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ABSTRACT 

Smith-Waterman algorithm is one of the most significantly 

used algorithm and a well known approach to gain 

information about unknown genes and proteins for biological 

research. As execution time and accuracy is of great 

significance as handling large-scale dataset, a more reliable 

high-throughput and efficient parallelism can be achieved 

with the adaptation of grid environment. Adapting Smith-

Waterman algorithm with the grid environment brings several 

concerns regarding fault tolerance, variability in resource 

performance and workload distribution, application 

availability etc. The work presented here aims at the 

development of a Dynamic Smith-Waterman algorithm 

metascheduler that handles all the specifications of job 

submission on the grid to the end user for local alignment 

search. Additionally a web based portal using GridSphere 

portal framework integrated with Globus 4 and Java 

Commodity Grid Kit is developed that reduces the complexity 

to the end users in accessing, managing and manipulating the 

grid resources and applications. The main contribution 

towards Dynamic Smith-Waterman algorithm is the reduction 

of the total job execution time up to 52% with accuracy up to 

99.99% and better resource utilization by 40%. In addition, 

this work can be used as a template for the development of 

similar applications in future.   

General Terms 

Grid, Biological local sequence alignment algorithm 

Keywords 

Grid, Globus, GridSphere, Java Commodity Grid Kit, 

Scheduling, Smith-Waterman algorithm 

1. INTRODUCTION 
Grid computing [1] enables sharing, selection, and 

aggregation of geographically distributed resources including 

supercomputers, storage systems, data sources, and 

specialized devices owned by different organizations in order 

to solve large-scale resource-intensive problems in science, 

engineering and commerce. It follows a service-oriented 

architecture that provides hardware services, software services 

and infrastructure for secure and uniform access to 

heterogeneous resources and enables the formation and 

management of virtual organization (VOs) [2]. One of the 

main advantages of grid computing is its affordability, since 

each node can be purchased separately at a low cost, yet when 

combined can produce the power of an expensive 

multiprocessor supercomputer. Now, when a VO exists, the 

application needs to be deployed on the grids available 

resources. The deployment of grid application includes 

transfer of the entire application (i.e., source code, dataset, 

scripts) to a remote site, compiling the application on the 

remote host and making it available for execution. But before 

the deployment, the application should be classified and grid-

enabled [3] according to the requirements of specific 

application. As for enabling the application for grid 

environment, the amount of effort required is greatly 

influenced by the application that is being grid-enabled. 

However, based on the parallelization methods and modes 

employed by the application may be more suitable than other 

on the grid. 

Based on the application communication patterns and the 

parallelization model, applications on grid can be divided into 

in the following general categories [4]: 

 Sequential applications 

 Parametric Sweep applications 

 Master-Worker applications 

 All-Worker applications 

 Loosely coupled parallel applications 

 Tightly coupled parallel applications 

 Workflow applications 

Applications belonging to categories 1 through 4 are easier to 

be grid-enabled in decreasing order, while applications 

belonging to remaining categories may require rewriting of 

the complete application before it can be adopted to execute 

on the grid resources. 

After gaining access to a grid environment through a VO and 

enabling an application for grid environment, users 

immediately expect an increase in performance of application 

jobs which is proportional to the number of resources 

available on the grid. This paper shows such a methodology 

that will use the available resources with a significant increase 

in performance. This can be contributed to the high degree of 

variability individual applications impose on underlying 

resources in terms of their requirements making generalized 

or standardized approaches fall short of realizing set goals. 

Because of such variability, general purpose metascheduler 

[5] do not focus on understanding application-specific 

requirements and thus cannot realize application-specific job 

scheduling and job performance. In order to realize such 
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Fig 1: Two models for parallelizing Smith-Waterman 

algorithm: (A) Query segmentation and (B) Database 

segmentation. 

 

behavior, application-specific schedulers are needed to focus 

on specific needs of an individual application. 

With such multiple factors not only make it difficult to 

execute applications across grid resources but also executing 

an application efficiently. It can be concluded that a typical 

grid user will be hard-pressed to realize desired behavior for 

their jobs. In order to alleviate a user form these low-level 

infrastructure details, help of specialized and higher-end tools 

that mange grid infrastructure details is needed. On these 

extents this paper presents a design and implementation of the 

most commonly used algorithms for biological local sequence 

alignment where similar entries in the database is searched, 

namely Smith-Waterman algorithm [6]. 

