
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

38

Dynamic Smith-Waterman Algorithm: A High-
Performance Grid-Enabled Application Integrated with

Globus, GridSphere Portal Framework and CoG
Workflow for Performing Biological Local Sequence

Alignment

Md. Khairul Bashar
Chowdhury

Islamic University of
Technology (IUT)

Gazipur, Bangladesh

Md. Rubaiyet Sadi
Islamic University of

Technology (IUT)
Gazipur, Bangladesh

Tanzeem Bin Noor
Islamic University of

Technology (IUT)
Gazipur, Bangladesh

Md. Mahbub-ul-
Alam

Islamic University of
Technology (IUT)

Gazipur, Bangladesh

ABSTRACT

Smith-Waterman algorithm is one of the most significantly

used algorithm and a well known approach to gain

information about unknown genes and proteins for biological

research. As execution time and accuracy is of great

significance as handling large-scale dataset, a more reliable

high-throughput and efficient parallelism can be achieved

with the adaptation of grid environment. Adapting Smith-

Waterman algorithm with the grid environment brings several

concerns regarding fault tolerance, variability in resource

performance and workload distribution, application

availability etc. The work presented here aims at the

development of a Dynamic Smith-Waterman algorithm

metascheduler that handles all the specifications of job

submission on the grid to the end user for local alignment

search. Additionally a web based portal using GridSphere

portal framework integrated with Globus 4 and Java

Commodity Grid Kit is developed that reduces the complexity

to the end users in accessing, managing and manipulating the

grid resources and applications. The main contribution

towards Dynamic Smith-Waterman algorithm is the reduction

of the total job execution time up to 52% with accuracy up to

99.99% and better resource utilization by 40%. In addition,

this work can be used as a template for the development of

similar applications in future.

General Terms

Grid, Biological local sequence alignment algorithm

Keywords

Grid, Globus, GridSphere, Java Commodity Grid Kit,

Scheduling, Smith-Waterman algorithm

1. INTRODUCTION
Grid computing [1] enables sharing, selection, and

aggregation of geographically distributed resources including

supercomputers, storage systems, data sources, and

specialized devices owned by different organizations in order

to solve large-scale resource-intensive problems in science,

engineering and commerce. It follows a service-oriented

architecture that provides hardware services, software services

and infrastructure for secure and uniform access to

heterogeneous resources and enables the formation and

management of virtual organization (VOs) [2]. One of the

main advantages of grid computing is its affordability, since

each node can be purchased separately at a low cost, yet when

combined can produce the power of an expensive

multiprocessor supercomputer. Now, when a VO exists, the

application needs to be deployed on the grids available

resources. The deployment of grid application includes

transfer of the entire application (i.e., source code, dataset,

scripts) to a remote site, compiling the application on the

remote host and making it available for execution. But before

the deployment, the application should be classified and grid-

enabled [3] according to the requirements of specific

application. As for enabling the application for grid

environment, the amount of effort required is greatly

influenced by the application that is being grid-enabled.

However, based on the parallelization methods and modes

employed by the application may be more suitable than other

on the grid.

Based on the application communication patterns and the

parallelization model, applications on grid can be divided into

in the following general categories [4]:

 Sequential applications

 Parametric Sweep applications

 Master-Worker applications

 All-Worker applications

 Loosely coupled parallel applications

 Tightly coupled parallel applications

 Workflow applications

Applications belonging to categories 1 through 4 are easier to

be grid-enabled in decreasing order, while applications

belonging to remaining categories may require rewriting of

the complete application before it can be adopted to execute

on the grid resources.

After gaining access to a grid environment through a VO and

enabling an application for grid environment, users

immediately expect an increase in performance of application

jobs which is proportional to the number of resources

available on the grid. This paper shows such a methodology

that will use the available resources with a significant increase

in performance. This can be contributed to the high degree of

variability individual applications impose on underlying

resources in terms of their requirements making generalized

or standardized approaches fall short of realizing set goals.

