
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

48

A-Mazer with Genetic Algorithm

Nitin S. Choubey

Professor & Head, Computer Department

MPSTME, SVKM’s NMIMS, Shirpur
 Maharashtra, India-425405

ABSTRACT

Paper describes the approach of solving Maze problem with

Genetic Algorithm. It also includes method for developing a

rectangular maze structure, A-Mazer. The method is

implemented and found to be effective for the maze structures

with different complexity levels of the 20 20 size.

Keywords

Genetic Algorithm, Evolutionary Computation, Maze

structure, Maze Complexity, NP-Complete.

1. INTRODUCTION
For many real-world problems, the solution process consists

of working your way through a sequence of decision points in

which each choice leads you further along some path. Maze

structures are also one of such problems. A maze is a grid-like

two-dimensional area of any size, usually rectangular. A maze

consists of cells. A cell is an elementary maze item, a

formally bounded space, interpreted as a single site. The maze

may contain different obstacles in any quantity. The

complexity of the maze is determined by the number of cells,

number of walls/obstacles, number of Hallways, dead-ends

and the distance between the start-finish/Start-food cell in the

maze structure [1].

Mazes have been a part of human culture for thousands of

years [2]. According to Greek Mythology, the Mediterranean

island of Crete‟s king, Minos, created a maze referred as,

labyrinth(See Fig. 1,) with the help of an engineering genius,

Daedalus to house a deadly creature, Minotour. Young

Theseus of Athens, entered the labyrinth with a sword and a

ball of string. Theseus killed the Minotour and traced the path

out of labyrinth by unwinding the string as he went along [3].
The term labyrinth is associated with the construction which

leads from starting point to the goal state by taking tortuous

path but requires no actual decision.

Fig. 1. The Cretan labyrinth

Typically Mazes require sequence of decision to be taken in

order to reach to the goal state from the initial state. The maze

structure considered in this paper is a random rectangular

maze constructed by using the sequence of stochastic

decisions taken over iterations to create the same. The paper

also focuses to give solution of the rectangular maze by using

Genetic Algorithm, an evolutionary heuristic method for

finding optimum solution.

Genetic algorithms are the heuristics methods from the

category of evolutionary algorithms which are based on the

Darwin‟s principle of origin of species by means of natural

selection [4]. GA‟s are invented by John Holland in 1960‟s

[5]. In contrast with Evolution Strategies and Evolutionary

Programming, Holland‟s original goal was not to design

algorithms to solve specific problems, but rather to formally

study the phenomenon of adaptation as it occurs in nature and

to develop ways in which the mechanisms of natural

adaptation might be utilized into computer systems. Holland‟s

1975 book „Adaptation in Natural and Artificial Systems‟

presented the GA as an abstraction of biological evolution and

gave a theoretical framework for adaptation under the GA.

Many problems in engineering and related areas require the

simultaneous genetic optimization of a number of, possibly

competing, objectives have been solve by combining the

multiple objectives in to single scalar by some linear

combination[6].

Tremaux algorithm uses recursive backtracking procedure for

finding the solution, which can be used to find path from

inside the maze to the goal position outside the maze Dead

End filling algorithm works well in the case when the maze

have multiple dead ends but fails to get the optimum path

when there exist more than one solution paths in the maze. A

trivial method uses an unintelligent robot or a mouse which

travels entire maze in random way. The method is referred as

random maze solver and is a slow method to find the solution.

There are several other methods such as Left wall follower,

Use of Imaging, partition based maze solving but no specific

method gives solution to the all the types of mazes[7][8].

Genetic algorithms are good heuristics which returns near to

optimum solution. The objective of the paper is to provide a

method to find path through maze using genetic algorithm.

The method for generating the random rectangular maze

structure with A-mazer and implementation details of the

Genetic Algorithm used is given in Section 2. Experimental

setup and the results are covered in Section 3 followed by

concluding remarks in section 4.

2. METHODOLOGY USED
The GA produces successive generations of individuals,

computing their “fitness” at each step and selecting the best of

them, when the termination condition arises. Fig 5 shows a

Simple Genetic Algorithm approach.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

49

2.1 A-Mazer
A-mazer is the technique used by the author for creation of

maze structure. The maze structure is created by using the

three step process described in the following subsections. It

involves the creation of a random rectangular grid with size

nn followed by assigning labels to the cells reachable from

start and finish cells. If the labels assigned to the start and

finish cell do not match the joining of the labels is done by the

process of wall break down process.

2.1.1 Creation of the rectangular grid with

random door
It is the first step towards development of a random

rectangular maze structure of size nn. The structure is a

three-dimensional cube where each cell contains five elements

representing availability of doors for the cell to the Left, Top,

Right and Bottom boundary wall and the number of doors

available in the current cell a shown below in fig 2.

 Fig 2 : Data Structure used for storing the maze Fig 3.

