Strongly b*- Continuous Functions in Topological Spaces

A.Poongothai and R.Parimelazhagan Department of Science and Humanities, Karpagam College of Engineering, Coimbatore-32.Tamil Nadu, India

ABSTRACT

In this paper, we present and study a new generation of strongly b*-continuous functions. Furthermore, we obtain basic properties and preservation theorems of strongly b*- continuous functions and relationships between them. Also we studied the strongly b*- open and closed maps.

General Terms

2000 Mathematics Subject Classification: 54C05, 54C10.

Keywords

strongly b*- continuous functions, strongly b*-open maps and closed maps.

1. INTRODUCTION

Levine[11] introduced the concept of generalized closed sets in topological spaces and a class of topological spaces called $T_{1/2}$ - spaces. Dunham[7] and Dunham and Levine [8] further studied some properties of generalized closed sets and T1/2- spaces. Strong forms of continuous maps have been introduced and investigated by several mathematicians. strongly continuous maps, perfectly continuous maps, completely continuous maps, clopen continuous maps were introduced by Levine[13], Noiri[18], Munshi and Bassan[15] and Reilly and respectively. Semi continuous Vamanamurthy[20] functions have been studied by several authors. Dontchev[5], Ganster and Reilly[6] introduced contracontinuous functions and regular set - connected functions. Erdal Ekici [9] introduced and studied a new class of functions called almost contra-pre- continuous functions which generalize classes of regular set connected [6], contra- pre continuous [11], contra continuous [5], almost s - continuous [17] and perfectly continuous functions [18]. In this paper, we introduce and study the strongly b* - continuous functions in topological spaces. Also we studied the strongly b*- open and closed maps.

2. PRELIMINARIES

In this section, we begin by recalling some definitions

Definition 2.1[21]: A map f: $X \rightarrow Y$ from a topological space X into a topological space Y is called semi- generalized continuous (sg-continuous) if $f^{-1}(V)$ is sg- closed in X for every closed set V of Y.

Definition 2.2[3]: A map f: $X \rightarrow Y$ is semi-continuous if and only if for every closed set B of Y, $f^{\perp}(B)$ is semi-closed in X.

Definition 2.3[2]: A function f: $X \rightarrow Y$ is said to be generalized continuous (g-continuous) if $f^{-1}(V)$ is g-open in X for each open set V of Y.

Definition 2.4[10]: A function f: $X \rightarrow Y$ is said to be b-continuous if for each $x \in X$ and for each open set of V of Y containing f(x), there exists $U \in bO(X, x)$ such that $f(U) \subseteq V$.

Definition 2.5[22]: A function f: $X \rightarrow Y$ is said to be w-continuous if $f^{-1}(V)$ is w - open in X for each open set V of Y.

Definition: 2.6 [14]: A function f: $X \to Y$ is said to be α -continuous if $f^{-1}(V)$ is α -open in X for each open set V of Y.

Definition: 2.7 [16]: Let X and Y be topological spaces. A map f: $X \rightarrow Y$ is said to be weakly generalized continuous (wg-continuous) if the inverse image of every open set in Y is wg-open in X.

Definition 2.8:[4] A function f: $X \to Y$ is said to be αg - continuous if f⁻¹ (V)is αg - open in X for each open set V of Y.

Definition 2.9[1]: A map f: $X \rightarrow Y$ is semi precontinuous if and only if for every closed set B of Y, f⁻¹ (B) is semi pre-closed in X.

Definition 2.10[19]: A subset A of a topological space (X, τ) is called a strongly b^* - closed set (briefly sb^* - closed) if $a(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is b open in X.

3. STRONGLY b* - CONTINUOUS FUNCTIONS

In this section, we introduce the new class of definition sb*-continuous function in topological space. Also we discuss some of its properties.

Definition 3.1: Let X and Y be topological spaces. A map $f: X \to Y$ is called strongly b*-continuous (sb*-continuous) if the inverse image of every open set in Y is sb* - open in X.

Theorem 3.2: If a map $f: X \rightarrow Y$ is continuous then it is sb^* - continuous but not conversely.

Proof: Let $f: X \to Y$ be continuous. Let F be any open set in Y. The inverse image of F is open in X. Since every open set is sb*-open set, inverse image of F is sb*- open set in X. Therefore f is sb* - continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4: Consider X={1, 2, 3} with $\tau = \{X, \varphi, \{1,3\}\}, Y = \{a, b, c\}$ and $\sigma = \{Y, \varphi, \{b\}, \{a, c\}\}$. Let f:(X, τ) \rightarrow (Y, σ)be defined by f(1)=a, f(3)=b, f(2)=c. Then f is sb*-continuous. But f is not continuous since for the open set U = {a,c} in Y, f⁻¹(U) = {1,2} is not open in X.