Because of such variability, general purpose metascheduler

[5] do not focus on understanding application-specific

requirements and thus cannot realize application-specific job

scheduling and job performance. In order to realize such

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

39

q1 q2 q3 qn

DATABASE

QUERY

d2 d1 d3 dn

A

B

Fig 1: Two models for parallelizing Smith-Waterman

algorithm: (A) Query segmentation and (B) Database

segmentation.

behavior, application-specific schedulers are needed to focus

on specific needs of an individual application.

With such multiple factors not only make it difficult to

execute applications across grid resources but also executing

an application efficiently. It can be concluded that a typical

grid user will be hard-pressed to realize desired behavior for

their jobs. In order to alleviate a user form these low-level

infrastructure details, help of specialized and higher-end tools

that mange grid infrastructure details is needed. On these

extents this paper presents a design and implementation of the

most commonly used algorithms for biological local sequence

alignment where similar entries in the database is searched,

namely Smith-Waterman algorithm [6].

The Smith-Waterman algorithm determines optimal local

alignments between nucleotide or protein sequences and is

therefore used in a wide range of areas from estimating

evolutionary histories to predicting behaviors of newly found

genes. However, the exponential growth in the nucleotide and

protein databases has made the Smith-Waterman algorithm

impractical to search on these databases because of its

quadratic time and space complexity.

As a result, this led to innovations on the non-algorithmic

front — specifically, special-purpose hardware solutions on

FPGAs [7], [8] and linear processor arrays [9].

Simultaneously, there were also developments on the

algorithmic front that gave rise to heuristics such as FASTA

[10] and the BLAST [11] family of algorithms that sacrificed

sensitivity for speed. These solutions present a multitude of

trade-offs in terms of speed, cost and sensitivity of the

sequence-search solutions. However, this presents a complete

optimal sequence alignment (i.e., calculating the score and

generating the alignment) using the affine gap penalty scoring

scheme [12] that will deliver high speed, low cost, and ideal

sensitivity via an ideal parallelization of the Smith-Waterman

algorithm.

For the implementation of dynamic Smith-Waterman

application there are two ways of segmentation procedure. In

the database segmentation method, each cluster node only

needs to search a query against its portion of the sequence

database. Alternatively, query segmentation can be applied to

alleviate the burden of searching jobs. In the query

segmentation method, instead of the database, a subset of

queries is distributed to each cluster node, which has access to

the whole database. Fig. 1 points at the differences and the

execution modes of the two Smith-Waterman parallelization

models.

Because of the physical limitations encountered during

parallelizing Smith-Waterman, traditional high performance

computing technologies and techniques have been adopted as

the solution to grid-enable Smith-Waterman algorithm. The

Smith-Waterman algorithm has a broad community whose

grid-enablement clearly brings significant benefit to the

scientific community as it provides most accurate results. As

similar efforts of grid-enabling, Smith-Waterman have not

been undertaken yet our effort is described in this paper by

providing details on developing Dynamic Smith-Waterman

application – a grid-enabled Smith-Waterman algorithm.

Hence our approach includes -

 Enabling Smith-Waterman application to execute

across grid environments through a simple user

interface (a web portal), thus hiding all complexities

of underling infrastructure.

 Developing a Smith-Waterman application execution

model for heterogeneous grid environments that

analytically captures dependencies between the

application and available resources.

 Finally incorporating a Smith-Waterman application-

specific metascheduler into the execution model that

implements the Smith-Waterman application

execution model and is capable of understanding and

leveraging heterogeneity of compute resources found

across a grid to minimize job runtime.

The remainder of the paper is organized as follows: Section 2

provides an overview of the architecture, Smith-Waterman

algorithm execution model and implementation details of

Dynamic Smith-Waterman application. Results of executing

Dynamic Smith-Waterman application on both query

segmentation and database segmentation procedure and a

comparative study over both parallelization models are

provided in Section 3. Section 4 summarizes the paper and

suggests some future work.

2. IMPLEMENTATION DETAILS
This section provides an overview of Dynamic Smith-

Waterman application architecture and implementation details

of the application.

