International Journal of Computer Applications (0975 — 8887)
Volume 58- No.19, November 2012

Hardware / Software Co-Design using LEON3
Processor: AES as Case Study

Priti S. Chimankar
Research Scholar
Department of Electronics
Engineering,

Shri Ramdeobaba College of
Engineering and Management,
Nagpur, India

ABSTRACT

Nowadays many powerful public domain IP cores are
available for complicated component like 32 bit processor i.e.
LEONS3. It needs considerable expertise and pain taking
experimentation to implement a hardware/software co-design
project. This paper presents step-by-step description for AES
algorithm implementation on LEON3 processor. This will
prove to be valuable to researchers working in this area and
save their valuable time.

The concept of GPIO (General Purpose 1/O Port) is
introduced; through which any custom hardware i.e. own
designed hardware or IP core can be interfaced with the open
source processor. AES encryption algorithm is selected as an
IP core to be interfaced with LEONS3 processor. AES is
implemented in VHDL, while the control of the algorithm is
in software. AES algorithm partitioned in hardware and
software. The complete algorithm in hardware and control of
algorithm in software. The part of algorithm in hardware is
interfaced with the system designed using processor as a
custom hardware and performance parameters studied. AES
implemented using Codesign approach. AES is the latest
encryption standard used to protect confidential information
like financial data for government and commercial use. The
LEONSZ is a synthesizable VHDL model of a 32-bit processor
available under the GNU GPL license. The design is
implemented on Cyclone 1l FPGA from Altera Corporation.

Keywords
Advanced Encryption Standard (AES), LEON3 Processor,
GPIO (General Purpose /0 Port), Cyclone 1l FPGA.

1. INTRODUCTION

An embedded system is a combination of processor along
with software specifically designed for a particular function.
With increasing complexity of the systems, sub-micron
technologies are used significantly. Device density and
complexity of embedded applications also increases, with
requirements for high performance, miniaturization, long
battery life etc. Advanced ASIC & FPGA technologies allow
to integrate complex systems on a single chip. For high
processing performance, reducing power consumption SoC
(System on chip) technology is used [1, 2].

Different commercial packages are available for System on
Chip design like Xilinx EDK or Altera Nios Il IDE, for the
design of embedded system. They provide proprietary soft
cores and the tools needed for implementing them in the

Meghana A. Hasamnis
Associate Professor
Department of Electronics
Engineering,

Shri Ramdeobaba College of
Engineering and Management,
Nagpur, India

S. S. Limaye, Ph.D
Principal
Jhulelal Institute of Technology,
Nagpur, India

manufacturer's FPGAs. These commercial solutions have
certain limitations. The most important is that the
implemented soft cores are dependent on the manufacturer's
specific hardware. These soft cores are also closed source, so
modifications or enhancements to these soft cores are
impossible. For low budget projects, the cost of these software
packages is unaffordable. Therefore, it is preferable to use
open source cores [3] which are freely available from open
source communities, for example open source core LEON3 by
Gaisler Research [4, 5] and Open RISC 1200 from open cores.

2. AES ALGORITHM

The National Institute of Standards and Technology, (NIST),
solicited proposals for the Advanced Encryption Standard
(AES). The AES is a Federal Information Processing
Standard, (FIPS), which is a cryptographic algorithm that is
used to protect electronic data [6]. The AES algorithm is a
symmetric block cipher that encrypt (encipher), and decrypt
(decipher), information. Encryption converts data to an
unintelligible form called cipher-text. Decryption of the
cipher-text converts the data back into its original form, which
is called plaintext. The AES algorithm is capable of using
cryptographic keys of 128, 192, and 256 bits to encrypt and
decrypt data in blocks of 128 bits [7]. The Rijndael algorithm
was developed by Joan Daemen of Proton World International
and Vincent Rijmen of Katholieke University at Leuven.