The sample cell representation is shown in the inset. The

doors are shown in Left and Bottom and the label is shown as

„1‟.

The label is used in creation of the maze structure as well as

for representing number of doors available in the cell during

optimal path search process. Maze structure is updated by

using procedure as shown in Fig. 3.

It returns „1‟ if there is path from Start cell to finish cell,

otherwise it return „0‟ indicating non-availability of path.

2.1.2 . Labeling of the paths
The Start (S) and Finish (F) cells are randomly selected, 0 S,

F n. The boundary is used for Start Cell and Right Boundary

is selected for Finish cell. The cells are labels from the start

node. The cell labeling is started with Start cell with label „1‟

by using Flood_Fill algorithm(S, 0) for every cell connected

by door (Value = 1) [9]. If the labeling is done to Finish cell

(0, F) also, Return(1), Otherwise Use Flood_Fill(F,n) with

label „2‟. Fig 4 shows the case of Return(1).

Fig. 3. Creation of Random Maze Structure

In the case of Return Value as a 0, the process of join the

Labels is adopted to create the maze.

2.1.3 Join the labels
In this process, the tracking of the label is done by using

flood_fill algorithm for the walls exist between cells. If a wall

is in between the cells with different labels and one of the

label is „1‟, it is merge in to the cell with Label value = „1‟.

The process is continued till the cell with Label Value =‟2‟ is

merged in to the cell with Label value = „1‟. The process for

joining the labels is shown in fig 7 & 8.

Fig 4. Case of Valid Random Maze

1. Create an nn structure, Maze M, containing five cells for

indicating Left, Top, Right and Bottom doors with door

value „0‟ for walls.

2. Repeat step 3 for all cells M(i,j), except boundary cells.

3. Repeat steps for each value of Left, Top, Right, and

bottom.

a. Left :

i. Generate random number n(0,1)

ii. If(n==1), assign Left =1 (Create Door) & Right = 1 in

the cell (i,j-1).

b. Right :

i. Generate random number n(0,1)

ii. If(n==1), assign Right =1 (Create Door) & Left = 1 in

the cell (i,j+1).

c. Top :

i. Generate random number n(0,1)

ii. If(n==1), assign Top =1 (Create Door) & Bottom = 1

in the cell (i-1,j).

d. Bottom :

i. Generate random number n(0,1)

ii. If(n==1), assign Bottom =1 (Create Door) & Top = 1

in the cell (i,j+1).

4. Test for the path availability by using labeling method.

n

5

n

 1

door

 Label Bottom Right Top Left

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 0 1

1 1 0 1 0

1 1 0 0 1

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

50

Fig 7 and Fig 8 Represents the process for joining the labels in

case of non-Sharing and Sharing of wall by Start and Finish

Label, respectively, as a result of return(0) from step 1.

2.2 Genetic Algorithm
The GA produces successive generations of individuals,

computing their “fitness” at each step and selecting the best of

them, when the termination condition arises. Figure 5 shows a

Simple Genetic Algorithm approach.

Fig 5 : Simple Genetic Algorithm process

The following subsections introduce the various important

components used in the genetic algorithm process.

2.2.1 Chromosome structure and mapping
The chromosome uses decimal numbers from 0 to 3

(including both) for representing the movement of path from

one cell to another. Fig 6 gives the chromosome

representation and the equivalent for the chromosome

representation. To get the optimal path the chromosome

length is kept at the minimum value of the size twice that of

the size of the maze and it is further planned to increase over

the generations gradually.

Fig 6 : Sample Chromosome and its equivalent move

representation

Fig 7. Case of Non-sharing of Wall by Start and Finish Labels

 2 1 2 1 2 3 2 3 2

Chromosome Representation

0-LEFT;1-TOP;2-RIGHT;3-BOTTOM

 5 6

 3 4 7 8

START 1

2 9 END

 Equivalent move in the cells

1. Create initial random population.

2. Calculate fitness of the individuals in the population.

3. Repeat following steps until termination criteria is

reached.

a. Select best fit from current population and generate

offspring.

b. Evaluate fitness of each offspring.

c. Replace weak individuals from current population with

newly generated ones.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

51

Fig 8. Case of sharing of Wall by Start and Finish Labels

2.2.2 Fitness function
The fitness function used for the genetic algorithm takes the

use of the move made by the chromosome mapping in order

to reach near to the Finish cell. The fitness function is as

given below.

100*
)(

CCFC

SCCC
FV

Where,

FV – Fitness Value; CC-Current Cell; SC-Start Cell; FC-

Finish Cell.

2.2.3 Crossover Operator (Modulo/ Addition-

Subtraction)
Crossover operator is shown in fig 9. Two parents are selected

from parent population and two off-springs are generated by

performing addition and subtraction operators on the

respective genes in the parent [10]. First child is the result of

addition operation where as Second child is the result of

subtraction operation.