The Smith-Waterman algorithm determines optimal local 

alignments between nucleotide or protein sequences and is 

therefore used in a wide range of areas from estimating 

evolutionary histories to predicting behaviors of newly found 

genes. However, the exponential growth in the nucleotide and 

protein databases has made the Smith-Waterman algorithm 

impractical to search on these databases because of its 

quadratic time and space complexity. 

As a result, this led to innovations on the non-algorithmic 

front — specifically, special-purpose hardware solutions on 

FPGAs [7], [8] and linear processor arrays [9]. 

Simultaneously, there were also developments on the 

algorithmic front that gave rise to heuristics such as FASTA 

[10] and the BLAST [11] family of algorithms that sacrificed 

sensitivity for speed. These solutions present a multitude of 

trade-offs in terms of speed, cost and sensitivity of the 

sequence-search solutions. However, this presents a complete 

optimal sequence alignment (i.e., calculating the score and 

generating the alignment) using the affine gap penalty scoring 

scheme [12] that will deliver high speed, low cost, and ideal 

sensitivity via an ideal parallelization of the Smith-Waterman 

algorithm. 

For the implementation of dynamic Smith-Waterman 

application there are two ways of segmentation procedure. In 

the database segmentation method, each cluster node only 

needs to search a query against its portion of the sequence 

database. Alternatively, query segmentation can be applied to 

alleviate the burden of searching jobs. In the query 

segmentation method, instead of the database, a subset of 

queries is distributed to each cluster node, which has access to 

the whole database. Fig. 1 points at the differences and the 

execution modes of the two Smith-Waterman parallelization 

models. 

Because of the physical limitations encountered during 

parallelizing Smith-Waterman, traditional high performance 

computing technologies and techniques have been adopted as 

the solution to grid-enable Smith-Waterman algorithm. The 

Smith-Waterman algorithm has a broad community whose 

grid-enablement clearly brings significant benefit to the 

scientific community as it provides most accurate results. As 

similar efforts of grid-enabling, Smith-Waterman have not 

been undertaken yet our effort is described in this paper by 

providing details on developing Dynamic Smith-Waterman 

application – a grid-enabled Smith-Waterman algorithm. 

Hence our approach includes - 

 Enabling Smith-Waterman application to execute 

across grid environments through a simple user 

interface (a web portal), thus hiding all complexities 

of underling infrastructure.  

 Developing a Smith-Waterman application execution 

model for heterogeneous grid environments that 

analytically captures dependencies between the 

application and available resources. 

 Finally incorporating a Smith-Waterman application-

specific metascheduler into the execution model that 

implements the Smith-Waterman application 

execution model and is capable of understanding and 

leveraging heterogeneity of compute resources found 

across a grid to minimize job runtime. 

 

 

 

The remainder of the paper is organized as follows: Section 2 

provides an overview of the architecture, Smith-Waterman 

algorithm execution model and implementation details of 

Dynamic Smith-Waterman application. Results of executing 

Dynamic Smith-Waterman application on both query 

segmentation and database segmentation procedure and a 

comparative study over both parallelization models are 

provided in Section 3. Section 4 summarizes the paper and 

suggests some future work. 

2. IMPLEMENTATION DETAILS 
This section provides an overview of Dynamic Smith-

Waterman application architecture and implementation details 

of the application. 

2.1 Architecture Overview 
The work discussed in this paper deals with a high-throughput 

application belonging to the minimal inter-node 

communication of applications. Although such applications 

are embarrassingly parallel and entail multiple executions of 

the same executable against different data, the challenges 

associated with creating a seamless Grid-enabled application 

are formidable. These include scheduling of the jobs on the 

various Grid nodes, staging of input files, executable 

databases and results between the initiating node and the 

remote nodes, setting up the executable and directory 

structures on the remote nodes, spawning of jobs on the 

remote nodes etc. Although an easier option would be to a 

priori transfer the relevant databases, input files and 

executable on the remote nodes, it would not be a truly 

independent Grid application. 

Implementation of Dynamic Smith-Waterman application has 

been done with the consideration of these issues that ensures 

maximum flexibility and high end-user applicability. 

Furthermore, in developing an application for the Grid, it is 
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Fig 2: High level diagram of interactions between Grid 

components and Dynamic Smith-Waterman application 

essential to have a unifying middleware that can provide a 

transparent interface to the underlying protocols. The Globus 

toolkit [13], developed as part of the Globus Project [14], is a 

software toolkit that addresses key technical problems in the 

development of Grid-enabled tools, services and applications. 

