIMENTAL EVALUATION 
In this section, experimental results on synthetic datasets and 

real world databases [10] are summarized on both UP-Growth 

and Improved UP-Growth algorithm. These experiments were 

conducted on 2.53 Intel(R) Core(TM) i3 Processor with 2 GB 

of RAM, and running on Windows 7 operating system. All 

algorithms were implemented in java language (JDK1.5) and 

applied both synthetic and real datasets to evaluate the 

performance of the both algorithms. 

4.1 Synthetic Dataset 
First, the performance deviation of UP-Growth (UPG) is 

shown and Improved UP-Growth (IUPG) algorithms on the 

synthetic datasets T10I6D10K. Where T is the average size of 

transactions; I is the average size of maximal potential 

frequent itemsets; D is the total number of transactions and N 

is the number of distinct items. Table-1 shows the execution 

times on various min_sup values from 60% to 90%. Fig-1 and 

Fig-2 shows the performance evaluation of UPG and IUPG 

for phase I and Phase II execution times on various min_sup 

values from 60% to 90%. 

Table-1: Execution times on T10I6D10K 

Dataset UPG EUPG UPG EUPG 

Min_Sup (%) phase I (sec) phase II (ms) 

90 268 248 8 0 

85 485 269 14 2 

80 480 267 15 2 

75 480 269 15 2 

70 502 280 22 2 

65 1003 280 35 8 

60 1040 282 79 59 

 

 
 

Fig-1: T10I6D10K Phase-I Time 
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Fig- 2: T10I6D10K Phase-II Time 

4.2 Real time Dataset 
Here compare the performance of UPG and IUPG on real time 

chess dataset [10]. Table-2 shows the execution times on 

various min_sup values from 65% to 90%. Fig-3 and Fig-4 

shows the performance evaluation of UPG and IUPG for 

phase I and Phase II execution times. 

Table-2: Execution times on Chess 

Dataset UPG IUPG UPG IUPG 

Min_Sup (%) phase I (sec) phase II (ms) 

90 17 14 19 19 

85 28 15 28 18 

80 31 16 37 24 

75 34 19 43 28 

70 33 21 48 30 

65 36 28 57 33 

 

 
Fig-3: Execution time for phase I on Chess 

 
Fig-4: Execution time for phase II on Chess 

4.3 Scalability 
In this section, the size of T10I6 dataset is varied to evaluate 

the scalability for UPG and IUPG algorithms. In Table-3 

shows the execution times on various dataset sizes and 

min_sup is 85%. However, the execution time of IUPG is less 

than UPG. When the database size increases, the execution 

time for identifying high utility itemsets also increases. 

Hence, UP-Growth algorithm requires more processing time 

than IUPG. 

Table-3: Execution times on Scalability 

Dataset UPG IUPG UPG IUPG 

Size Phase- 1(sec) Phase - II(ms) 

1000 26 25 8 2 

5000 135 127 14 9 

10000 328 269 26 16 

25000 994 768 32 24 

50000 2468 1958 67 36 

 

 

Fig-5: Execution time for phase I on Scalability 
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Fig-6: Execution time for phase II on Scalability 

By the experimental results, the Improved UP-Growth is 

efficiently reducing the execution time of phase II and also 

effectively identifies the high utility itemsets on both synthetic 

and real datasets. Therefore, IUPG algorithm achieves better 

performance than UPG. 

5. CONCLUSION AND FUTURE WORK 
Mining high utility itemsets becomes more significant. In this 

paper, the Improved UP-Growth (IUPG) algorithm evaluated 

with Existing UP-Growth (UPG) algorithm. These algorithms 

are experimented on synthetic datasets and real time datasets 

for different support threshold. From the experimental 

observation, the conclusion is that, IUPG algorithm performs 

well than UPG algorithm for different support values. Also 

the IUPG algorithm scales well as the size of the transaction 

database increases. The future work would focus on the 

different issues to improve phase-I in terms of execution and 

memory space cost. 
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