The “n module 4” is taken on all genes in resultant offspring

to restrict the gene value within required range of value (0-3).

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

52

Parent-I 2 1 2 1 2 3 2 3 2

Parent-

II

3 2 0 1 3 2 0 3 0

Child-I 1 3 2 2 1 1 2 2 2 Addition

Child-II 1 1 2 0 1 1 2 2 2 Subtraction

 With Modulo 4

Fig 9 : Crossover operation

2.2.4 Mutation Operator (Random bit mutation)
Example of random bit mutation is shown in fig 10. A

Random number (0-3) is replaced at the randomly selected

place in chromosome.

Child 2 1 2 1 2 3 2 3 2

Mutated
Child

2 1 2 1 0 3 2 3 2

 Random chosen bit

Fig 10 : Mutation operation

3. EXPERIMENT SETUP AND RESULT
The experiment is conducted JDK 1.6 on Experiment is done

with JDK 1.4 on an Intel Core™2 CPU with 2.66 GHZ and 2

GB RAM. The Population size =100, Maximum number of

generation = 500, Crossover Rate = 0.8 and mutation rate =

0.1 is used for the purpose of experiment. The length of

chromosome is initially considered equal to the length double

to the size of the maze (20*2 = 40) for the maze. It is further

allowed to gradually increase up to the number of cells

available in the maze in the subsequent generations. The

optimum solution is found before reaching to the highest

value of chromosome length (20 * 20 = 400). The adopted

approach is found to give better performance in term of the

required number of generation for achieving result. The result

obtained for the various 20 20 mazes are shown in the fig

11 and fig 12. It is found that, the population is converged to

the best value earlier in case of less complex mazes whereas,

whereas it has converged late for the relatively more complex

maze structure. The adopted method work on the decision

point of choosing the direction change based on the gene

value in the chromosome. The other methods such as left wall

follower dead end filling, maze solving with imaging work

efficiently with the specific mazes only, where as the

proposed method uses GA heuristic which leads to the better

solution. The adapted method is found to be working

successfully on the rectangular mazes considered in the

experiment. There is further scope for adoption of the same

method for more complex maze structure having different

geometrical structure.

4. CONCLUSION
The proposed model has been implemented, and the results

for the data set used are demonstrated successfully. Modulo

operator found to be effective in generating the best results.

The mutation operator found to be helpful in generating the

new chromosome to avoid the local optima issues. There is

further scope for using the methods for more complex maze

structure with different geometrical structure than rectangular

structure.

5. ACKNOWLEDGEMENT
Author thanks to the Dr. Tapan Bagchi, Director, SVKM‟s

NMIMS, Shirpur campus and Dr. M. V. Deshpande,

Associate Dean, MPSTME, Shirpur Campus for providing

necessary guidance and infrastructural facilities for

conduction of experiment. Author also thanks to Ms. Manisha

Kasar, Mr. Nilesh Pawar, and Ms. Shubhangi Patil for their

necessary help in data collection.

6. REFERENCES
[1] Anthony J. Bagnall and Zhanna V. Zatuchna , “On the

classification of maze problems” , Foundations of

Learning Classifier Systems, Studies in Fuzziness and

Soft Computing Volume 183, 2005, pp 305-316.

[2] Oswin Aichholzer, Franz Aurenhammer, David Alberts,

and Bernd G¨artner. A novel type of skeleton for

polygons. Journal of Universal Computer Science,

1(12):752–761, 1995.

[3] Amazing Mazes, http://fds.oup.Com/ www.oup.co.uk /pdf

/0-19-850770-4.pdf

[4] DARWIN C., 1859, The origin of species by means of

natural selection, 1859.

[5] Holland John H., 1992. Adaption in Natural and Artificial

Systems- Introductory analysis with Application to

biology, control and Artificial Intelligence, , Bradford

Book edition, The MIT Press, England.,1992.

[6] Goldberg D., 1989. Genetic Algorithm in Search,

Optimization, and Machine Learning. Addison Wesley,

1989.

[7] Jianping Cai, Xuting Wan, Meimei Huo, Jianzhong Wu.

An Algorithm of Micro Mouse Maze solving. 10th IEEE

International Conference on Computer and Information

Technology (CIT 2010), 2010

[8] Choubey N.S. & Sonawane S. R., “Comparative Study of

various maze solving algorithms”, International

Conference in Recent Trends, (i-CORT2012) , IOK-

COE, Pune, 2012.

[9] Steve Harrington, “Computer Graphics- A programming

Approach”, McGraw-Hill, 1987.

[10] Sivanandam, Deepa “Introduction to Genetic Algorithm”,
Springer, 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

53

Fig 11 : Results of the different Maze (20 20) with different complexities

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

54

Fig 12 : Results of the different Maze (20 20) with different complexities