2.1 Architecture Overview
The work discussed in this paper deals with a high-throughput

application belonging to the minimal inter-node

communication of applications. Although such applications

are embarrassingly parallel and entail multiple executions of

the same executable against different data, the challenges

associated with creating a seamless Grid-enabled application

are formidable. These include scheduling of the jobs on the

various Grid nodes, staging of input files, executable

databases and results between the initiating node and the

remote nodes, setting up the executable and directory

structures on the remote nodes, spawning of jobs on the

remote nodes etc. Although an easier option would be to a

priori transfer the relevant databases, input files and

executable on the remote nodes, it would not be a truly

independent Grid application.

Implementation of Dynamic Smith-Waterman application has

been done with the consideration of these issues that ensures

maximum flexibility and high end-user applicability.

Furthermore, in developing an application for the Grid, it is

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

40

Fig 2: High level diagram of interactions between Grid

components and Dynamic Smith-Waterman application

essential to have a unifying middleware that can provide a

transparent interface to the underlying protocols. The Globus

toolkit [13], developed as part of the Globus Project [14], is a

software toolkit that addresses key technical problems in the

development of Grid-enabled tools, services and applications.

The Globus toolkit is a modular collection of technologies and

enables the incremental development of Grid-enabled tools

and applications. In addition, the toolkit implements standard

Grid protocols and application program interfaces (APIs). The

general approach in the development of the Globus toolkit is

to define Grid protocols and APIs such that the protocols

mediate the access to remote resources.

A web portal has been designed for the above work to provide

the user an easy web based access to resources and to avoid

complexity of installing grid softwares on end user machines.

This has been implemented using GridSphere Portal

Framework [15], a European project GridLab [16], developers

of GPDK [17]. GridSphere provides grid-specific portlets and

APIs for grid-enabled portal development that is compliant

with JSR 168. Moreover, it allows for more high-level portlets

using visual beans and GridSphere’s user interface tag library.

The portal uses a secure login and is then presented with a

basic GUI based interface to the applications and other

services.

Dynamic Smith-Waterman application has been developed

using Java on top of the Globus 4.0.7 and has adopted the

Java Commodity Grid (CoG) Kits [18] and Distributed

Resource Management Application API (DRMAA) [19]

standard for all job invocation operations. Furthermore,

Dynamic Smith-Waterman application was built on top of

GridWay [20], a grid job management system, for all job

submission activities. A high level overview of Dynamic

Smith-Waterman application’s interaction with grid

components is given in Fig. 2.

Fig. 2 shows that authentication and authorization have been

moved outside the Dynamic Smith-Waterman application

where the user is required to have valid X.509 GSI proxy

credentials [21] before any job invocation. Resources

available for job submission are discovered dynamically

through GIS/MDS [22] which utilizes LDAP [23] to execute

queries. SWAgent is a locally developed utility that monitors

Smith-Waterman application related parameters across

various resources such as application installation, setting input

and output data locations, prepare for execution etc.

Interaction with GridWay is performed through DRMAA API

and is used for all job submission and monitoring activities.

Dynamic Smith-Waterman application handles resource

selection and data distribution; however, resource allocation,

data transfer, and job monitoring are all delegated directly to

the GridWay. Introduction of GridWay in Dynamic Smith-

Waterman application development brings greater modularity

and portability in application state. CoG provides added

functionality to implement Java-based GSI, gridFTP,

myProxy, and GRAM. As adoption of DRMAA standard

within GridWay alleviates direct dependencies of Dynamic

Smith-Waterman algorithm to GridWay, so further modularity

of developed application increase.

2.2 Smith-Waterman application

architecture
Analysis of Smith-Waterman parallelization methods and grid

resource characteristics has led Dynamic Smith-Waterman

application to be internally developed under the master-

worker communication model by embedding required

components into a hierarchical framework. The master-

worker model allows a single process to control the resource

selection, data distribution, job submission and

parameterization, as well as job monitoring. Thus, selected

application model maximizes execution flexibility, code

modularity and fault tolerance.

