
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

1

Hardware / Software Co-Design using LEON3
Processor: AES as Case Study

Priti S. Chimankar

Research Scholar
Department of Electronics

Engineering,
Shri Ramdeobaba College of

Engineering and Management,
Nagpur, India

Meghana A. Hasamnis
Associate Professor

Department of Electronics
Engineering,

Shri Ramdeobaba College of
Engineering and Management,

Nagpur, India

S. S. Limaye, Ph.D
Principal

Jhulelal Institute of Technology,
Nagpur, India

ABSTRACT
Nowadays many powerful public domain IP cores are

available for complicated component like 32 bit processor i.e.

LEON3. It needs considerable expertise and pain taking

experimentation to implement a hardware/software co-design

project. This paper presents step-by-step description for AES

algorithm implementation on LEON3 processor. This will

prove to be valuable to researchers working in this area and

save their valuable time.

The concept of GPIO (General Purpose I/O Port) is

introduced; through which any custom hardware i.e. own

designed hardware or IP core can be interfaced with the open

source processor. AES encryption algorithm is selected as an

IP core to be interfaced with LEON3 processor. AES is

implemented in VHDL, while the control of the algorithm is

in software. AES algorithm partitioned in hardware and

software. The complete algorithm in hardware and control of

algorithm in software. The part of algorithm in hardware is

interfaced with the system designed using processor as a

custom hardware and performance parameters studied. AES

implemented using Codesign approach. AES is the latest

encryption standard used to protect confidential information

like financial data for government and commercial use. The

LEON3 is a synthesizable VHDL model of a 32-bit processor

available under the GNU GPL license. The design is

implemented on Cyclone II FPGA from Altera Corporation.

Keywords
Advanced Encryption Standard (AES), LEON3 Processor,

GPIO (General Purpose I/O Port), Cyclone II FPGA.

1. INTRODUCTION
An embedded system is a combination of processor along

with software specifically designed for a particular function.

With increasing complexity of the systems, sub-micron

technologies are used significantly. Device density and

complexity of embedded applications also increases, with

requirements for high performance, miniaturization, long

battery life etc. Advanced ASIC & FPGA technologies allow

to integrate complex systems on a single chip. For high

processing performance, reducing power consumption SoC

(System on chip) technology is used [1, 2].

Different commercial packages are available for System on

Chip design like Xilinx EDK or Altera Nios II IDE, for the

design of embedded system. They provide proprietary soft

cores and the tools needed for implementing them in the

manufacturer's FPGAs. These commercial solutions have

certain limitations. The most important is that the

implemented soft cores are dependent on the manufacturer's

specific hardware. These soft cores are also closed source, so

modifications or enhancements to these soft cores are

impossible. For low budget projects, the cost of these software

packages is unaffordable. Therefore, it is preferable to use

open source cores [3] which are freely available from open

source communities, for example open source core LEON3 by

Gaisler Research [4, 5] and Open RISC 1200 from open cores.

2. AES ALGORITHM
The National Institute of Standards and Technology, (NIST),

solicited proposals for the Advanced Encryption Standard

(AES). The AES is a Federal Information Processing

Standard, (FIPS), which is a cryptographic algorithm that is

used to protect electronic data [6]. The AES algorithm is a

symmetric block cipher that encrypt (encipher), and decrypt

(decipher), information. Encryption converts data to an

unintelligible form called cipher-text. Decryption of the
cipher-text converts the data back into its original form, which

is called plaintext. The AES algorithm is capable of using

cryptographic keys of 128, 192, and 256 bits to encrypt and

decrypt data in blocks of 128 bits [7]. The Rijndael algorithm

was developed by Joan Daemen of Proton World International

and Vincent Rijmen of Katholieke University at Leuven.

The structure of AES-128 Encryption is shown below in

“Figure 1”. The initial 128-bit key is fed into the Key

Expansion function which produces separate keys for each of

the 10 required rounds. These rounds combine their scheduled

keys with a two dimensional representation of the input (the

State”) using various transformations:

 Addroundkey –The Addroundkey transformation

Addroundkey (), adds the round key to the State using a

bitwise XOR operation.

 Subbytes - The bytes substitution transformation

Subbyte () is a non-linear substitution of bytes. It

operates independently on each byte of the State using a

substitution table (S-box).

 Shiftrows - In the Shift Rows transformation

Shiftrows (), the bytes in the last three rows of the State

are cyclically shifted over different numbers of bytes

(offsets). The first row, r = 0, is not shifted.

 Mixcolumns –The mix column transformation

Mixcolumns (), separately modifies each column of the

state using a matrix multiplication operation [8].

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

2

Fig 1: AES Encryption [7]

3. DESIGN ENVIRONMENT
The design environment, consists of LEON3 processor, and is

developed on CentOS-5.4 operating system, the Linux

platform.