The Globus toolkit is a modular collection of technologies and 

enables the incremental development of Grid-enabled tools 

and applications. In addition, the toolkit implements standard 

Grid protocols and application program interfaces (APIs). The 

general approach in the development of the Globus toolkit is 

to define Grid protocols and APIs such that the protocols 

mediate the access to remote resources. 

A web portal has been designed for the above work to provide 

the user an easy web based access to resources and to avoid 

complexity of installing grid softwares on end user machines. 

This has been implemented using GridSphere Portal 

Framework [15], a European project GridLab [16], developers 

of GPDK [17]. GridSphere provides grid-specific portlets and 

APIs for grid-enabled portal development that is compliant 

with JSR 168. Moreover, it allows for more high-level portlets 

using visual beans and GridSphere’s user interface tag library. 

The portal uses a secure login and is then presented with a 

basic GUI based interface to the applications and other 

services. 

Dynamic Smith-Waterman application has been developed 

using Java on top of the Globus 4.0.7 and has adopted the 

Java Commodity Grid (CoG) Kits [18] and Distributed 

Resource Management Application API (DRMAA) [19] 

standard for all job invocation operations. Furthermore, 

Dynamic Smith-Waterman application was built on top of 

GridWay [20], a grid job management system, for all job 

submission activities. A high level overview of Dynamic 

Smith-Waterman application’s interaction with grid 

components is given in Fig. 2. 

Fig. 2 shows that authentication and authorization have been 

moved outside the Dynamic Smith-Waterman application 

where the user is required to have valid X.509 GSI proxy 

credentials [21] before any job invocation. Resources 

available for job submission are discovered dynamically 

through GIS/MDS [22] which utilizes LDAP [23] to execute 

queries. SWAgent is a locally developed utility that monitors 

Smith-Waterman application related parameters across 

various resources such as application installation, setting input 

and output data locations, prepare for execution etc. 

Interaction with GridWay is performed through DRMAA API 

and is used for all job submission and monitoring activities. 

Dynamic Smith-Waterman application handles resource 

selection and data distribution; however, resource allocation, 

data transfer, and job monitoring are all delegated directly to 

the GridWay. Introduction of GridWay in Dynamic Smith-

Waterman application development brings greater modularity 

and portability in application state. CoG provides added 

functionality to implement Java-based GSI, gridFTP, 

myProxy, and GRAM. As adoption of DRMAA standard 

within GridWay alleviates direct dependencies of Dynamic 

Smith-Waterman algorithm to GridWay, so further modularity 

of developed application increase. 

 

 

 

2.2 Smith-Waterman application 

architecture 
Analysis of Smith-Waterman parallelization methods and grid 

resource characteristics has led Dynamic Smith-Waterman 

application to be internally developed under the master-

worker communication model by embedding required 

components into a hierarchical framework. The master-

worker model allows a single process to control the resource 

selection, data distribution, job submission and 

parameterization, as well as job monitoring. Thus, selected 

application model maximizes execution flexibility, code 

modularity and fault tolerance.  

Going hand in hand with the master-worker model becomes 

the main choice regarding the parallelization model of Smith-

Waterman jobs (i.e., query segmentation or database 

segmentation).Suitability of one method over another is 

dependent on both data and resource [24]. Thus based on the 

current resource availability, a method can often be found 

more appropriate than the other. So both query segmentation 

and database segmentation model is present in this 

application. The diagram of the components and dataflow is 

provided in Fig. 3 for both of the models. The main 

components of the given architecture for master node are:  

 Analyze the input file 

 Create schedule plan 

 File (or database) parsing and fragmentation plan 

 Thread creation 

 Spawn remote jobs 

 Gather result and cleanup procedure 

Analyzing input file includes statistical analysis of user input 

query file to extract some parameters needed in later steps of 

input data processing. This information includes the number 

of queries, the average query length, the standard deviation 

etc. These information are then stored internally in a specific 

format for future work.  
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Create Schedule Plan module uses information retrieved by 

the Analyze input file module to perform on-line scheduling 

and job parameterization. This is the core module of Dynamic 

Smith-Waterman application and it implements a Smith-

Waterman application performance model for resource 

selection and data distribution. The schedule plan is realized 

by implementing Eq. (1) for resource selection and Eq. (4) for 

data distribution. 
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From Eq. (1) 
jS  represents the set of resources to be 