The structure of AES-128 Encryption is shown below in
“Figure 1”. The initial 128-bit key is fed into the Key
Expansion function which produces separate keys for each of
the 10 required rounds. These rounds combine their scheduled
keys with a two dimensional representation of the input (the
State”) using various transformations:

e Addroundkey -The Addroundkey transformation
Addroundkey (), adds the round key to the State using a
bitwise XOR operation.

e Subbytes - The bytes substitution transformation
Subbyte () is a non-linear substitution of bytes. It
operates independently on each byte of the State using a
substitution table (S-box).

e Shiftrows - In the Shift Rows transformation
Shiftrows (), the bytes in the last three rows of the State
are cyclically shifted over different numbers of bytes
(offsets). The first row, r = 0, is not shifted.

e Mixcolumns —The mix column transformation
Mixcolumns (), separately modifies each column of the
state using a matrix multiplication operation [8].

PLAINTEXT KEY
¥
e Wiy

l
ROUNDI \L; ‘L

I SUBSTITUTE BYTES I EXPAND KEY I
v

| ADD ROUND KEY

SHIFT ROWS

I

|
v
[MIX COLUMNS]
v
(ADD ROUND KEY wi4)
|
!
ROUNDY w
(SUBSTITUTE BYTES |
v
(SHIFT ROWS |
v
[MIX COLUMNS |
v
[ADD ROUND KEY S — W3639)
ROUNDIO
| SUBSTITUTE BYTES |
v

| SHIFT ROWS |
v

[ADD ROUND KEY I'(**_ W[40,43]

v
CIPHERTEXT

Fig 1: AES Encryption [7]

3. DESIGN ENVIRONMENT

The design environment, consists of LEON3 processor, and is
developed on CentOS-5.4 operating system, the Linux
platform.

LEONS is a 32-bit CPU microprocessor core conforming to
the IEEE-1754 (SPARC V8) architecture and instruction set
and is a part of GRLIB IP library. The LEON3 processor is
designed for embedded applications, combining high
performance with low complexity and low power
consumption. The model is highly configurable, support
power-down mode and clock gating with robust and fully
synchronous single-edge clock design [4].

LEON3 processor uses the AMBA-2.0 AHB bus to connect
the main processor with high-speed controller like cache,
memory and other optional units like the on chip RAM or PCI
or Ethernet interfaces. Another AMBA-2.0 APB bus is used
to access most on chip peripherals. It is optimized for simple
operation and low-power consumption. It is connected to the
AHB and LEONS3 via the AHB/APB Bridge, which is master
of that bus. LEON3 external memory access is provided by a
programmable memory controller with interfaces to PROM,
SRAM, SDRAM and memory mapped /O peripherals. The
controller can decode a map of up to 2 Ghytes. The processor
is extensively configurable and can be efficiently
implemented on both FPGAs and ASIC technologies [3].

The architectural block diagram of LEONS3 processor is
shown in “Figure 2”.

International Journal of Computer Applications (0975 — 8887)
Volume 58- No.19, November 2012

RS132 JTAG

et A — ,

1 I
| I
I N I
Serial Dbg | | JTAG

= DSU3 |
|| eow Link Db Link |
| Processor I
I I
1 I
I AMBA AHB I
| I
1 I
' — AMBA APB !
[AmB Memory | | \pjapp !
: Controller | | Controller Bridge :
| I

v

| R IR AN NN B I

8/32 bits memory bus

PSZIF RS22 WDOG

Viden
DAC

PROM sDRaM| | sRaM

Fig 2: LEON3 Template Design Block Diagram [5]

4. INTERFACING AES AS CUSTOM
HARDWARE WITH LEON3
PROCESSOR

To interface AES as custom hardware with LEON3 Processor,

there are two possible ways,

e Interfacing AES as custom hardware to AMBA AHB bus
or AMBA APB bus.

e Interfacing AES as custom hardware to AMBA APB
through GPIO’s.

Since, the design which we have selected i.e. Leon3-altera-

de2-ep2c35, from GRLIB IP Library, has two General

Purpose 1/0 Port (GPIO), interfaced with LEON3 Processor,

it is more flexible and relatively easy, to interface AES

through GPIO’s. The detailed description of GPIO and how it

is used to interface AES with LEON3 processor is given

below.

