
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

35

A Finite State Transducer (FST) based Font Converter

Sriram Chaudhury

KIIT University
Bhubaneswar

India

Shubhamay Sen
KIIT University
Bhubaneswar

India

Gyan Ranjan Nandi
KIIT University
Bhubaneswar

India

ABSTRACT

This paper describes the rule based approach towards the

development of an Oriya Font Converter that effectively

converts the SAMBAD and AKRUTI proprietary font to

standardize Unicode font. This can be very much helpful

towards electronic storage of information in the native

language itself, proper search and retrieval. Our approach

mainly involves the Apertium machine translation tool that

uses Finite State Transducers for conversion of symbolic data

to standardized Unicode Oriya font. To do so it requires a map

table mapping the commonly used Oriya syllables in

Proprietary font to its corresponding font code and the

dictionary specifying the rules for mapping the proprietary

font code to Unicode font. Further some unhandled symbols

that appear in the intermediate converted file are rectified by

Flex scanner tool. The converted text thus obtained is in

standard Unicode font and remains unchanged as Unicode

font is supported by almost all the platforms.

General Terms

Font converter, Oriya font converter, FST based font

converter, Rule based font converter.

Keywords

Oriya font converter, Proprietary font to Unicode font

converter, A Finite State Transducer based font Converter,

Font converter for Indian language, Rule based font

conversion, Apertium in font conversion.

1. INTRODUCTION

When we read the e-newspapers in English they are quite

accessible in different systems independent of the platform,

hardware or word processor as they follow a standard

encoding scheme. Whereas the e-newspapers in regional

languages like Oriya, it's perfectly readable and the contents

can be easily saved but when we want to access the saved

contents later, it's either inaccessible or shows a lot of Latin

else symbolic characters. The main reason behind this is that

most of the newspapers in regional languages use their

licensed proprietary font for typing regional scripts which is

not standardized. SAMBAD daily newspaper that is one of the

leading newspapers in Orissa uses SAMBAD proprietary font

for typing Oriya script using 4Clipika software, just like

Pragativadi and Dharitri which uses AKRUTI font for typing

Oriya font. But these are not standardized fonts and hence not

supported by most of the platforms. So there arises the need of

a converter that can convert the proprietary font to a

standardized font like Unicode [1] Font. To allow computers

to represent any character in any language, the international

standard ISO 10646 defines the Universal Character Set

(UCS) [2]. It provides a unique code to each and every

character of any script of any widely used language across the

globe. The Unicode range for Oriya is in the range 0B00-

0B7F (HEX) and 2816-2943 (DEC). The main aim behind

selecting Unicode as the standard is that it encodes plain text

characters (aksharas) code not glyphs. It also guarantees

accurate convertibility to any other widely accepted standard

and vice versa so is compatible across many platforms. It is

also capable of unifying the duplicate characters with in

scripts of different languages. We adopt the UTF-8

[3] encoding scheme of Unicode. UTF-8 is defined as the

UCS Transformation Form (8 bit). It’s a variable-width

encoding that can represent every character in

the Unicode character set. It was designed for backward

compatibility with ASCII As a result of which we can store a

huge amount of data in regional language as itself hence

would be helpful in forming a large corpus and can effectively

perform word search, dictionary lookup, script conversion and

machine translation operations successfully. Hence would be

a helpful contribution towards further linguistic research in

Oriya language. Our work mainly focuses on the conversion

of SAMBAD and AKRUTI font data.

2. RELATED WORK
A proposed converter for Devanagari Script by Akshar

Bharati et al. [4] supports the conversion of text in unknown

coding scheme to standard ACII (Alphabetic Code for

Information Interchange) coding scheme either automatically

or semi automatically. The converter uses a matching program

which compares the glyph code with the corresponding ACII

code and effectively learns the equivalence using the glyph

grammar. The glyph grammar is script specific and

independent of coding scheme used. It specifies the possible

glyph sequence that makes an akshara. Each glyph has its

equivalent byte code that is maintained in a glyph-code

mapping table which is generated out of the matching

program. As the next step the grammar and the map table is

used to generate the converter. The second step is repeated

several times to refine the conversion. The converter takes as

input the sequence of byte code that is obtained when copied

from e-resources and converts it to corresponding ACII code.

A different approach towards building font converters and the

process of glyph assimilation for font-data conversion in

Indian languages was proposed by A. Anand Arokia Raj [5].