selected for execution of job j  and it is further described 

through Eq. (2) and (3). In respective equations, 
jR refers to 

the set of available resources capable of executing job j  and 

T  refers to the threshold value. Performance rate of 

individual resource from the perspective of Smith-Waterman 

job j  is calculated as a combination of the size of resource i , 

namely in  that represents the total number of processing 

elements (i.e., cores) and the performance rate of individual 

processing element on resource i  for the specific job j . Job 

performance rate is obtained from historical analysis of 

performance of Smith-Waterman application on a specific 

resource. 
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For Eq. (4), id  represents the size of a task data chunk 

assigned to resource i ; in  represents the number of 

processing elements on resource i ; D is the total size of user 

input (in the case of query segmentation process) or the total 

size of the target database (in the case of database 

segmentation process) and 
i

j
W    is the normalized weight or 

performance rate of the resource i . The result of executing 

the Schedule Plan module is a concrete plan for resource 

assignment and data distribution that is followed during the 

remainder of the job execution. 

File (or database) parsing and fragmentation plan module 

reads the generated Job Plan and proceeds in two steps. 

Initially, it splits the original user query file into chunks (in 

the case of query segmentation process) or splits the target 

database into multiple databases (in the case of database 

segmentation process), one for each resource, whose size is 

available from the Job Plan as derived from Eq. (4). Each data 

chunk id  is then further subdivided into fragments if . This 

is done according to equation (5), i.e., proportionally to the 

number of processing elements in  within any one resource: 

                 

i

i

i
n

d
f                                        (5) 

Thread Creation takes place when the master thread creates 

worker threads; one thread is created for each resource. 

Individual Threads read their respective part of the Job Plan to 

parameterize given task. Because of such granular approach to 

job plan generation and execution, as stated earlier, different 

Smith-Waterman application and parameters can be used for 

different resources. This allows customization and maximizes 

resource utilization as well as very high level of user support 

and Quality of Service (QoS). Jobs are submitted directly by 

threads to individual resources through DRMAA and 

GridWay while the master thread waits on the threads to 

complete. Individual threads initiate output file transfer back 

to the initial job submission resource before completing their 

execution. If a resource fails or a task does not complete its 

execution as planned, the master thread could resubmit just 

the given task to another resource. 

Spawn remote jobs take place on each worker node where 

worker nodes connect to the GASS server on the master node. 

Once the server-to-server connections are made, the master 

node initiates the transfer of the necessary executable, 

database and query files and upon compilation sets up the 

executable as on the schedule plan describes earlier. As each 

node completes its quota of queries, the results are copied 

back to the master node. 

Thread creation module is a part of the master thread and its 

primary task is to combine all the output and result files into a 

single result file presented to the end user. Any cleanup and 

additional tasks such as bookkeeping of performance results 

are performed in this step as well. Similarly, collecting results 

Create Schedule Plan 

Jobs 

Analyze input file 

Spilt input file 

Copy executable, database or 

query file 

Job Thread 

Gather result & cleanup 

procedure 

Spilt database 

Node 1 Node 2 Node n 

Job Thread Job Thread 

Fig 3: Dataflow diagram for Dynamic Smith-

Waterman application 
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and cleanup procedure module is included in the master 

thread combining all the output and result files into a single 

result file presented to the end user is its primary task. Any 

cleanup and additional task, such as measuring the 

performance metrics and save them into appropriate place to 

visualize are done in this module as well. 

3. EXPERIMENTAL RESULTS 
This section presents the experimental setup and performance 

results of Dynamic Smith-Waterman application across 

iutGRID (a local grid environment inside the university 

campus) resources. At first a web portal has been developed 

for testing the functionalities of the grid and then several 

applications were deployed into the grid. Performance 

comparison of the Smith-Waterman application is performed 

as an iterative process with both the basic query segmentation 

model and database segmentation model for parallelizing 

Smith-Waterman application and building the Smith-

Waterman application specific metascheduler model 

described in the previous section to derive application-specific 

customizations that yield improved Smith-Waterman job 

performance. 

3.1 Environment setup 
The experiment of performance measurement of Dynamic 

Smith-Waterman application has been conducted on the 

resources available on iutGRID. A portal named TeraGrid 

Portal was developed for accessing the application. A 

snapshot of portal is given in Fig. 4. The resources of 

iutGRID are located across the department labs, student 

dormitories; each resource is locally administered with 

applicable policies and procedures in place. All of the 

resources on the grid had a version of GLOBUS installed and 

required input data available for use. Technical resource 

details are provided in Table 1.  