Going hand in hand with the master-worker model becomes

the main choice regarding the parallelization model of Smith-

Waterman jobs (i.e., query segmentation or database

segmentation).Suitability of one method over another is

dependent on both data and resource [24]. Thus based on the

current resource availability, a method can often be found

more appropriate than the other. So both query segmentation

and database segmentation model is present in this

application. The diagram of the components and dataflow is

provided in Fig. 3 for both of the models. The main

components of the given architecture for master node are:

 Analyze the input file

 Create schedule plan

 File (or database) parsing and fragmentation plan

 Thread creation

 Spawn remote jobs

 Gather result and cleanup procedure

Analyzing input file includes statistical analysis of user input

query file to extract some parameters needed in later steps of

input data processing. This information includes the number

of queries, the average query length, the standard deviation

etc. These information are then stored internally in a specific

format for future work.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

41

Create Schedule Plan module uses information retrieved by

the Analyze input file module to perform on-line scheduling

and job parameterization. This is the core module of Dynamic

Smith-Waterman application and it implements a Smith-

Waterman application performance model for resource

selection and data distribution. The schedule plan is realized

by implementing Eq. (1) for resource selection and Eq. (4) for

data distribution.

T
i

j
R

i

j
S

i

j
R

T
i

j
R

i

j
S

i

j
R

RS jj

,

,

| (1)

From Eq. (1)
jS represents the set of resources to be

selected for execution of job j and it is further described

through Eq. (2) and (3). In respective equations,
jR refers to

the set of available resources capable of executing job j and

T refers to the threshold value. Performance rate of

individual resource from the perspective of Smith-Waterman

job j is calculated as a combination of the size of resource i ,

namely in that represents the total number of processing

elements (i.e., cores) and the performance rate of individual

processing element on resource i for the specific job j . Job

performance rate is obtained from historical analysis of

performance of Smith-Waterman application on a specific

resource.

i

j
WR j (2)

i

j
Pn

i

j
W i * (3)

i

j
WD

n

n
d

Rj

j

j

i
i **

0

 (4)

For Eq. (4), id represents the size of a task data chunk

assigned to resource i ; in represents the number of

processing elements on resource i ; D is the total size of user

input (in the case of query segmentation process) or the total

size of the target database (in the case of database

segmentation process) and
i

j
W is the normalized weight or

performance rate of the resource i . The result of executing

the Schedule Plan module is a concrete plan for resource

assignment and data distribution that is followed during the

remainder of the job execution.

File (or database) parsing and fragmentation plan module

reads the generated Job Plan and proceeds in two steps.

Initially, it splits the original user query file into chunks (in

the case of query segmentation process) or splits the target

database into multiple databases (in the case of database

segmentation process), one for each resource, whose size is

available from the Job Plan as derived from Eq. (4). Each data

chunk id is then further subdivided into fragments if . This

is done according to equation (5), i.e., proportionally to the

number of processing elements in within any one resource:

i

i

i
n

d
f (5)

Thread Creation takes place when the master thread creates

worker threads; one thread is created for each resource.

Individual Threads read their respective part of the Job Plan to

parameterize given task. Because of such granular approach to

job plan generation and execution, as stated earlier, different

Smith-Waterman application and parameters can be used for

different resources. This allows customization and maximizes

resource utilization as well as very high level of user support

and Quality of Service (QoS). Jobs are submitted directly by

threads to individual resources through DRMAA and

GridWay while the master thread waits on the threads to

complete. Individual threads initiate output file transfer back

to the initial job submission resource before completing their

execution. If a resource fails or a task does not complete its

execution as planned, the master thread could resubmit just

the given task to another resource.

Spawn remote jobs take place on each worker node where

worker nodes connect to the GASS server on the master node.

Once the server-to-server connections are made, the master

node initiates the transfer of the necessary executable,

database and query files and upon compilation sets up the

executable as on the schedule plan describes earlier. As each

node completes its quota of queries, the results are copied

back to the master node.

Thread creation module is a part of the master thread and its

primary task is to combine all the output and result files into a

single result file presented to the end user. Any cleanup and

additional tasks such as bookkeeping of performance results

are performed in this step as well. Similarly, collecting results

Create Schedule Plan

Jobs

Analyze input file

Spilt input file

Copy executable, database or

query file

Job Thread

Gather result & cleanup

procedure

Spilt database

Node 1 Node 2 Node n

Job Thread Job Thread

Fig 3: Dataflow diagram for Dynamic Smith-

Waterman application

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

42

and cleanup procedure module is included in the master

thread combining all the output and result files into a single

result file presented to the end user is its primary task. Any

cleanup and additional task, such as measuring the

performance metrics and save them into appropriate place to

visualize are done in this module as well.