Theorem 3.5: Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map from a topological space (X, τ) in to a topological space (Y, σ) . The statement (a) f is sb* - continuous is equivalent to the statement (b) the inverse image of each open set in Y is sb*-open in X.

Proof: Assume that $f: X \to Y$ is sb*-continuous. Let G be open in Y. Then G ^c is closed in Y. Since f is sb*-continuous, $f^{-1}(G^{\circ})$ is sb*-closed in X. But $f^{-1}(G^{\circ}) = X - f^{-1}(G)$. Thus X-f⁻¹(G) is sb*-closed in X and so $f^{-1}(G)$ is sb*-open in X. Therefore (a) \Longrightarrow (b).

Conversely, assume that the inverse image of each open set in Y is sb^* - open in X. Let F be any closed set in Y. Then $f^{-1}(F^c)$ is sb^* - open in X. But $f^{-1}(F) = X - f^{-1}(F)$. Thus X $f^{-1}(F)$ is sb^* - open in X and so $f^{-1}(F)$ is sb^* -closed in X. Therefore f is sb^* -continuous. Hence (b) \implies (a). Thus (a) and (b) are equivalent.

Theorem 3.6: Let $f: X \to Y$ be a sb*-continuous map from a topological space X in to a topological space Y and let H be a closed subset of X. Then the restriction f/H: H \to Y is sb*-continuous where H is endowed with the relative topology.

Proof: Let F be any closed subset in Y. Since f is sb^* - continuous, $f^{-1}(F)$ is sb^* - closed in X. Intersection of sb^* -closed sets is sb^* - closed set. Thus if $f^{-1}(F) \cap H = H_1$ then H_1 is sb^* - closed set in X. Since $(f/H)^{-1}(F) = H_1$, it is sufficient to show that H_1 is sb^* - closed set in H. Let G_1 be any open set of H such that $H_1 \subset G_1$. Let $G_1 = G \cap H$ where G is open in X. Now $H_1 \subset G \cap H \cap G$. Since H_1 is sb^* - closed in X, $\overline{H_1} \subset G$. Now $d_H(H_1) = \overline{H_1} \cap H \subset G \cap H = G_1$, where $c_{H_1}(A)$ is the closure of a subset $A \subset H$ in a subspace H of X. Therefore f/H is sb^* - continuous.

Remark 3.7: In the above theorem, the assumption of closedness of H cannot be removed as seen from the following example.

Example 3.8: Let $X = \{a,b,c\}, \tau = \{X, \varphi, \{b\}\}, Y = \{p,q\}$ and $\sigma = \{Y, \varphi, \{p\}\}$. Let $f:(X,\tau) \rightarrow (Y,\sigma)$ be defined by f(a)=f(c)=q, f(b)=p. Now $H = \{a,b\}$ is not closed in X. Then f is sb* - continuous but the restriction f/H is not sb*-continuous. Since for the closed set $F = \{q\}$ in Y, $f^{-1}(F) = \{a,c\}$ and $f^{-1}(F) \cap H = \{a\}$ is not sb*-closed in H.

Theorem 3.9: A map f: $X \rightarrow Y$ is sb* - continuous if and only if the inverse image of every closed set in Y is sb* - closed in X.

Proof: Let F be a closed set in Y. Then F^{e} is open in Y. Since f is sb* -continuous, $f^{-1}(F)$ is sb* - open in X. But $f^{-1}(F) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is sb* - closed in X.

Conversely, let the inverse image of every closed set in Y is sb^* - closed set in X. Let V be an open set in Y and V^e is closed in Y. Now by the assumption $f^{-1}(V) = X$ -

 $f^{-1}(V)$ is sb^{\ast} - closed set in Y. Therefore $f^{-1}(V)$ is sb^{\ast} - open in X. Then f is sb^{\ast} - continuous.

Theorem 3.10: If a function $f: X \rightarrow Y$ is sb*-continuous then it is b-continuous but not conversely.

Proof: Assume that a map f: $X \rightarrow Y$ is sb^* - continuous. let V be an open set in Y. Since f is sb^* - continuous f⁻¹ (V) is sb^* -open and hence b - open in X. Therefore f is b - continuous

Remark 3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \mathcal{P}, \{a\}, \{c\}, \{ac\}\}$, $\sigma = \{Y, \mathcal{P}, \{b\}, \{c\}, \{bc\}\}$ and $f = \{(a,b),(b,b),(c,c)\}$. Then f is b-continuous but not sb*-continuous. Since the inverse image of the open set $\{b\}$ in Y is $\{a,b\}$ in X is not sb*- open.