Table 1. Architectural details of resources on IUTGrid 

Resource Type A Type B Type C 

Processor 
Intel Core 

2 Duo 

Intel 

Core i3 

Intel Dual 

Core 

Processor speed 

(MHz) 
2.80 2.93 3.2 

Main Memory(GB) 2 2 2 

Cache (MB) 4 4 2 

No. of nodes 7 5 3 

No. of processor 14 10 6 

 

We used the popular nr (non-redundant) database to search 

against. The nr database is a non-redundant protein database 

with entries from GenPept, Swissprot, PIR, PDF, PDB, and 

RefSeq. The version used was 113 MB in size and available 

for download from the National Center for Biotechnology 

Information (NCBI) [25]. The input file used consisted of 128 

search queries those were randomly selected from the Viral 

Bioinformatics Resource Center (VBRC) [26] database. The 

VBRC database contains the complete genomic sequences for 

all viral pathogens and related strains that are available for 

about half a dozen of virus families. 

 

 

3.2 Performance definitions 
In order to evaluate the results obtained from the execution of 

the application, it is necessary to define certain criteria. 

Specifically, while developing applications on the Grid, it is 

essential to define conditions for Grid-feasibility or 

infeasibility, that is, the criteria for measuring efficiency of a 

Grid-enabled application under the given conditions and 

resource set.  Two essential measures that are needed to 

evaluate the performance of a Grid-application are Grid-

speedup and Grid-efficiency. These are defined as follows. 

 Definition 1: The Grid-speedup, GS  is defined as the 

ratio of the total time taken by an application on a 

local node, 1T  of 1p  processors to that taken on 

GN  nodes on the Grid, gT  as Eq. (6) 

 

g

G
T

T
S 1                                       (6) 

 Definition 2: The Grid-efficiency, GE  is defined as 

the ratio of Grid-speedup, GS  to the total number of 

processors P  on GN  nodes as Eq. (7) 

 
P

S
E G

G                                  (7) 

Grid-feasibility can then be defined as follows. 

 Definition 3: A Grid-enabled application is said to be 

Grid-feasible if the Grid-speedup 1GS . 

3.3 Performance Analysis  
Performance of Dynamic Smith-Waterman application is 

measured with the definitions stated above for both basic 

query segmentation and database segmentation model. 

Dynamic Smith-Waterman application is designed to support 

single or multiple sequence searches against the target 

database. In the case of single sequence search the database 

segmentation model is initiated. For multiple sequences 

searching, both segmentation variant of Smith-Waterman job 

parallelization is necessary. Finally the performance of the 

query segmentation model against database segmentation 

model has been compared with the same sequence file. 

Fig 4: Snapshot of TeraGrid Portal 
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For the first set of experiment three different size sequences of 

64, 128 and 256 characters were used. The experiment is 

repeated for finding the grid speedup and efficiency by 

increasing the number of processors. Fig. 5(a) and 5(b) show 

the corresponding speedups and efficiencies for the three 

different searching sequence sizes respectively. From the 

graph it is clear that the application is grid-feasible as the 

speedup is greater than 1, hence we proceed to the other 

experiments. 

 

 

 

 

 

 

 

 

 

                                                  (a) 
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The second set of experiment shows how many the query 

segmentation variant operates under the model of dividing the 

total number of input queries across individual resources 

based on those resources' relative size. As such, resource 

weight factor from Eq. (4) is uniformly set to 1 and derived 

equation can thus be used to derive proportional amount of 

data that should be assigned to each resource. Given resource 

availability from Table 1, data distribution is obtained using 

Eq. (4), shown in Fig. 6. 

After obtaining job parameters for the basic query distribution 

parallelization model, the Smith-Waterman approach of 

sequence alignment job has been executed across the available 

resources and the recorded runtime data for the basic query 

segmentation model are shown in Fig. 7. As master-worker 

parallelization model was used on the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

application, the overall job was considered to be complete after 

the longest job on the resource had finished. As a result of this 

scenario, load imbalance comes into front and a big 

discrimination is noticed in performing individual jobs on the 

resources. So, obviously the next step is to minimize the load 

imbalance across the individual resources by analyzing the 

issues behind the imbalance. 

 
 

 

 

 

 

 

 

 

 

 

Analyzing the application in a context of performance, load 

imbalance can be explained by two properties. The first 

property is of Smith-Waterman algorithm that describes the 

runtime of the algorithm is significantly affected by the length 

of the given query input for search against the database. By 

simply taking the input file provided and dividing it into a 

number of chunks at predetermined data points, the type of 

data that gets assigned to individual nodes within a resource 

can vary greatly and so result in the load imbalance problem 

as lengths of individual queries vary greatly as well as spread 

unevenly across the provided input file. As these data chunks 

are divided among the available nodes on a particular 

resource, an inappropriate type of queries in length results in a 

load imbalance. 