4.1 GPIO - General Purpose 1/0 Port

The general purpose input output port core provided by
Gaisler Research, under the template design, is scalable. It
provides optional interrupt support. The port width can be set
to 2 - 32 bits through the n bits VHDL generic (i.e. n bits =
16). Each bit in the general purpose input output port can be
individually set to input or output, and can optionally generate
an interrupt. It is possible to share GPIO pins with other
signals. The output register can then be bypassed through the
bypass register. The “Figure 3” shows a diagram for one /O
line.

Alternate Enable
(GPIOLSIG_EN)
pRECTION = D Q

Alternate output
value (GPIOLSIG_IN)

Qutput Value — D
0 N
PAD

Input Value __J
(GPIDO.VAL) Q D 0

. GPIODSIG_OUT)
Input Value " —

Fig 3: General Purpose 1/0 Port Diagram [4]

The 1/O ports are implemented as bi-directional buffers with
programmable output enable. The input from each buffer is
synchronized by two flip-flops in series to remove potential
meta-stability. The synchronized values can be read-out from
the 1/0 port data register. They are also available on the
GPIOO.VAL signals. The output enable is controlled by the
1/0O port direction register. A ‘1’ in a bit position will enable
the output buffer for the corresponding 1/0 line. The output
value driven is taken from the 1/O port output register [4].

A GPIO pin can be shared with other signals. The ports that
should have the capability to be shared are specified with the
bypass generic (the corresponding bit in the generic must be
1).The unfiltered inputs are available through
GPIOO.SIG_OUT and the alternate output value must be
provided in GPIOL.SIG_IN. The bypass register then controls
whether the alternate output is chosen. The direction of the
GPIO pin can also be shared, if the corresponding bit is set in
the bpdir generic. In such case, the output buffer is enabled
when GPIOIL.SIG_EN is active.

4.2 AES Interfaced with LEON3 Processor

“Figure 4” shows the LEON3 processor architecture, where
AES block is connected through GPIO’s to LEON3 processor.

R8132 ITAG
|mmmmessmsmmsse————- pe===- L Attt 1
1 I
1 |
I - . I
Serial Dbg | | JTAG

= DSU3 B I
|| LEow Link Db Link |
| Processor |
1 |
1 |
I AMBA AHB !
I AES Block Added |
I Through GPIO's
! — - AMBA APB '
T 2‘“":"?' AHB/APB
| Controller ORrOler || Bridge
I vGa || ps2 GPIO?
,] o]
U e A

8131 bits memory bus

"
Dw:;n PS2IF RS2 WDOG AES

SDRAM

Fig 4: AES Core Interfaced With LEON3 Processor

International Journal of Computer Applications (0975 — 8887)
Volume 58- No.19, November 2012

Since the GPIO is of 32 bits, but the plaintext and key input
that we have to provide to the AES block are of 128 bits, 32
bits of GP10 port are not sufficient and also some of the pins
are also required for the control signals. So to solve this
problem, we have placed one demultiplexer before AES core
and one multiplexer after AES core. The diagram depicting
this is shown in “Figure 5” below.

i PLAN

iOTEXT 1
: CIPHER
TEXT

16 0 AES
" ENCRYPTION

GPIO1
(25 bity

GPI02
(18 bit)

L

KEY
IN

DONE

16 [BUSY

START
KEY LOAD

CLK RsT

p K

saszsisn sisis
SEL_DEMUX SEL_MUX

Fig 5: Block Diagram of AES Interfaced with GP1O

The template design selected, has two GPIO’s, out of which
one is used to provide input to the AES core and other is used
to take output from AES core. GPIO1 is configured for 25
bits, out of which 16 LSB line are used to provide plaintext
and key input through demultiplexer and remaining 9 lines are
used to provide control signals. GP10O2 is configured for 18
bits, out of which 16 LSB are used to take output i.e. cipher
text , and remaining two lines are to provide indication of
whether the encryption is complete or not.