LEON3 is a 32-bit CPU microprocessor core conforming to

the IEEE-1754 (SPARC V8) architecture and instruction set

and is a part of GRLIB IP library. The LEON3 processor is

designed for embedded applications, combining high

performance with low complexity and low power

consumption. The model is highly configurable, support

power-down mode and clock gating with robust and fully

synchronous single-edge clock design [4].

LEON3 processor uses the AMBA-2.0 AHB bus to connect

the main processor with high-speed controller like cache,

memory and other optional units like the on chip RAM or PCI

or Ethernet interfaces. Another AMBA-2.0 APB bus is used

to access most on chip peripherals. It is optimized for simple

operation and low-power consumption. It is connected to the

AHB and LEON3 via the AHB/APB Bridge, which is master

of that bus. LEON3 external memory access is provided by a

programmable memory controller with interfaces to PROM,

SRAM, SDRAM and memory mapped I/O peripherals. The

controller can decode a map of up to 2 Gbytes. The processor

is extensively configurable and can be efficiently

implemented on both FPGAs and ASIC technologies [3].

The architectural block diagram of LEON3 processor is

shown in “Figure 2”.

Fig 2: LEON3 Template Design Block Diagram [5]

4. INTERFACING AES AS CUSTOM

HARDWARE WITH LEON3

PROCESSOR

To interface AES as custom hardware with LEON3 Processor,

there are two possible ways,

 Interfacing AES as custom hardware to AMBA AHB bus

or AMBA APB bus.

 Interfacing AES as custom hardware to AMBA APB

through GPIO’s.

Since, the design which we have selected i.e. Leon3-altera-

de2-ep2c35, from GRLIB IP Library, has two General

Purpose I/O Port (GPIO), interfaced with LEON3 Processor,

it is more flexible and relatively easy, to interface AES

through GPIO’s. The detailed description of GPIO and how it

is used to interface AES with LEON3 processor is given

below.

4.1 GPIO – General Purpose I/O Port
The general purpose input output port core provided by

Gaisler Research, under the template design, is scalable. It

provides optional interrupt support. The port width can be set

to 2 - 32 bits through the n bits VHDL generic (i.e. n bits =

16). Each bit in the general purpose input output port can be

individually set to input or output, and can optionally generate

an interrupt. It is possible to share GPIO pins with other

signals. The output register can then be bypassed through the

bypass register. The “Figure 3” shows a diagram for one I/O

line.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

3

Fig 3: General Purpose I/O Port Diagram [4]

The I/O ports are implemented as bi-directional buffers with

programmable output enable. The input from each buffer is

synchronized by two flip-flops in series to remove potential

meta-stability. The synchronized values can be read-out from

the I/O port data register. They are also available on the

GPIOO.VAL signals. The output enable is controlled by the

I/O port direction register. A ‘1’ in a bit position will enable

the output buffer for the corresponding I/O line. The output

value driven is taken from the I/O port output register [4].

A GPIO pin can be shared with other signals. The ports that

should have the capability to be shared are specified with the

bypass generic (the corresponding bit in the generic must be

1).The unfiltered inputs are available through

GPIOO.SIG_OUT and the alternate output value must be

provided in GPIOI.SIG_IN. The bypass register then controls

whether the alternate output is chosen. The direction of the

GPIO pin can also be shared, if the corresponding bit is set in

the bpdir generic. In such case, the output buffer is enabled

when GPIOI.SIG_EN is active.

4.2 AES Interfaced with LEON3 Processor
“Figure 4” shows the LEON3 processor architecture, where

AES block is connected through GPIO’s to LEON3 processor.

Fig 4: AES Core Interfaced With LEON3 Processor

Since the GPIO is of 32 bits, but the plaintext and key input

that we have to provide to the AES block are of 128 bits, 32

bits of GPIO port are not sufficient and also some of the pins

are also required for the control signals. So to solve this

problem, we have placed one demultiplexer before AES core

and one multiplexer after AES core. The diagram depicting

this is shown in “Figure 5” below.

Fig 5: Block Diagram of AES Interfaced with GPIO

The template design selected, has two GPIO’s, out of which

one is used to provide input to the AES core and other is used

to take output from AES core. GPIO1 is configured for 25

bits, out of which 16 LSB line are used to provide plaintext

and key input through demultiplexer and remaining 9 lines are

used to provide control signals. GPIO2 is configured for 18

bits, out of which 16 LSB are used to take output i.e. cipher

text , and remaining two lines are to provide indication of

whether the encryption is complete or not.

5. DESIGN STEPS

5.1 Configuration of LEON3
The first step in design process is the configuration

of LEON3 processor according to our requirements. For the

configuration of LEON3 processor, first enter into the

directory grlib-gpl-1.1.0-b4113/designs/LEON3-altera-de2-

ep2c35 and then give the command, make xconfig

Fig 6: Configuration of LEON3 Processor

Using GUI interface configure various aspects of LEON3

processor. Click the ‘Processor’ button and it will give various

options for configuring integer unit, floating-point unit, cache

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

4

system, memory management unit, debug support unit etc.