Dynamic Smith-Waterman addresses this issue by 

reorganizing the input data so that a proportional number of 

short, medium and long queries are assigned to each 

individual node. This problem can be generalized into a bin-

packing problem where the number and size of bins is 

predetermined (i.e., number of chunks and number of queries 

assigned to each individual resource). For this purpose an 

effective and efficient heuristic implementation of the first fit 

decreasing algorithm (complexity is  nn log  where n  

is the number of queries) is used, which assigns input data 
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elements across individual bins in a decreasing order for as 

long as there is input [27]. As the application was run onto a 

heterogeneous and distributed environment the File Parsing 

module was introduced for the dynamic Smith-Waterman 

application that provided an optimal solution to the load 

imbalance problem. The File Parsing module of Dynamic 

Smith-Waterman application implements the first fit 

decreasing algorithm as a two-step process: at first, the input 

file is divided into chunks of proportional type of data as 

prepared by the Job Plan, and secondly, each chunk is divided 

into a number of proportional fragments, as prepared in the 

Job Plan again. By applying the first-fit decreasing algorithm 

to reorganize assignment of individual queries to 

corresponding nodes, a better data distribution can be 

obtained which ensures a much more even distribution of 

comparative queries across individual compute nodes. As a 

result load balance among the nodes is achieved with better 

application runtime across the grid resources. 

The second property affecting performance of Smith-

Waterman jobs is the resource standard for the Smith-

Waterman application. This is implemented as the resource 

weight factor in Eq. (4) and is realized by performing an 

application-specific standard on a given resource. The 

standard can be explicitly executed when a resource joins a 

largely static resource pool, alternatively a short running 

standard can be executed prior to the submission of the real 

job, or the information about historical runs of Smith-

Waterman across resources can be kept in a local repository 

and then a resource-specific task can be performed before the 

job submission. The Dynamic Smith-Waterman relies on the 

availability of such application-specific information from 

Application Performance Database (AppDB) from the 

Application Information Services (AIS) [28] where runtime 

characteristics of previous application executions are stored 

and made available for extraction and analysis. 

Final runtime results of Smith-Waterman-specific 

optimizations implemented as part of Dynamic Smith-

Waterman are shown in Fig. 8. Obtained performance results 

are shown along with the runtime performance characteristics 

of the basic query segmentation model and the data 

redistribution model resulting from the application of the first-

fit decreasing algorithm.  

 

 

 

 

 

 

As such, results obtained in Fig. 8 shows a 52% reduction in 

runtime by using the Smith-Waterman-specific data 

redistribution model. Incorporating the Smith-Waterman-

specific resource weight factor into the data distribution 

model and implementing the Dynamic Smith-Waterman 

application results in additional 16% reduction of the overall 

job runtime. 

 

 

 

On the third set of experiment the same input for query was 

used for searching. But in this case the database was 

segmented instead of the query input. The entire query search 

has been performed on all the local nodes of grid resources. 

After performing search on the specified resources the results 

are returned to the master-node and then it compares the result 

strings for the optimal search result. Fig. 9 shows the 

comparison of job runtime between the basic query 

segmentation and database segmentation. The results obtained 

in Fig. 9 shows using query segmentation reduces 17% 

runtime compared to database segmentation. 

4. CONCLUSION AND FUTURE WORK 
This paper presents the detail regarding development of a true 

grid enabled application with detailed architecture, 

implementation and performance results of Dynamic Smith-

Waterman that can be accessed by a web portal. Dynamic 

Smith-Waterman is a powerful application used to perform 

Smith-Waterman searches on widely available grid resources. 

Described application achieves set goals by exploiting Smith-

Waterman -specific characteristics to meet job requirements 

of resource capabilities, resulting in performance 

improvements exceeding 52%. At the same time, given 

approach enables efficient execution of Smith-Waterman jobs 

across general grid resources in a simple fashion resulting in 

significantly easier access to otherwise individual and 

heterogeneous grid resources that a user may have to deal 

with. From obtained experience and as part of future work, we 

plan on extending derived functionality into a general 

framework that would enable easier development of 

application-specific grid wrappers or applications where 

benefits observed in case of Dynamic Smith-Waterman can be 

easily realized. 
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