3. EXPERIMENTAL RESULTS
This section presents the experimental setup and performance

results of Dynamic Smith-Waterman application across

iutGRID (a local grid environment inside the university

campus) resources. At first a web portal has been developed

for testing the functionalities of the grid and then several

applications were deployed into the grid. Performance

comparison of the Smith-Waterman application is performed

as an iterative process with both the basic query segmentation

model and database segmentation model for parallelizing

Smith-Waterman application and building the Smith-

Waterman application specific metascheduler model

described in the previous section to derive application-specific

customizations that yield improved Smith-Waterman job

performance.

3.1 Environment setup
The experiment of performance measurement of Dynamic

Smith-Waterman application has been conducted on the

resources available on iutGRID. A portal named TeraGrid

Portal was developed for accessing the application. A

snapshot of portal is given in Fig. 4. The resources of

iutGRID are located across the department labs, student

dormitories; each resource is locally administered with

applicable policies and procedures in place. All of the

resources on the grid had a version of GLOBUS installed and

required input data available for use. Technical resource

details are provided in Table 1.

Table 1. Architectural details of resources on IUTGrid

Resource Type A Type B Type C

Processor
Intel Core

2 Duo

Intel

Core i3

Intel Dual

Core

Processor speed

(MHz)
2.80 2.93 3.2

Main Memory(GB) 2 2 2

Cache (MB) 4 4 2

No. of nodes 7 5 3

No. of processor 14 10 6

We used the popular nr (non-redundant) database to search

against. The nr database is a non-redundant protein database

with entries from GenPept, Swissprot, PIR, PDF, PDB, and

RefSeq. The version used was 113 MB in size and available

for download from the National Center for Biotechnology

Information (NCBI) [25]. The input file used consisted of 128

search queries those were randomly selected from the Viral

Bioinformatics Resource Center (VBRC) [26] database. The

VBRC database contains the complete genomic sequences for

all viral pathogens and related strains that are available for

about half a dozen of virus families.

3.2 Performance definitions
In order to evaluate the results obtained from the execution of

the application, it is necessary to define certain criteria.

Specifically, while developing applications on the Grid, it is

essential to define conditions for Grid-feasibility or

infeasibility, that is, the criteria for measuring efficiency of a

Grid-enabled application under the given conditions and

resource set. Two essential measures that are needed to

evaluate the performance of a Grid-application are Grid-

speedup and Grid-efficiency. These are defined as follows.

 Definition 1: The Grid-speedup, GS is defined as the

ratio of the total time taken by an application on a

local node, 1T of 1p processors to that taken on

GN nodes on the Grid, gT as Eq. (6)

g

G
T

T
S 1 (6)

 Definition 2: The Grid-efficiency, GE is defined as

the ratio of Grid-speedup, GS to the total number of

processors P on GN nodes as Eq. (7)

P

S
E G

G (7)

Grid-feasibility can then be defined as follows.

 Definition 3: A Grid-enabled application is said to be

Grid-feasible if the Grid-speedup 1GS .

3.3 Performance Analysis
Performance of Dynamic Smith-Waterman application is

measured with the definitions stated above for both basic

query segmentation and database segmentation model.

Dynamic Smith-Waterman application is designed to support

single or multiple sequence searches against the target

database. In the case of single sequence search the database

segmentation model is initiated. For multiple sequences

searching, both segmentation variant of Smith-Waterman job

parallelization is necessary. Finally the performance of the

query segmentation model against database segmentation

model has been compared with the same sequence file.

Fig 4: Snapshot of TeraGrid Portal

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

43

For the first set of experiment three different size sequences of

64, 128 and 256 characters were used. The experiment is

repeated for finding the grid speedup and efficiency by

increasing the number of processors. Fig. 5(a) and 5(b) show

the corresponding speedups and efficiencies for the three

different searching sequence sizes respectively. From the

graph it is clear that the application is grid-feasible as the

speedup is greater than 1, hence we proceed to the other

experiments.