Theorem 3.13: If a map f: $X \rightarrow Y$ is α -continuous then it is sb*-continuous but not conversely.

Proof: Assume that f is α -continuous. Let V be an open set in Y. Since f is α -continuous, f⁻¹(V) is α -open and hence it is sb*-open in X. Then f is sb*-continuous.

Remark 3.14: The converse of the above theorem be true as seen from the following example.

Example 3.15: Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{b\}, \{a,c\}\}$ and $\sigma = \{Y, \varphi, \{a,c\}\}$. Consider f: $X \to Y$ which is defined as f(a) = f(b) = b, f(c) = c. This function f is sb*- continuous but not α - continuous, Since the pre image of the open set $\{a,c\}$ in Y is $\{c\}$ in X is not α -open.

Theorem 3.16: If a map $f : X \rightarrow Y$ is sb^* - continuous then it is wg-continuous but not conversely.

Proof: Assume that a map $f : X \to Y$ is sb*- continuous. Let V be an open set in Y. Since f is sb* - continuous, $f^{-1}(V)$ is sb*-open and hence it is wg-open in X. Then f is wg-continuous.

Remark 3.17: The converse of the above theorem need not be true as seen from the following exampl

Example 3.18: Let $X = Y = \Box \{a,b,c\}$ with $\tau = \Box \{X, \varphi, \Box \{b\}\}$ and $\sigma = \Box \{Y, \varphi, \Box \{a\}, \Box \{a, b\}\}$ and f be the identity map. Then f is wg-continuous but not sb*-continuous, as the inverse image of the open set $\Box \{a\} \Box$ in Y is $\Box \{a\}$ in X is not sb*- open.

Theorem 3.19: If a map $f: X \rightarrow Y$ is w-continuous then it is sb^* - continuous but not conversely.

Proof: Let f: $X \to Y$ is w-continuous and V be an open set in Y then $f^{-1}(V)$ is w- open and hence sb^* - open in X. Then f is sb^* - continuous. The converse of the above theorem need not be true as seen from the following example.

Exmple 3.20: Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{b\}\}$ and $\sigma = \{Y, \varphi, \{b, c\}\}$ and f be the identity map. Then f is sb* - continuous but not w-continuous, as the inverse image of the open set $\{b,c\}$ in Y is $\{b,c\}$ in X is not w- open. **Theorem 3.21:** If a map $f: X \rightarrow Y$ is sb*-continuous then it is semi pre continuous but not conversely

Proof: Let $f: X \to Y$ is sb*-continuous and V be an open set in Y then $f^{-1}(V)$ is sb*-open set and hence semi pre open set in X. Then f is semi pre continuous.

Remark 3.22: The converse of the above theorem need not be true as seen from the following example.

Example 3.23: Let $X = Y = \{a,b,c\}$ with $\tau = \{X, \mathcal{P}, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \mathcal{P}, \{b, c\}\}$ and f be the identity map. Then f is semi pre continuous but not sb* - continuous, since the inverse image of the open set $\{b,c\}$ in Y is $\{b,c\}$ in X is not sb*- open.

Remark 3.24: From the above results the diagram follows:

Remark 3.25: The following example shows that the gcontinuous function and sb^* - continuous function are independent.

Example 3.26: Consider $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{b\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{b,c\}\}$. Let the function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b)=c, f(c) = a. This function f is g- continuous but not sb^* - continuous since the inverse image of the open set $\{a\}$ in Y is $\{c\}$ in X is not sb^* - open.

Example 3.27: Consider X = Y = {a,b,c} with $\tau = \{X, \varphi, \{a, b\}\}$ and $\sigma = \{Y, \varphi, \{a, b\}\}$. Let the function f: $(X, \tau) \rightarrow$

 (Y, σ) be defined by f(a) = f(c) = b and f(b) = c. Here the inverse image of the open set $\{a,b\}$ in Y is $\{a,c\}$ in X which is sb*- open but not g - open. Therefore this function is sb* - continuous but not g-continuous

Remark 3.28: The following example shows that the α g- continuous function and sb* - continuous function are independent.

Example 3.29: Consider $X = Y = \{a,b,c\}$ with $\tau = \{X, \varphi, \{b\}\}$ and $\sigma = \{Y, \varphi, \{c\}\}$. Let the function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b)=b, f(c) = c. Here the inverse image of the open set $\{c\}$ in Y is $\{c\}$ in X which is α g-open set but not sb*-open. Therefore the defined function is α g-continuous but not sb*-continuous.