The aksharas of Indian languages are split up into glyphs in

font data and the objective of the converter is to recombine

the glyphs to retrieve the valid character. The converter for the

above purpose works in two steps. First it develops a glyph

map table for each font type. Then defines and develops the

glyph assimilation rule for the language. Glyph assimilation

rules define the sequences in which glyphs can be rearranged,

combined and mapped unambiguously to form the Asksharas

of a language.

http://en.wikipedia.org/wiki/Variable-width_encoding
http://en.wikipedia.org/wiki/Variable-width_encoding
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Unicode
http://en.wikipedia.org/wiki/Backward_compatibility
http://en.wikipedia.org/wiki/Backward_compatibility
http://en.wikipedia.org/wiki/ASCII

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

36

Another approach is the IConverter [6]: An effective tool for

several code conversions. The tool uses ‘isciilib’ a library for

code conversion. It takes as input the Configuration file and

the Source code file. The configuration file defines the rules

for code conversion.

H. Garg [7] has proposed two ideas for overcoming font and

script barriers among Indian languages. I.e. Glyph Grammar

based approach, where it uses a font glyph description file

mapping glyph of the font to appropriate ISCII [8]/Unicode

characters and in absence to mnemonics. Another approach is

by Finite State Transducer based automatic or semi-automatic

machine learning technique. These Finite State Transducers

automatically learns the mapping between glyphs and

equivalent ISCII/Unicode characters through parallel training

corpora.

3. PROPOSED IDEA
Apart from several Font Converters being proposed and

developed for many Indian languages our approach for font

conversion of Oriya language follows a rule based approach.

The generation of converter takes place in three steps:

(1) First a map table is created which maps the most

commonly used Oriya syllables in Proprietary font to its

corresponding font code.

(2) Secondly a dictionary is developed defining the rules to

map the Proprietary font code to Unicode font.

@Ð  ଆ

(3) Then a Flex scanner is designed to handle the Un-handled

symbols that appear in the output from step-2.

The basic block diagram of the FST based Font Converter is

shown below (see Figure 1).

3.1 Mapping process
The process proceeds as follows:

 (1) First a large corpus of proprietary font data is collected

from the regional e resources and analyzed to extract out the

most frequently used Oriya syllables.

(2) The relevant software (4clipika) for writing the regional

script data is used to write the language syllables and the

corresponding font code for that syllable is obtained.

(3) A mapping table is developed which maps possible Oriya-

syllables with the equivalent Proprietary font code. (see Table

1)

Table 1. Sample Map Table

WX notation [9][10] is used to represent the Devanagari and

many other Indian language alphabets in ASCII. The WX-

notation for Oriya language follows the same pattern as for

Devanagari. (see Table 2)

Table 2. Sample WX- notation for Oriya
Akshara Wx

Notn

.

Akshara Wx

Notn.

Akshara Wx

Notn.

ଅ a O ଦ x

ଆ aA M ଧ X

ଇ ai H ନ n

ଈ aI କ k ପ p

ଉ au ଖ K ଫ P

ଊ aU ଗ g ବ b

ଏ ae ଘ G ଭ B

ଐ aE ଙ f ମ m

ଓ ao ଚ c ଯ y

ଔ aO ଛ C ର r

ଋ aq ଜ j ଲ l

 A ଝ J ଵ v

 i ଟ t ଶ S

 I ଠ T ଷ R

 u ଡ d ସ s

 U ଢ D ହ h

 e ଣ N
 _

 E ତ w az

 o ଥ W

WX Notation Proprietary

Font Syllable

Font

Code

Unicode

Syllable

w_Be ତ୍ଭେ Ò[÷ ତ
w_De ତ୍ଢେ Ò[çY ତ୍ଢେ
W_h ଥ୍ହ \çk ଥ୍ହ

w_Saq ତ୍ଶୃ [çhó ଢଶ ୃ

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

37

3.2 Formulating the Dictionary
The Dictionary forms the soul of the system. It consists of

hand written rules mapping the Unicode font data of the

corresponding Proprietary font code for the collected Oriya

syllables. It helps the FST to work on a pattern-result basis,

i.e. when a known pattern of font code is found the

corresponding Unicode font is generated. The dictionary

consists of two basic components Alphabet part and Section

part. Alphabet part introduces all the alphabets, symbols,

numbers and special characters going to be used in Section

part. Where as in the Section part its defined the basic

mapping between the given proprietary fonts code to the

Unicode font character or combination of characters.

<?xml version="1.0" encoding="UTF-8"?>

<dictionary>

<alphabet>ABCD…abcd…012… ଅଆଇ… …୦୧
୨୩…ÀÁÂ</alphabet>

<section id="main" type="standard">

<e><p><l>ଶ</l><r>h</r></p></e>

<e><p><l>ଦ</l><r>]</r></p></e>

…. </section>

</dictionary>

The Converter uses the Apertium [9] machine translation tool.