5. DESIGN STEPS
5.1 Configuration of LEON3

The first step in design process is the configuration
of LEONS3 processor according to our requirements. For the
configuration of LEON3 processor, first enter into the
directory grlib-gpl-1.1.0-b4113/designs/LEON3-altera-de2-
ep2c35 and then give the command, make xconfig

LEON3MP GR-PCI-XC5V Design Configuration ~x

Synthests Debag Link Save and Bxt

Qock gensration Misiory Contrllers it Yithout Savirg
Processor Penpners. Load Canfiguratin from Fie
AMBA configurstion | VHDL Debugging Stors Canfiguration to File

Processor

Processar

+y| . n| Enaie LEON) SPARC YD Processer | Help |

[wumber of processors ol |

Integer it |

VHDL Debugging

- ot
Cache systam | # v n| Acodernted UART racing Hap ||
waw | 9]¢ 8] et regor vres: o |
oo)]
Fatlt tolerance | ¥/ # n| comtine on reset e Hep

VHOL g et v wv] # | on g o hor |

Main Meny Hext Prev Main Menu Prev

Fig 6: Configuration of LEON3 Processor

Using GUI interface configure various aspects of LEON3
processor. Click the ‘Processor’ button and it will give various
options for configuring integer unit, floating-point unit, cache

system, memory management unit, debug support unit etc.
For this project we have disabled the floating-point unit and
memory management unit and enabled debug support unit and
Accelerated UART tracing. To copy the configuration to the
LEON3-altera-de2-ep2c35/config.vhd file click on ‘save and
exit’.

5.2 Compilation of control program
written in C

To compile the control program written in C, we have to first
copy the program in systest.c of directory grlib-gpl-1.1.0-
b4113/designs/LEON3-altera-de2-ep2c35 and then give
command, make soft

The program in systest.c get compiled into an sdram.srec file
which is loaded into the memory of the processor while
simulation [8].

5.3 Compilation of AES Encryption core

The design can be compiled by giving the following
command in grlib-gpl-1.1.0-b4113/designs/Leon3-altera-de2-
ep2c35 directory, make vsim. It compiles all .vhd files [9].

5.4 Simulation

To simulate the design, first enter into the grlib-gpl-1.1.0-
b4113/designs/LEON3-altera-de2-ep2c35 directory and then
give command, vsim testbench

The subdirectory ‘software’ contains all the test files for the
processor. Each test has been described in a separate file.
These tests are compiled into an sdram.srec file which is
loaded into the memory of the processor while simulation. To
view any signals, add the desired signals from the right hand
side pane to the waveforms. Finally to start the simulation
give command, run - all

It runs the simulation completely. Simulation is halted by
generating a failure. Simulation report is shown below
“Figure 7”.

5.5 Synthesis

The template design can be synthesized with either Synplify,
Quartus or ISE/XST. To synthesize the design using Quartus
Il, enter into the grlib-gpll.1.b4113/designs/LEON3-altera-
de2-ep2c35 directory and then give command , make quartus

It generates leon3mp.qpf and leon3mp.sof in the same
directory [8].

International Journal of Computer Applications (0975 — 8887)
Volume 58- No.19, November 2012

WEIN B3 run -all

% Mote: Cyclone 1 PLL is enabiled

Time: D ps lteration: 2 Instance: festbenchid3ckgenlisden/altpli0icycloneii_altpllima
LEON3Z Altera DE2-EF2C35 Demonstration design

GRLIE Wersion 1.1.0, build 4113

Target technology: stratii , memary liorary: stratisi

ahbetrl: AHE arbiterimultiplexer rev 1

ahbetrl: Common 110 area at O=<fffO0000, 1 Moyte

ahbctrl: AHE masters: 4, AHE slaves: §

ahbctrl: Configuration area at O=TFIF000, 4 kbyte

ahbctrl: mst0: Gaisler FResearch LEOM3 SPARC W8 Frocessor
ahbctrl: mst!: Gaisler Research AHE Debuy LART

ahbetrl: mst2: Gaisler Research JTAG Debug Link

ahbctrl: mst3: Gaisler Research SWGA frame buffer

ahbctrl: shvO: Europesn Space Agency LEORNZ Memory Controller

ahbctrl memary at 000000000, size 512 Mbyte, cacheable, prefetch
ahbotrl: shvl: Gaisler Research AHBSAPE Bridge

