Strongly b*- Continuous Functions in Topological Spaces

A.Poongothai and R.Parimelazhagan
Department of Science and Humanities, Karpagam College of Engineering, Coimbatore-32.Tamil Nadu, India

Abstract

In this paper, we present and study a new generation of strongly b^{*}-continuous functions. Furthermore, we obtain basic properties and preservation theorems of strongly b^{*-} continuous functions and relationships between them. Also we studied the strongly b^{*} - open and closed maps.

General Terms

2000 Mathematics Subject Classification: 54C05, 54C10.

Keywords

strongly b^{*} - continuous functions, strongly b^{*}-open maps and closed maps.

1. INTRODUCTION

Levine[11] introduced the concept of generalized closed sets in topological spaces and a class of topological spaces called $T_{1 / 2}$ - spaces. Dunham[7] and Dunham and Levine [8] further studied some properties of generalized closed sets and $T_{1 / 2}-$ spaces. Strong forms of continuous maps have been introduced and investigated by several mathematicians. strongly continuous maps, perfectly continuous maps, completely continuous maps, clopen continuous maps were introduced by Levine[13], Noiri[18], Munshi and Bassan[15] and Reilly and Vamanamurthy[20] respectively. Semi continuous functions have been studied by several authors. Dontchev[5], Ganster and Reilly[6] introduced contracontinuous functions and regular set - connected functions. Erdal Ekici [9] introduced and studied a new class of functions called almost contra-pre- continuous functions which generalize classes of regular set connected [6], contra- pre continuous [11], contra continuous [5], almost s - continuous [17] and perfectly continuous functions [18]. In this paper, we introduce and study the strongly b^{*} - continuous functions in topological spaces. Also we studied the strongly b^{*} - open and closed maps.

2. PRELIMINARIES

In this section, we begin by recalling some definitions
Definition 2.1[21]: A map f: $\mathrm{X} \rightarrow \mathrm{Y}$ fromatopological space X into a topological space Y is called semi- generalized continuous (sg-continuous) if $\mathrm{f}^{-1}(\mathrm{~V})$ is sg - closed in X for every closed set V of Y .

Definition 2.2[3]: A map f: $\mathrm{X} \rightarrow \mathrm{Y}$ is semi-continuous if and only if for every closed set B of $Y, f^{-1}(B)$ is semi-closed in X.

Definition 2.3[2]: A function f: $\mathrm{X} \rightarrow \mathrm{Y}$ is said to be generalized continuous (g-continuous) if $f^{-1}(V)$ is g-open in X for each open set V of Y .

Definition 2.4[10]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be b-continuous if for each $x \in X$ and for each open set of V of Y containing $f(x)$, there exists $U \in b O(X, x)$ such that $\mathrm{f}(\mathrm{U}) \subseteq \mathrm{V}$.

Definition 2.5[22]:A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be w-continuous if $f^{-1}(V)$ is $w-$ open in X for each open set V of Y.

Definition: 2.6 [14]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be α-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is α-open in X for each open set V of Y .
Definition: 2.7 [16]: Let X and Y be topological spaces. A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be weakly generalized continuous (wg-continuous) if the inverse image of every open set in Y is wg-open in X .

Definition 2.8:[4] A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be $\alpha \mathrm{g}$ - continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is $\alpha \mathrm{g}$ - open in X for each open set V of Y .
Definition 2.9[1]: A map $\mathrm{f}: ~ \mathrm{X} \rightarrow \mathrm{Y}$ is semi precontinuous if and only if for every closed set B of Y, f^{-1} (B)is semi pre-closed in X .

Definition 2.10[19]: A subset A of a topological space (X, τ) is called a strongly b^{*} - closed set (briefly $s b^{*}$ - closed) if $d \operatorname{in}(A)) \subseteq U$ whenever $A \subseteq U$ and U is b open in X .

3. STRONGLY b* - CONTINUOUS FUNCTIONS

In this section, we introduce the new class of definition sb^{*}-continuous function in topological space. Also we discuss some of its properties.
Definition 3.1: Let X and Y be topological spaces. A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called strongly b^{*} - continuous (sb^{*} - continuous) if the inverse image of every open set in Y is sb^{*} - open in X.

Theorem 3.2: If a map $f: X \rightarrow Y$ is continuous then it is sb* - continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous. Let Fbe any open set in Y . The inverse image of F is open in X. Since every open set is sb^{*}-open set, inverse image of F is sb^{*} - open set in X . Therefore f is sb^{*} - continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4: Consider $\mathrm{X}=\{1,2,3\}$ with $\tau=\{X$, $\varphi,\{1,3\}\}, Y=\{a, b, c\}$ and $\sigma=\{Y, \varphi,\{b\},\{a, c\}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma) \mathrm{be}$ defined by $\mathrm{f}(1)=\mathrm{a}, \mathrm{f}(3)=\mathrm{b}, \mathrm{f}(2)=\mathrm{c}$. Then f is sb^{*}-continuous. But f is not continuous since for the open set $U=\{\mathrm{a}, \mathrm{c}\}$ in $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{U})=\{1,2\}$ is not open in X .