It takes as input a .txt or .xml file containing the proprietary

font code (saved contents of e-news papers of regional

language) comprising of Latin characters and symbols and

converts it to Unicode Oriya font by the help of the dictionary.

The Apertium follows an approach to lexical processing based

on the use of letter-transducers (a class of FST). A letter-

transducer [9] is a Finite State Machine consisting of states

(single initial and one or more acceptance state) and a finite

set of state transitions with given input letter or symbol to the

output letter or symbol. The transducer takes the font code for

a particular syllable at a time and tries to read the longest

pattern recognized by the dictionary (left-to-right longest

match mode), which matches with the given token. On

matching of each symbol transition takes place from one

state of FST to another. The FST terminates when all the

symbols of the font code is matched to corresponding symbols

specified in the dictionary. Hence an acceptance state is

encountered which yields the associated output specified by

that dictionary entry. That is nothing but that syllable in

Unicode font. If no match for the syllable is found in the

dictionary the transducer simply copies the input data in the

output file. This situation may arise when the syllable

encountered is rarest to appear in day to day conversation and

can be rectified by adding the appropriate new rules to the

dictionary.

3.3 Generating the Scanner
The basic need of further refinement of the converted text

arises as Apertium can’t handle some symbols like @, \, _ so

these symbols appear as it in the text of the output data file

obtained from the second step. Thus a scanner is introduced

which uses a wrapper file. The wrapper file is developed with

the help of Flex programming to handle such issues and

rectify all those errors.

Flex is an exclusive tool used for further refinement of expert

systems. It takes as input set of descriptions of possible tokens

and produces a scanner. The input to the Flex tool is a text file

containing regular expressions and the corresponding action

to be taken when each expression is matched. The Flex source

file consists of three basic parts divided by a single line

starting with %%:

Definitions

%%

Rules

%%

User Code

3.3.1 Definitions

The definition section occurs before the first %%. It contains

two things. First, any C code that must be inserted external to

any function should appear in this section between the

delimiters %{ and %}. Secondly, the definitions section

contains declarations of simple name definitions to simplify

the scanner specification and declarations of start conditions.

3.3.2 Rules

The lexical rules section of a Flex specification consists of a

set of regular expressions (pattern) and actions that are

executed when the scanner matches the associated regular

expression.

3.3.3 User code

The user code section is simply copied to”lex.yy.c” (output

file generated by Flex). The presence of this section is

optional.
Sample Flex programming for solving error;

%%

_ï {printf(" ");}

\[{printf("ତ");}

\[Ð {printf("ତ ");}

\[Þ {printf("ତ ");}

4. ERROR ANALYSIS
Error in font conversion though Apertium tool mainly occurs

because of the following two cases:

(1) The syllable of proprietary font text is rare and does

not appear normally in day to day life. As the raw

corpus is collected from e-news paper sources so it

mostly reflects the common syllables. In case such a

syllable is encountered the tool founds no match for

it in the rules specified in the dictionary. So the

same unconverted text appears in the output file.

(2) Some symbols cannot be processed by Apertium

like \, Ð, @, _ so they appear as it in the output file.

The following chart for Apertium (see Figure 2) specifies the

unhandled cases that accounts for the inefficiencies that

encountered in the converter. This happens because of the

above specified reasons. The basic solution to the first

inefficiency is further improvement of the dictionary by

adding new rules for all those syllables that are new or rarely

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

38

appear. This may be done by collecting a large corpus related

to domains like literature or any other domain specific like

science and training the machine on those corpuses also. It

reduces the chances of error but can’t absolutely guarantee its

absence.

As stated above the second cause of error can be checked by

allowing the output text from Apertium to pass through the

Flex scanner which can easily encounter such cases. The chart

(see Figure 3) for Flex scanner output specifies those

improvements made on the converter which results as almost

72% conversion accuracy on the test corpus. The statistics

presented in the following table (see Table 3) specifies the

performance of the converter on a small test corpus of 4000

words of SAMBAD font data collected from e-news paper.

Out of which 1216 words are successfully converted after the

first step with an accuracy of 30.4%. Secondly 2882 words are

accurately converted after the second step with an accuracy of

70.05%. Further 1118 words remain unconverted or wrongly

converted. The phase wise comparison of the Font Converter

is given in Figure 4.

