
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.2, November 2012

25

An Improved UP-Growth High Utility Itemset Mining

Adinarayanareddy B

M.Tech (CSE)
Dept. of CSE

JNTUK – UCEV
Vizianagaram, India

O Srinivasa Rao, PhD.
Assistant Prof. of CSE & Head

Dept. of CSE
JNTUK – UCEV

Vizianagaram, India

MHM Krishna Prasad,
PhD.

Associate Prof. of CSE & Head
Dept. of I T

JNTUK – UCEV
Vizianagaram, India

ABSTRACT
Efficient discovery of frequent itemsets in large datasets is a

crucial task of data mining. In recent years, several

approaches have been proposed for generating high utility

patterns, they arise the problems of producing a large number

of candidate itemsets for high utility itemsets and probably

degrades mining performance in terms of speed and space.

Recently proposed compact tree structure, viz., UP-Tree,

maintains the information of transactions and itemsets,

facilitate the mining performance and avoid scanning original

database repeatedly. In this paper, UP-Tree (Utility Pattern

Tree) is adopted, which scans database only twice to obtain

candidate items and manage them in an efficient data

structured way. Applying UP-Tree to the UP-Growth takes

more execution time for Phase II. Hence this paper presents

modified algorithm aiming to reduce the execution time by

effectively identifying high utility itemsets.

General Terms
Algorithms, Performance, Evaluation.

Keywords
High utility itemsets, Transaction Weight Utilization, Utility

Mining, Discarding.

1. INTRODUCTION
Association rules mining (ARM) [6] is one of the most widely

used techniques in data mining and knowledge discovery and

has tremendous applications like business, science and other

domains. Make the decisions about marketing activities such

as, e.g., promotional pricing or product placements.

A high utility itemset is defined as: A group of items in a

transaction database is called itemset. This itemset in a

transaction database consists of two aspects: First one is

itemset in a single transaction is called internal utility and

second one is itemset in different transaction database is

called external utility. The transaction utility of an itemset is

defined as the multiplication of external utility by the internal

utility. By transaction utility, transaction weight utilizations

(TWU) can be found. To call an itemset as high utility itemset

only if its utility is not less than a user specified minimum

support threshold utility value; otherwise itemset is treated as

low utility itemset.

To generate these high utility itemsets mining recently in

2010, UP-Growth (Utility Pattern Growth) algorithm [11] was

proposed by Vincent S. Tseng et al. for discovering high

utility itemsets and a tree based data structure called UP-Tree

(Utility Pattern tree) which efficiently maintains the

information of transaction database related to the utility

patterns. Four strategies (DGU, DGN, DLU, and DLN) used

for efficient construction of UP-Tree [11] and the processing

in UP-Growth [11]. By applying these strategies, can not only

efficiently decrease the estimated utilities of the potential high

utility itemsets (PHUI) but also effectively reduce the number

of candidates. But this algorithm takes more execution time

for phase II (identify local utility itemsets) and I/O cost.

In this paper, the existing UP-Growth algorithm is improved

to generate high utility itemsets efficiently for large datasets

and reduce execution time in phase II compared with existing

UP-Growth algorithm. In the experimental section,

experiments are conducted on our improved algorithm and

existing algorithm with variety of synthetic and real-time

datasets.

2. RELATED WORK
Association rule mining is considered to be an interesting

research area and studied widely [1-9] by many researchers.

In the recent years, some relevant methods have been

proposed for mining high utility itemsets from transaction

databases.

In 1994, Agrawal .R et al. [1] proposed Apriori algorithm by

exploit “downward closure property”, which is the pioneer for

efficiently mining association rules from large databases. This

algorithm generated and tested candidate itemsets iteratively.

This may scan database multiple times, so the computational

cost is high. In order to overcome the disadvantages of

Apriori algorithm and efficiently finds frequent itemsets

without generating candidate itemsets, a frequent pattern

Growth (FP-Growth) is proposed by Han .J et al. [5].

The FP-Growth was used to compress a database into a tree

structure which shows a better performance than Apriori.

Although it has two limitations: (i). It treats all items with the

same price. (ii). In one transaction each item appears in a

binary (0/1) form, i.e. either present or absent. In the real

world, each item in the supermarket has a different prices and

single customer may take same item multiple times.

Therefore, finding only traditional frequent patterns in a

database cannot fulfill the requirement of finding the most

valuable customers/itemsets that contribute the most to the

total profit in a retail business. Later different algorithms

proposed like Two-Phase [7], IIDS [6] and IHUP [2].

In 2006, H. Yao et al. proposed UMining [8] algorithm to find

almost all the high utility itemsets from an original database.

But it suffers to capture a complete set of high utility itemsets.

Later, In 2010 V. S. Tseng et al. [11] proposed UP-Growth

algorithm to rectify the problems of FP-Growth.