Example 3.30: Consider X = Y = {a,b,c} with $\tau = \Box$ { X, φ , \Box {a}, {a, b}} and $\sigma = \Box$ {Y, φ , \Box {a, c}}. Let the function f: (X, τ) $\Box \rightarrow$ (Y, σ) be defined by f(a) =c, f(b) = b and f(c)=a. Here the inverse image of the open set {a,c} in Y is \Box {a,c} in X is sb*- open but not αg - open. Therefore the defined function is sb* continuous but not αg -continuous.

Remark 3.31: The following example shows that the sb*- continuous function and sg - continuous function are independent

Example 3.32: Consider $X = Y = [\{a,b,c\}\}$ with $\tau = \{X, \varphi, [a], \{c\}, \{a, c\}\}$ and $\sigma = [\{Y, \varphi, [a, c]\}$. Let the function f: $(X, \tau) = \rightarrow (Y, \sigma)$ be defined by f(a) = b, f(b)=a, f(c) = c. Here the inverse image of the open set $[\{a,c\}\}$ in Y is $[\{b,c\}\}$ in X is sg-open set but not sb* - open. Therefore the defined function is sg - continuous but not sb*-continuous.

Example 3.33: Consider X = Y = {a,b,c} with $\tau = {X, \varphi, {a,c}}$ and $\sigma = {Y, \varphi, {a, b}}$. Let the function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) =c, f(b) = b and f(c)=a. Here the inverse image of the open set {a,b} in Y is {b,c} in X is sb*- open but not sg-open. Therefore the defined function is sg - continuous but not sb*-continuous.

Remark 3.34: The following example shows that the sb*- continuous function and semi - continuous function are independent.

Example 3.35: Consider $X = Y = \{a,b,c\}$ with $\tau = \{X, \mathcal{P}, \{a, c\}\}$ and $\sigma = \{Y, \mathcal{P}, \{a\}, \{b\}, \{a, b\}\}$. Let the function f: $(X, \tau) \rightarrow (Y, \sigma)$ be defined by f(a) = a, f(b)=c, f(c) = b. Here the inverse image of the open set $\{a\}$ in Y is $\{a\}$ in X which is not semi open but it is sb* - open. Therefore the defined function is sb* - continuous but not semicontinuous.

Example 3.36: Consider X = Y = {a,b,c} with $\tau = \{X, \varphi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \varphi, \{b, c\}\}$. Let the function f: (X, τ) \rightarrow (Y, σ) be defined by f(a) =a, f(b) = c and f(c)=b. Here the inverse image of the open set {b,c} in Y is {b,c} in X which is semi- open but not sb* - open. Therefore the defined function is semi - continuous but not sb*-continuous.

Remark 3.37: From the above results the diagram follows:

4. STRONGLY b*- OPEN AND CLOSED MAPS

In this section we introduce the new concept of sb* - closed maps and studied some of their properties

Definition 4.1: Let X and Y be a topological spaces. A map f: $X \rightarrow Y$ is called strongly b*-closed (sb* - closed) map if the image of every closed set in X is sb* - closed set in Y.

Theorem 4.2: Every closed map is sb*-closed but not conversely.

Proof: Let f: $X \rightarrow Y$ be closed map and V be a closed set in X. Then f (V) is closed and hence sb*-closed in Y. Thus f is sb*- closed. The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Consider $X = Y = \{a,b,c\}, \tau = \{X, \varphi, \{a\}\}$ and $\sigma = \{Y, \varphi, \{a\}, \{a, b\}\}$ and a map $f : X \to Y$ be defined by f(a) = a, f(b) = f(c) = b. This function f is sb*-closed but not closed as $f(\{b,c\}) = \{b\}$ is not closed in Y.

Theorem 4.4: If a map $f : X \rightarrow Y$ is continuous and sb*-closed, A is sb* - closed set of X then f(A) is sb*-closed in Y.

Proof: Let $f(A) \subseteq O$, where O is b-open set of Y. Since f is continuous $f^{-1}(O)$ is b-open set containing A. Hence $cl(int(A)) \subseteq f^{-1}(O)$, as A is sb*-closed. Since f is sb*-closed f(cl(int(A))) is a sb*-closed set contained in the b-open set O, which implies $cl(intf(A)) \subseteq O$. So, f(A) is sb*-open in Y.

Theorem 4.5: A map $f : X \to Y$ is sb*-closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a sb*-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose f is sb*-closed. Let S be a subset of Y and U be a open set of X such that $f^{-1}(S) \subseteq U$. V = Y-f(X-U) is a sb* - open set containing S such that $f^{-1}(V) \subseteq U$.