 (a)

(b)

The second set of experiment shows how many the query

segmentation variant operates under the model of dividing the

total number of input queries across individual resources

based on those resources' relative size. As such, resource

weight factor from Eq. (4) is uniformly set to 1 and derived

equation can thus be used to derive proportional amount of

data that should be assigned to each resource. Given resource

availability from Table 1, data distribution is obtained using

Eq. (4), shown in Fig. 6.

After obtaining job parameters for the basic query distribution

parallelization model, the Smith-Waterman approach of

sequence alignment job has been executed across the available

resources and the recorded runtime data for the basic query

segmentation model are shown in Fig. 7. As master-worker

parallelization model was used on the

application, the overall job was considered to be complete after

the longest job on the resource had finished. As a result of this

scenario, load imbalance comes into front and a big

discrimination is noticed in performing individual jobs on the

resources. So, obviously the next step is to minimize the load

imbalance across the individual resources by analyzing the

issues behind the imbalance.

Analyzing the application in a context of performance, load

imbalance can be explained by two properties. The first

property is of Smith-Waterman algorithm that describes the

runtime of the algorithm is significantly affected by the length

of the given query input for search against the database. By

simply taking the input file provided and dividing it into a

number of chunks at predetermined data points, the type of

data that gets assigned to individual nodes within a resource

can vary greatly and so result in the load imbalance problem

as lengths of individual queries vary greatly as well as spread

unevenly across the provided input file. As these data chunks

are divided among the available nodes on a particular

resource, an inappropriate type of queries in length results in a

load imbalance.

Dynamic Smith-Waterman addresses this issue by

reorganizing the input data so that a proportional number of

short, medium and long queries are assigned to each

individual node. This problem can be generalized into a bin-

packing problem where the number and size of bins is

predetermined (i.e., number of chunks and number of queries

assigned to each individual resource). For this purpose an

effective and efficient heuristic implementation of the first fit

decreasing algorithm (complexity is nn log where n

is the number of queries) is used, which assigns input data

0

10

20

30

40

50

60

2 4 6 8 10

E
ff

ic
ie

n
cy

 (
%

)

Number of processor

64

128

256

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10

S
p

e
e

d
u

p

Number of processor

64

128

256

Fig 5: Results on single query search of (a) Grid

speedup (B) Grid efficiency

0 100 200 300 400 500 600

Runtime (sec)

Resource Type C

Resource Type B

Resource Type A

Fig 7: Runtime results across the three

resources for query segmentation model

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

q
u

e
ri

e
s

Data distribution

Resource Type A

Resource Type B

Resource Type C

Fig 6: Initial input data distribution based

on the type of resources

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

44

elements across individual bins in a decreasing order for as

long as there is input [27]. As the application was run onto a

heterogeneous and distributed environment the File Parsing

module was introduced for the dynamic Smith-Waterman

application that provided an optimal solution to the load

imbalance problem. The File Parsing module of Dynamic

Smith-Waterman application implements the first fit

decreasing algorithm as a two-step process: at first, the input

file is divided into chunks of proportional type of data as

prepared by the Job Plan, and secondly, each chunk is divided

into a number of proportional fragments, as prepared in the

Job Plan again. By applying the first-fit decreasing algorithm

to reorganize assignment of individual queries to

corresponding nodes, a better data distribution can be

obtained which ensures a much more even distribution of

comparative queries across individual compute nodes. As a

result load balance among the nodes is achieved with better

application runtime across the grid resources.

The second property affecting performance of Smith-

Waterman jobs is the resource standard for the Smith-

Waterman application. This is implemented as the resource

weight factor in Eq. (4) and is realized by performing an

application-specific standard on a given resource. The

standard can be explicitly executed when a resource joins a

largely static resource pool, alternatively a short running

standard can be executed prior to the submission of the real

job, or the information about historical runs of Smith-

Waterman across resources can be kept in a local repository

and then a resource-specific task can be performed before the

job submission. The Dynamic Smith-Waterman relies on the

availability of such application-specific information from

Application Performance Database (AppDB) from the

Application Information Services (AIS) [28] where runtime

characteristics of previous application executions are stored

and made available for extraction and analysis.