3. PROPOSED METHOD
The goal of utility mining is to discover all the high utility

itemsets whose utility values are beyond a user specified

threshold in a transaction database.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.2, November 2012

26

3.1 UP-Growth Algorithm
The UP-Growth [11] is one of the efficient algorithms to

generate high utility itemsets depending on construction of a

global UP-Tree. In phase I, the framework of UP-Tree

follows three steps: (i). Construction of UP-Tree [11]. (ii).

Generate PHUIs from UP-Tree. (iii). Identify high utility

itemsets using PHUI.

The construction of global UP-Tree [11] is follows, (i).

Discarding global unpromising items (i.e., DGU strategy) is to

eliminate the low utility items and their utilities from the

transaction utilities. (ii). Discarding global node utilities (i.e.,

DGN strategy) during global UP-Tree construction. By DGN

strategy, node utilities which are nearer to UP-Tree root node

are effectively reduced. The PHUI is similar to TWU, which

compute all itemsets utility with the help of estimated utility.

Finally, identify high utility itemsets (not less than min_sup)

from PHUIs values. The global UP-Tree contains many sub

paths. Each path is considered from bottom node of header

table. This path is named as conditional pattern base (CPB).

3.2 Improved UP-Growth
Although DGU and DGN strategies are efficiently reduce the

number of candidates in Phase 1(i.e., global UP-Tree). But

they cannot be applied during the construction of the local

UP-Tree (Phase-2). Instead use, DLU strategy (Discarding

local unpromising items) to discarding utilities of low utility

items from path utilities of the paths and DLN strategy

(Discarding local node utilities) to discarding item utilities of

descendant nodes during the local UP-Tree construction. Even

though, still the algorithm facing some performance issues in

phase-2. To overcome this, maximum transaction weight

utilizations (MTWU) are computed from all the items and

considering multiple of min_sup as a user specified threshold

value as shown in algorithm. By this modification,

performance will increase compare with existing UP-Tree

construction also improves the performance of UP-growth

algorithm. An improved utility pattern growth is abbreviated

as IUPG.

IUPG-Algorithm:

Input: Transaction database D, user specified threshold.

Output: high utility itemsets.

Begin

1. Scan database of transactions Td ϵ D

2. Determine transaction utility of Td in D and TWU of

 itemset (X)

3. Compute min_sup (MTWU * user specified threshold)

4. If (TWU(X) ≤ min_sup) then Remove Items from

 transaction database

5. Else insert into header table H and to keep the items in

 the descending order.

6. Repeat step 4 & 5 until end of the D.

7. Insert Td into global UP-Tree

8. Apply DGU and DGN strategies on global UP- tree

9. Re-construct the UP-Tree

10. For each item ai in H do

11. Generate a PHUI Y= X U ai

12. Estimate utility of Y is set as ai’s utility value in H

13. Put local promising items in Y-CPB into H

14. Apply strategy DLU to reduce path utilities of the paths

15. Apply strategy DLN and insert paths into Td

16. If Td ≠ null then call for loop

End for

End

4. EXPERIMENTAL EVALUATION
In this section, experimental results on synthetic datasets and

real world databases [10] are summarized on both UP-Growth

and Improved UP-Growth algorithm. These experiments were

conducted on 2.53 Intel(R) Core(TM) i3 Processor with 2 GB

of RAM, and running on Windows 7 operating system. All

algorithms were implemented in java language (JDK1.5) and

applied both synthetic and real datasets to evaluate the

performance of the both algorithms.

4.1 Synthetic Dataset
First, the performance deviation of UP-Growth (UPG) is

shown and Improved UP-Growth (IUPG) algorithms on the

synthetic datasets T10I6D10K. Where T is the average size of

transactions; I is the average size of maximal potential

frequent itemsets; D is the total number of transactions and N

is the number of distinct items. Table-1 shows the execution

times on various min_sup values from 60% to 90%. Fig-1 and

Fig-2 shows the performance evaluation of UPG and IUPG

for phase I and Phase II execution times on various min_sup

values from 60% to 90%.

Table-1: Execution times on T10I6D10K

Dataset UPG EUPG UPG EUPG

Min_Sup (%) phase I (sec) phase II (ms)

90 268 248 8 0

85 485 269 14 2

80 480 267 15 2

75 480 269 15 2

70 502 280 22 2

65 1003 280 35 8

60 1040 282 79 59

Fig-1: T10I6D10K Phase-I Time

0

200

400

600

800

1000

1200

90 85 80 75 70 65 60

P
h

as
e

 I
(s

e
c)

Min_Sup

UPG

IUPG

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.2, November 2012

27

Fig- 2: T10I6D10K Phase-II Time

4.2 Real time Dataset
Here compare the performance of UPG and IUPG on real time

chess dataset [10]. Table-2 shows the execution times on

various min_sup values from 65% to 90%. Fig-3 and Fig-4

shows the performance evaluation of UPG and IUPG for

phase I and Phase II execution times.