For this project we have disabled the floating-point unit and

memory management unit and enabled debug support unit and

Accelerated UART tracing. To copy the configuration to the

LEON3-altera-de2-ep2c35/config.vhd file click on ‘save and

exit’.

5.2 Compilation of control program

written in C

To compile the control program written in C, we have to first

copy the program in systest.c of directory grlib-gpl-1.1.0-

b4113/designs/LEON3-altera-de2-ep2c35 and then give

command, make soft

The program in systest.c get compiled into an sdram.srec file

which is loaded into the memory of the processor while

simulation [8].

5.3 Compilation of AES Encryption core

The design can be compiled by giving the following

command in grlib-gpl-1.1.0-b4113/designs/Leon3-altera-de2-

ep2c35 directory, make vsim. It compiles all .vhd files [9].

5.4 Simulation

To simulate the design, first enter into the grlib-gpl-1.1.0-

b4113/designs/LEON3-altera-de2-ep2c35 directory and then

give command, vsim testbench

The subdirectory ‘software’ contains all the test files for the

processor. Each test has been described in a separate file.

These tests are compiled into an sdram.srec file which is

loaded into the memory of the processor while simulation. To

view any signals, add the desired signals from the right hand

side pane to the waveforms. Finally to start the simulation

give command, run - all

It runs the simulation completely. Simulation is halted by

generating a failure. Simulation report is shown below

“Figure 7”.

5.5 Synthesis

The template design can be synthesized with either Synplify,

Quartus or ISE/XST. To synthesize the design using Quartus

II, enter into the grlib-gpl1.1.b4113/designs/LEON3-altera-

de2-ep2c35 directory and then give command , make quartus

It generates leon3mp.qpf and leon3mp.sof in the same

directory [8].

Fig 7: Simulation result on console window

6. RESULT
Simulation result of AES Encryption core interfaced with

LEON3 processor on Modelsim is shown in “Figure 8”

below:

Fig 8: Simulation result on Modelsim

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.19, November 2012

5

AES encryption IP core interfaced with LEON3 processor

using GPIO’s. Time, area and power reports are shown below

in “Table 1”,

Table 1. Synthesis report

AES Algorithm
Total CPU

clock

cycles

required

for

encryption

Area

(Logic

elements)

Power

Dissipat

-ion
Har-

dware

Soft-

ware

AES as

custom

hardware

Control

part
1685

14,149/33,216
(43 %)

420.75
mW

7. CONCLUSION
Step-by-step implementation of AES encryption using

LEON3 processor is given in this paper. AES is connected

with the system designed around LEON3 processor as custom

hardware block and the speed and area required is calculated.

The interface between hardware and software is done through

GPIO’s. This paper will prove to be valuable to researchers

working in this area and save their valuable time.

8. REFERENCES
[1] Specification and Modeling of HW/SW CO-Design for

Heterogeneous Embedded Systems Adnan Shaout, Ali H.

El-Mousa., and Khalid Mattar, Proceedings of the World

Congress on Engineering 2009 Vol I, WCE 2009, July 1

- 3, 2009, London, U.K.

[2] Giovanni De Micheli, fellow, IEEE, and Rajesh K.

Gupta, member, IEEE, “Hardware/Software Co-Design”,

proceedings of the IEEE, Vol. 85, No. 3, March 1997

[3] Declan Staunton, “Successful use of an open source

processor in a commercial ASIC”, D&R Industry

articles.

[4] Gaisler Research, “GRLIB IP Library User’s Manual”,

Version 1.1.0 B4113 January 2012.

[5] Gaisler Research, “GRLIB IP Core User’s Manual”

,Version 1.1.0 - B4113, January 2012.

[6] FIPS PUB 197, Advanced Encryption Standard (AES),

National Institute of Standards and Technology, U.S.

Department of

Commerce,November2001(http://csrc.nist.gov/publicatio

ns/fips/fips197/fips-197.pdf).

[7] J. Daemen and V. Rijmen, “The design of AES-The

Advance Encryption Standard” Springer-Verlag, 2002.

[8] X. Zhang and K. K. Parhi, “High Speed VLSI

Architectures for the AES Algorithm,” IEEE

transactions on VLSI system , vol. 12, no. 9, September

2004.

[9] Jiri Gaisler, “BCC - Bare-C Cross-Compiler User’s

Manual”, Version 1.0.36, April 2011.

[10] Gaisler Research, “TSIM2 Simulator User’s Manual”,

Version 2.0.18, October 2010.

[11] Gaisler Research, “GRMON User’s Manual”, Version

1.1.47, November 2010.

[12] Altera Corporation, “Cyclone II FPGA Starter

Development Kit User Guide”, version 1.0.0 October

2006.