Final runtime results of Smith-Waterman-specific

optimizations implemented as part of Dynamic Smith-

Waterman are shown in Fig. 8. Obtained performance results

are shown along with the runtime performance characteristics

of the basic query segmentation model and the data

redistribution model resulting from the application of the first-

fit decreasing algorithm.

As such, results obtained in Fig. 8 shows a 52% reduction in

runtime by using the Smith-Waterman-specific data

redistribution model. Incorporating the Smith-Waterman-

specific resource weight factor into the data distribution

model and implementing the Dynamic Smith-Waterman

application results in additional 16% reduction of the overall

job runtime.

On the third set of experiment the same input for query was

used for searching. But in this case the database was

segmented instead of the query input. The entire query search

has been performed on all the local nodes of grid resources.

After performing search on the specified resources the results

are returned to the master-node and then it compares the result

strings for the optimal search result. Fig. 9 shows the

comparison of job runtime between the basic query

segmentation and database segmentation. The results obtained

in Fig. 9 shows using query segmentation reduces 17%

runtime compared to database segmentation.

4. CONCLUSION AND FUTURE WORK
This paper presents the detail regarding development of a true

grid enabled application with detailed architecture,

implementation and performance results of Dynamic Smith-

Waterman that can be accessed by a web portal. Dynamic

Smith-Waterman is a powerful application used to perform

Smith-Waterman searches on widely available grid resources.

Described application achieves set goals by exploiting Smith-

Waterman -specific characteristics to meet job requirements

of resource capabilities, resulting in performance

improvements exceeding 52%. At the same time, given

approach enables efficient execution of Smith-Waterman jobs

across general grid resources in a simple fashion resulting in

significantly easier access to otherwise individual and

heterogeneous grid resources that a user may have to deal

with. From obtained experience and as part of future work, we

plan on extending derived functionality into a general

framework that would enable easier development of

application-specific grid wrappers or applications where

benefits observed in case of Dynamic Smith-Waterman can be

easily realized.

5. ACKNOWLEDGMENTS
This work was made possible in part by helping with the labs

and resources from the Department of Computer Science and

Information Technology (CIT) at the Islamic University of

Technology (IUT). The authors would like to thank the

various system administrators who helped them in making the

grid and running the application on the Grid.

0

100

200

300

400

500

600

a b c

R
u

n
ti

m
e

 (
se

c)
 Resource Type A

Resource Type B
Resource Type C

0

50

100

150

200

250

R
u

n
ti

m
e

 (
se

c)

Query Segmentation

Database Segmentation

Fig 8: Runtime characteristics of (a) basic query

segmentation parallelization (b) first-fit decreasing

data re-distribution, and (c) Dynamic Smith-

Waterman (weighted first-fit decreasing).

Fig 9: Comparison between basic Query

segmentation and Database segmentation

module

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

45

6. REFERENCES
[1] Ian Foster and Carl Kesselman, “The Grid: Blueprint for

a New Computing Infrastructure,” Morgan Kaufman

Publishers, San Francisco, California, 1998. (references)

[2] Ian Foster, Carl Kesselman, Steven Tuecke, “The

anatomy of the Grid: Enabling scalable virtual

organizations,” International J. Supercomputing

Applications, 15(3), 2001.

[3] Gabrielle Allen, Tom Goodale, Michael Russel, Edward

Seidel,and John Shalf, “Classifying and enabling grid

applications,” Concurrency: Pract. Exper. 2000; 00:1-7.

[4] E. Afgan, P. Bangalore, and J. Gray, "A Domain-Specific

Language for Describing Grid Applications," in

Designing Software-Intensive Systems: Methods and

Principles, P. F. Tiako, Ed., 2007.

[5] A. Kertesz and P. Kacsuk, " A Taxonomy of Grid

Resource Brokers," in Distributed and Parallel Systems

from Cluster to Grid Computing, 1 ed, P. Kacsuk, T.

Fahringer, and Z. Nemeth, Eds.: Springer, 2007, pp. 201-

210.