Table-2: Execution times on Chess

Dataset UPG IUPG UPG IUPG

Min_Sup (%) phase I (sec) phase II (ms)

90 17 14 19 19

85 28 15 28 18

80 31 16 37 24

75 34 19 43 28

70 33 21 48 30

65 36 28 57 33

Fig-3: Execution time for phase I on Chess

Fig-4: Execution time for phase II on Chess

4.3 Scalability
In this section, the size of T10I6 dataset is varied to evaluate

the scalability for UPG and IUPG algorithms. In Table-3

shows the execution times on various dataset sizes and

min_sup is 85%. However, the execution time of IUPG is less

than UPG. When the database size increases, the execution

time for identifying high utility itemsets also increases.

Hence, UP-Growth algorithm requires more processing time

than IUPG.

Table-3: Execution times on Scalability

Dataset UPG IUPG UPG IUPG

Size Phase- 1(sec) Phase - II(ms)

1000 26 25 8 2

5000 135 127 14 9

10000 328 269 26 16

25000 994 768 32 24

50000 2468 1958 67 36

Fig-5: Execution time for phase I on Scalability

0

10

20

30

40

50

60

70

80

90

90 85 80 75 70 65 60

P
h

as
e

 II
 (

m
s)

Min_Sup

UPG

IUPG

0

5

10

15

20

25

30

35

40

90 85 80 75 70 65

p
h

as
e

 I
(s

e
c)

Min_Sup

UPG

IUPG

0

10

20

30

40

50

60

90 85 80 75 70 65

P
h

as
e

 II
(m

s)

Min_sup

UPG

IUPG

0

500

1000

1500

2000

2500

3000

P
h

as
e

 -
 I

(s
e

c)

Size

UPG

IUPG

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.2, November 2012

28

Fig-6: Execution time for phase II on Scalability

By the experimental results, the Improved UP-Growth is

efficiently reducing the execution time of phase II and also

effectively identifies the high utility itemsets on both synthetic

and real datasets. Therefore, IUPG algorithm achieves better

performance than UPG.

5. CONCLUSION AND FUTURE WORK
Mining high utility itemsets becomes more significant. In this

paper, the Improved UP-Growth (IUPG) algorithm evaluated

with Existing UP-Growth (UPG) algorithm. These algorithms

are experimented on synthetic datasets and real time datasets

for different support threshold. From the experimental

observation, the conclusion is that, IUPG algorithm performs

well than UPG algorithm for different support values. Also

the IUPG algorithm scales well as the size of the transaction

database increases. The future work would focus on the

different issues to improve phase-I in terms of execution and

memory space cost.

6. REFERENCES
[1] R. Agrawal and R. Srikant.: Fast algorithms for mining

association rules. In Proc. of the 20th Int'l Conf. on Very

Large Data Bases, pp. 487-499, 1994.

[2] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee.:

Efficient tree structures for high utility pattern mining in

incremental databases. In IEEE Transactions on

Knowledge and Data Engineering, Vol. 21, Issue 12, pp.

1708-1721, 2009.

[3] R. Chan, Q. Yang, and Y. Shen.: Mining high utility

itemsets. In Proc. of Third IEEE Int'l Conf. on Data

Mining, pp. 19-26, 2003.

[4] A. Erwin, R. P. Gopalan, and N. R. Achuthan.: Efficient

mining of high utility itemsets from large datasets. In

Proc. of PAKDD 2008, LNAI 5012, pp. 554-561.

[5] Jiawei. Han, Jian. Pei, and Y. Yin.: Mining frequent

patterns without candidate generation. In Proc. of the

ACM-SIGMOD Int'l Conf. on Management of Data, pp.

1-12, 2000.

[6] Y. C. Li, J. S. Yeh, and C. C. Chang.: Isolated items

discarding strategy for discovering high utility itemsets.

In Data & Knowledge Engineering, Vol. 64, Issue 1, pp.

198-217, Jan., 2008.

[7] Y. Liu, W. Liao, and A. Choudhary.: A fast high utility

itemsets mining algorithm. In Proc. of the Utility-Based

Data Mining Workshop, 2005.

[8] H. Yao, H. J. Hamilton, and L. Geng.: A unified

framework for utility-based measures for mining

itemsets. In Proc. of ACM SIGKDD 2nd Workshop on

Utility-Based Data Mining, pp. 28-37, USA, Aug., 2006.

[9] S. J. Yen and Y. S. Lee.: Mining high utility quantitative

association rules. In Proc. of 9th Int'l Conf. on Data

Warehousing and Knowledge Discovery, Lecture Notes

in Computer Science 4654, pp. 283-292, Sep., 2007.

[10] Frequent itemset mining implementations repository,

http://fimi.cs.helsinki.fi/

[11] Vincent. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu.:

UP-Growth: An Efficient Algorithm for High Utility

Itemset Mining. In Proc. of ACM-KDD, Washington,

DC, USA, pp. 253-262, July 25–28, 2010.

0

10

20

30

40

50

60

70

80
P

h
as

e
 -

 I
I(

m
s)

Size

UPG

IUPG