#ahbotrl memory at 0xB0000000, size 1 Mbyte

ahbctrl: slv2: Gaisler Fesearch LEONS Debug Support Unit

ahbetrl: memoty at 0:80000000, size 256 Mbyte

ahbctrl: slv3: Gaisler Research FLC133 SDRAM Controller

ahbctrl: memory at 0x40000000, size § Mbyte, cacheahle, prefetch

ahbetrl: 1i0 port at 0=fFO0100, size 256 byte

ahbctrl: slv?: Gaisler Fesearch Test report module

#ahbotrl memary st 0x20000000, size 1 Mbyte

aphctrl: AFB Bridge at 0x80000000 rev 1

aphbctrl: sivO: Europesn Space Agency LEONZ Memory Controller
#aphctrl L0 ports at 0<80000000, size 256 byte

aphctrl: shvl: Gaisler Research Generic UART

waphotrl 10 parts at 0<80000100, size 256 byte

aphctrl: shv2: Gaisler Research Multi-processor Interrupt Ctrl.
aphctrl: 110 ports at 0=30000200, size 256 byte

aphctrl: slv3: Gaisler Research Modular Timer Linit
gaphctrl. /0 ports at 080000300, size 256 hyte

aphetrl: slvd: Gaisler Ressarch LCD Controller

#apbctrl: 10 ports at 080000400, size 256 hyte

aphctrl: sivS: Gaisler Research P52 interface

aphctrl 10 ports at 080000500, size 256 byte

aphctrl: slvE: Gaisler Research SWGA frame buffer
w#aphotrl 10 parts at 0<80000600, size 256 byte

aphctrl: siv?: Gaisler Research AHE Debug UART

aphctrl: 110 ports at 0=30000700, size 256 byte

aphctrl: slve: Gaisler Fesearch General Furpose 1/0 port
gaphctrl. /0 ports at 080000900, size 256 byte

aphotrl: slv10: Gaisler Fiessarch General Purpase N0 part
#apbctrl: 10 ports at 0x80000a00, size 256 byte

aphctrl: shvl1: Gaisler Research General Purpose VO port
apbctrl 1i0 ports at 0x80000b00. size 256 byte

aphictr: she1 0: Gaister Ressarch General Purposs 0 port

Waphetrl: |0 ports at 0580000200, size 256 byte

aphctrl: shvi 1 Gaisler Research General Purpose 10 port

#aphotrl: I ports at 0xG0000b00, size 256 byte

aphctrl: shv3: Gaisler Research AHE Status Register

Waphetr: I ports at 0xBO00000, size 256 byts

testmod?: Test report module

i svgactrlB: GUGA contraller rew 0, FIFD length: 364, FIFD part langth: 128, FIFD adéress bits: 8, AHB acess size: 32 bits
aphps2_5: APB P32 inerface rev 2, irg 5