[6] T. F. Smith and M.S. Waterman, “Identification of

common molrcular subsequences,” J Molecular Biology,

vol. 147 pp. 195-197, 1981.

[7] D. Lavenier, “Dedicated hardware for biological

sequence comparison,” Journal of Universal Computer

Science, vol. 2, no. 2, pp. 77–86, 1996.

[8] Y. Yamaguchi, T. Maruyama, and A. Konagaya, “High

Speed Homology Search with FPGAs,” Pacific

Symposium on Biocomputing 7:271-282 (2002).

[9] R. Hughey, “Parallel hardware for sequence comparison

and alignment,” Comput Appl Biosci. 1996

Dec;12(6):473-9.

[10] D. J. Lipman and W. R. Pearson, “Rapid and sensitive

protein similarity searches.,” Science, vol. 227, pp.

1435–1441, March 1985.

[11] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D.

J. Lipman, “Basic local alignment search tool.,” J

MolBiol, vol. 215, pp. 403– 410, October 1990.

[12] A. M. Aji, W. Feng, F. Blagojevic, and D. S.

Nikolopoulos, “Cell-SWat: Modeling and Scheduling

Wavefront Computations on the Cell Broadband

Engine,” in Proc. of the ACM International Conference

on Computing Frontiers, May 2008.

[13] I. Foster and C. Kesselman, "The Globus toolkit," in The

Grid: Blueprint for a New Computing Infrastructure, I.

Foster and C. Kesselman, Eds., San Francisco,

California: Morgan Kaufmann, 1999, pp. 259--278.

[14] The Globus Project. http://www.globus.org.

[15] Jason Novotny, Michael Russel, and Oliver Werens.

GridSphere: An Advanced Portal Framework. In

EUROMICRO ’04: Proceedings of the

30thEUROMICRO Conference, pages 412-419,

Washington, DC, USA, 2004. IEEE Computer Society.

[16] The GridLab Project. http://www.gridlab.org

[17] Jason Novotny.The Grid Portal Development Kit.

Concurrency and Computations: Practice and

Experience, 14(13-15):1129-1144,2002.

[18] Gregor von Laszewski, Ian Foster, JarekGawor, and

Peter Lane.A Java Commodity Grid Kit. Concurrency

and Computations: Practice and Experience, 13(89):643-

662, 2001.

[19] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner, A.

Haas, B. Nitzberg, and J. Tollefsrud, "Distributed

Resource Management Application API (DRMAA)

Specification 1.0 GFD-R-P.022," Global Grid Forum

(GGF) 2004.

[20] E. Huedo, R. S. Montero, and I. M. Llorente, "A

Framework for Adaptive Execution on Grids," Journal of

Software - Practice and Experience, 34(2004, pp. 631-

651.

[21] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, "A

Security Architecture for Computational Grids," in 5th

ACM Conference on Computer and Communication

Security Conference, San Francisco, CA, 1998, pp. 83-

92.

[22] K. Czajkowski, S. Fitzgerald, I. Foster, and C.

Kesselman, "Grid Information Services for Distributed

Resource Sharing," in 10 th IEEE Symp. On High

Performance Distributed Computing (HPDC), Los

Alamitos, CA, 2001, pp. 181-195.

[23] G. von Laszewski and I. Foster, Usage of LDAP in

Globus.1999.

[24] C. Wang and E. J. Lefkowitz, "SS-Wrapper: a package of

wrapper applications for similarity searches on Linux

clusters," BMC Bioinformatics, 5(171), 2004.

[25] The NCBI database. http://www.ncbi.nlm.nih.gov/

[26] The VBRC home. http://www.biovirus.org/

[27] J. Y.-T. Leung, Ed. Handbook of Scheduling:

Algorithms, Models, and Performance Analysis, 1st ed.,

vol. 1: CRC Press, 2004.

[28] E. Afgan and P. Bangalore, "Assisting Efficient Job

Planning and Scheduling in the Grid," in Handbook of

Research on Grid Technologies and Utility Computing:

Concepts for Managing Large-Scale Applications, E.

Udoh and F. Z. Wang, Eds.: IGI Global, 2009.