Table 3. Statistics of Conversion

Total

words

Correctly Converted Wrong/Un

handled After

Apertium
After Flex

4000 1216(30.4%) 2882(72.05%) 1118

Figure 2: Result of first phase of conversion

Figure 3: Result of second phase of conversion

Figure 4: Phase wise improvement of converter

Table 4. Example Conversion

Symbolic

code

Correct

Syllable

O/p

Apertium

O/p Flex

@Ð ଆ ଅ ଅ

Òk େହ Òହ େହ

`Ð ପା ପ ପ

BÜ ଇଁ ଇÜ ଇଁ

¦ÞÆ କ୍ତି କ୍ତିÆ କ୍ତି

q ଞ୍ଚ q ଞ୍ଚ

[Ð ତା ତ ତା

$¼ç ଫ୍ ଫାç ଫ୍

6. COMPARATIVE STUDY
There is no FST based Font Conversion technique present for

Oriya script. However the Flex Programming based

Walkman-Chanakya Font Converter for Devanagari script of

Hindi language may be considered as an existing approach for

comparative study. The Walkman-Chanakya Font Converter

converts the Chanakya Font data to WX notation only. To get

the standard Unicode font data from WX notation it needs a

further processing of data. Basic comparison between the

accuracy of two Font Converters on a small corpus of 4000

words chosen from different domains shows the following

outcome. (see Table 5)

Table 5. Comparative Statistics

 Correctly

Converted

Wrong/

Unhandled

% Accuracy

 (aprox.)

FST Based

FC

2882 1118 72.05

Chanakya

FC

3410 590 85.25

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.17, November 2012

39

The chart below represents a comparative study of the FST

based Converter and Chanakya Converter. (Figure 5)

Figure 5: FST FC vs. Chanakya FC

7. CONCLUSION AND FUTURE WORK
In the current age standardization of any language script

across the world is a basic need for electronic availability of

regional font data and for any research to carry on. In this

paper we have defined the basic steps for developing a

converter for conversion of SAMBAD and AKRUTI

Proprietary font data of Oriya language to standardized

Unicode font using a rule based approach. The converter is

based on apertium machine translation tool; the output is

further smoothened using the flex scanner. The final

converted text thus obtained is quite accurate but not absolute.

The result also suggests the Chanakya Font Converter to be

more accurate. It’s mostly because of some un-handled cases

and for those cases where the syllables appear quite rarely in

day to day common conversation so may remain un-handled.

But the idea behind the FST based Font Converter is a quite

different one. Hence a scope for further improvement is

always there. Mostly by improving the dictionary rules as well

as the Flex source code. This will be addressed in future.

8. ACKNOWLEDGMENTS
And at this juncture behind to thank one and all who have

helped us, advised us, guided us, stood by us and given us the

motivation and faith to carry this research work onto

successful consummation. First and foremost, we express

profound and heartfelt gratitude to SAMBAD and

PRAGATIVADI for providing us the required Oriya

Proprietary font data and the software. We thank CIIL,

Mysore for its notable contribution towards this research, by

providing the Oriya corpus.

We acknowledge those who have worked really hard for the

unification and standardization of Indian scripts and inspired

us to make this trial successful. We are also thankful for the

co-operation received from those who have extended their

friendly hands for the successful completion of this job. I will

always be indebted to you all.

9. REFERENCES
[1] Steve Comstock, September 2011. An Introduction to

Unicode.

[2] Markus Kuhn, “UTF-8 and Unicode FAQ for

Unix/Linux”.

http://www.cl.cam.ac.uk/~mgk25/unicode.html.

[3] F. Yergeau, November 2003, "UTF-8, A transformation

format of ISO 10646", RFC 3629, The Internet Society

(2003).

[4] Akshar Bharati, Nisha Sangal, Vineet Chaitanya, Rajeev

Sangal and G Uma Maheshwara Rao,1998. “Generating

converters between fonts semi-automatically”. In

Proceedings of SAARC conference on Multi-lingual and

Multi-media Information Technology, (CDAC, Pune,

India).

[5] A. Anand Arokia Raj, 2008. “Multi-lingual Screen

Reader and Processing of Font-data in Indian languages”.

MS Thesis at International Institute of Information

Technology Hyderabad, India.

[6] IConverter, A utility program for various code

conversions.http://www.cse.iitk.ac.in/users/isciig/iconver

ter/ main.html.

[7] Himanshu Garg, 2005. “Overcoming the font and script

barriers among indian languages”. MS Thesis at

International Institute of Information Technology

Hyderabad, India.

[8] Indian Script Code For Information Interchange – ISCII,

1991, Bureau of Indian Standards(BIS),

http://varamozhi.sourceforge.net/iscii91.pdf.

[9] Wx notation overview,

http://sanskrit.inria.fr/DATA/wx.html.

[10] WX- notation for Devanagari script alphabet.

http://mirror.umd.edu/mozdev/indicime/wx_keyboard.ht

ml

[11] Mikel L. Forcada et al., 2010. “Documentation of the

Open-Source Shallow Transfer Machine Translation

Platform Apertium”, Departament de Llenguatges i

Sistemes Inform`atics Universitat d’Alacant.