For the converse, suppose that F is a closed set of X. Then $f^{-1}(Y-f(F)) \subseteq X$ -F and X-F is open. By hypothesis, there is a sb*-open set V of Y such that Y-f(F) \subseteq V and $f^{-1}(V) \subseteq X$ -F. Therefore $F \subseteq X \cdot f^{-1}(V)$. Hence Y-V $\subseteq f(F) \subseteq f(X \cdot f^{-1}(V)) \subseteq Y$ -V. Which implies f(F) = Y-V. Since Y-V is sb*-closed, f(F) is sb*-closed and thus f is sb*-closed map.

Theorem 4.7: If a map f: $X \rightarrow Y$ is closed and a map g: $Y \rightarrow Z$ is sb*-closed then g°f: $X \rightarrow Z$ is sb*-closed.

Proof: Let V be a closed set in X. Since f: $X \rightarrow Y$ is closed, f (V) is closed set in Y. Since g: $Y \rightarrow Z$ is sb^{*} - closed, h (f (V)) is sb^{*} - closed set in Z. Therefore (g°f): $X \rightarrow Z$ is sb^{*} - closed map.

REFERENCES

- [1] M E Abd El- Monsef S N El Deeb and R A Mahmoud, β - continuous mapping, Bull. Fac.Sci.Assiut Univ.A 12 (1)(1983), 77-90.
- [2] Balachandran K, Sundaram P and Maki H, On Generalized Continuous maps in Topological spaces, Mem. Fac.Sci.Kochi.Univ.Math.12(1991).
- [3] Biswas N, On characterizations of semi-continuous functions, Atti Acad. Naz. Lincei

Rend.Cl.Sci.Fis.Mat.Natur.,48(1970), 399-402.

- [4] Devi R, Balachandran and Maki H, On Generalized αcontinuous maps and α-generalized continuous maps, For East J. Math Sci. (Special Volume Part I), (1997), 1-15.
- [5] Dontchev J, Contra continuous functions and strongly s - closed spaces, Internat. J Mat. Sci 19(1996), 303 - 310.
- [6] Dontchev J, Ganster M and Reilly I L, More on almost s- continuous, Indian. J. Math.41(1999), 139 - 146.
- [7] Dunham. W, $T_{1/2}$ spaces, Kyungpook math. J.17(1977), 161-169.
- [8] Dunham. W and Levine. N, Further results on generalized closed sets in topology, Kyungpook math.J.20.(1980),165-175.
- [9] Erdal Eckici, Almost contra pre continuous functions, Bull. Malaysian Math. Sc. Soc.(Second Series)27(2004)53-65.
- [10] Ekici. E and Caldas M, Slightly γ- continuous functions, Bol. Soc. Parana. Mat(3) 22(2004),2,63-74.
- [11] Jafari S and Noiri T, On contra pre continuous functions, Bull. Malaysian Math. Sc. Soc.25(2002),115-128.
- [12] Levine. N, Generalised closed sets in Topology, Rend. Circ. Mat. Palerno (2), 19 (1970), 89 - 96.
- [13] Levine. N, Strong continuity in topological spaces, Amer.Math. Monthly.67(1960)269.
- [14] Mashhour A S, Hasanain I A and El-Deeb S N , α continuous and α - open mappings, Acta Math Hungar, 41(1983), 213-218.
- [15] Munshi B M and Bassan D S., Super continuous mappings, Indian J. Pure Appl. Maths, 13(1982), 229 -236.
- [16] Nagaveni N , Studies on generalization of homeomorphisms in topological spaces, Ph.D, Thesis, Bharathiar University, Coimbatore(1999).
- [17] Noiri T, Ahmeed B and Khan M, Almost s- continuous functions, Kyungpook Math. J. 35(1995)311- 322.
- [18] Noiri T, super -continuity and some strong forms of continuity Indian J. Pure. Appl. Math., 15(1984), 241-250.
- [19] Poongothai A and Parimelazhagan R, sb*-closed sets in Topological spaces, Int. Journal of Math. Analysis Vol. 6, 2012, no.47, 2325-2333.
- [20] Reilly I L and Vamanamurthy M K, On supercontinuous mappings, Indian J. Pure. Appl. Math. 14(1983), 767-772.
- [21] Sundaram P, Studies on Generalizations of continuous maps in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore 1991.
- [22] Sundaram P and Sheik John M, Weakly closed sets and weakly continuous maps in topological spaces, Proc.82nd session of the Indian Science Congress, Calcutta, 1995, p -49.