ahizstat]S: AHB status unit rev 0, irg 1

grgpint 1 32-bit GFIO Unit rev 1

grgpio 0 18-kt GRIO Unit rev 1

¥ grgpind: 25-kit GPIO Linit rev 1

gptimer3: GR Timer Uit rev 0, 16-hit scaler, 2 32-hit timers, irq &

#irgmp: Multi-processor Interrupt Controller rev 3, #tiau 1, eirg 0

\# apbuart1 - Generic LIART rev 1, fifo 4, g 2, scaler bits 12

#aphlccd: APE LCD module rew 0

4 sdetrl183: PC133 SDRAM controller rev 1

ahhitay AHE Debug JTAG rev 1

ahluart?: AHB Debug UART rev O

#dsu3_2: LEONS Debug support unit + AHE Trace Buffer, 2 kbyles

#lean3_0: LEOMI SPARC WG processor rev

¥ leand 10 icache 2°4 kbyte, deache 170 kbyts

#** Note: Cyclone I1 FLL locked to incoming clock

4 Time: 110 ns Iteration: 4 Instance: festbenchid3/clkgenisdenialtpli0foyeloneil_atpllin
#

: FLAINTEXT FOR EMCRYFTION

32 43 16 a8 68 5230 6 31 31 96 a2 &0 37 07 34
: KEY FOR ENCRYPTIOM

207 1518 28 3¢ d2 a6 ab 17 1585 09 of 41 3¢

EE =y

TEXT AFTER ENCRYPTION
#
#1389 25 84 1 02 de 03 fhoce 11 65 87 18 Ba Ob 32

#

* Failure: ** |Llin error mode, simulation halted =

4 Time: 2345182 ns Heration: 0 Process: ftestbenchiiuerr File: testbench vho
Break in Process iverr at testbench vhd line 208

WEIN B3

Fig 7: Simulation result on console window

6. RESULT

Simulation result of AES Encryption core interfaced with
LEON3 processor on Modelsim is shown in “Figure 8~
below:

T e S P e T T T e

Fig 8: Simulation result on Modelsim

AES encryption IP core interfaced with LEON3 processor
using GPIO’s. Time, area and power reports are shown below
in “Table 17,

Table 1. Synthesis report

AES Algorithm Total CPU
clock
cycles Areg vayer
aaurea | oge | Db
Har- Soft- for
dware ware encryption
AES as Control 14,149/33,216 | 420.75
custom 1685
part (43 %) mw
hardware

7. CONCLUSION

Step-by-step implementation of AES encryption using
LEONS3 processor is given in this paper. AES is connected
with the system designed around LEON3 processor as custom
hardware block and the speed and area required is calculated.
The interface between hardware and software is done through
GPIO’s. This paper will prove to be valuable to researchers
working in this area and save their valuable time.

8. REFERENCES

[1] Specification and Modeling of HW/SW CO-Design for
Heterogeneous Embedded Systems Adnan Shaout, Ali H.
El-Mousa., and Khalid Mattar, Proceedings of the World
Congress on Engineering 2009 Vol I, WCE 2009, July 1
- 3, 2009, London, U.K.

International Journal of Computer Applications (0975 — 8887)
Volume 58- No.19, November 2012

[2] Giovanni De Micheli, fellow, IEEE, and Rajesh K.
Gupta, member, [EEE, “Hardware/Software Co-Design”,
proceedings of the IEEE, Vol. 85, No. 3, March 1997

[3] Declan Staunton, “Successful use of an open source
processor in a commercial ASIC”, D&R Industry
articles.

[4] Gaisler Research, “GRLIB IP Library User’s Manual”,
Version 1.1.0 B4113 January 2012.

[5] Gaisler Research, “GRLIB IP Core User’s Manual”
,Version 1.1.0 - B4113, January 2012.

[6] FIPS PUB 197, Advanced Encryption Standard (AES),
National Institute of Standards and Technology, U.S.
Department of
Commerce,November2001(http://csrc.nist.gov/publicatio
ns/fips/fips197/fips-197.pdf).

[7] J. Daemen and V. Rijmen, “The design of AES-The
Advance Encryption Standard” Springer-Verlag, 2002.

[8] X. Zhang and K. K. Parhi, “High Speed VLSI
Architectures for the AES Algorithm,” IEEE
transactions on VLSI system , vol. 12, no. 9, September
2004.

[9] Jiri Gaisler, “BCC - Bare-C Cross-Compiler User’s
Manual”, Version 1.0.36, April 2011.

[10] Gaisler Research, “TSIM2 Simulator User’s Manual”,
Version 2.0.18, October 2010.

[11] Gaisler Research, “GRMON User’s Manual”, Version
1.1.47, November 2010.

[12] Altera Corporation, “Cyclone II FPGA Starter
Development Kit User Guide”, version 1.0.0 October
2006.