Theorem 3.5: Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a map from a topological space (X, τ) in to a topological space (Y, σ). The statement (a) f is sb* - continuous is equivalent to the statement (b) the inverse image of each open set in Y is sb^{*}-open in X.

Proof: Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb*-continuous. Let G be open in Y. Then G^{c} is closed in Y. Since f is sb*-continuous, $\mathrm{f}^{-1}\left(\mathrm{G}^{9}\right)$ is sb* -closed in X . But $\mathrm{f}^{-1}\left(\mathrm{G}^{9}\right)=\mathrm{X}$ -$f^{-1}(\mathrm{G})$. Thus $X-\mathrm{f}^{-1}(\mathrm{G})$ is sb*-closed in X and so $\mathrm{f}^{-1}(\mathrm{G})$ is sb*-open in X. Therefore $(\mathrm{a}) \Rightarrow(\mathrm{b})$.

Conversely, assume that the inverse image of each open set in Y is sb*- open in X. Let F be any closed set in Y. Then $\mathrm{f}^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)$ is sb^{*} - open in X . But $\mathrm{f}^{-1}(\mathrm{~F})=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~F})$. Thus X -$\mathrm{f}^{-1}(\mathrm{~F})$ is $s b^{*}$ - open in X and so $\mathrm{f}^{-1}(\mathrm{~F})$ is sb^{*}-closed in X . Therefore f is sb^{*}-continuous. Hence (b) \Rightarrow (a). Thus (a) and (b) are equivalent.

Theorem 3.6: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ beasb*- continuous map from a topological space X in to a topological space Y and let H be a closed subset of X. Then the restriction $\mathrm{f} / \mathrm{H}: \mathrm{H} \rightarrow$ Y is sb^{*} - continuous where H is endowed with the relative topology.
Proof: Let F be any closed subset in Y. Since f is sb^{*} - continuous, $\mathrm{f}^{-1}(\mathrm{~F})$ is sb^{*} - closed in X . Intersection of sb *-closed sets is sb* - closed set. Thus if $\mathrm{f}^{-1}(\mathrm{~F}) \cap \mathrm{H}=\mathrm{H}_{1}$ then H_{1} is sb* - closed set in X. Since $(f / H)^{-1}(\mathrm{~F})=H_{1}$, it is sufficient to show that H_{1} is sb^{*} - closed set in H . Let G_{1} be any open set of H such that $H_{1} \subset G_{1}$. Let $G_{1}=G \cap H$ where G is open in X. Now $H_{1} \subset G \cap H \cap G$. Since H_{1} is sb* - closed in $\mathrm{X}, \overline{H_{1}} \subset G$. Now $l_{H}\left(H_{1}\right)=\overline{\mathrm{H}_{1}} \cap H \subset G \cap H=G_{1}$, where $\mathrm{cl}_{H}(\mathrm{~A})$ is the closure of a subset $\mathrm{A} \subset \mathrm{H}$ in a subspace H of X . Therefore f / H is sb^{*} - continuous.
Remark 3.7: In the above theorem, the assumption of closedness of H cannot be removed as seen from the following example.

Example 3.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{X, \varphi,\{b\}\}, \mathrm{Y}$ $=\{\mathrm{p}, \mathrm{q}\}$ and $\sigma=\{Y, \boldsymbol{\varphi},\{p\}\}$. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined by $f(a)=f(c)=q, f(b)=p$. Now $H=\{a, b\}$ is not closed in X. Then f is sb^{*} - continuous but the restriction f / H is not sb^{*}-continuous. Since for the closed set $\mathrm{F}=\{\mathrm{q}\}$ in Y , $\mathrm{f}^{-1}(\mathrm{~F})=\{\mathrm{a}, \mathrm{c}\}$ and $\mathrm{f}^{-1}(\mathrm{~F}) \cap \mathrm{H}=\{\mathrm{a}\}$ is not sb^{*}-closed in H .
Theorem 3.9: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb* - continuous if and only if the inverse image of every closed set in Y is sb^{*} closed in X .
Proof: Let F be a closed set in Y. Then F^{c} is open in Y. Since f is sb^{*}-continuous, $\mathrm{f}^{-1}(\mathrm{~F})$ is sb^{*} - open in X . But $\mathrm{f}^{-1}(\mathrm{Fv})=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~F})$ and so $\mathrm{f}^{-1}(\mathrm{~F})$ is sb* - closed in X .

Conversely, let the inverse image of every closed set in Y is sb* - closed set in X . Let V be an open set in Y and V^{c} is closed in Y. Now by the assumption $f^{-1}(V)=X-$
$\mathrm{f}^{-1}(\mathrm{~V})$ is $s b^{*}$ - closed set in Y . Therefore $\mathrm{f}^{-1}(\mathrm{~V})$ is $s b^{*}$ - open in X . Then fis sb* - continuous.
Theorem 3.10: If a function $f: X \rightarrow Y$ is $s b^{*}$-continuous then it is b -continuous but not conversely.

Proof: Assume that a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb* - continuous. let V be an open set in Y. Since f is b^{*} - continuous f^{-1} (V) is sb^{*}-open and hence b - open in X . Therefore f is b continuous
Remark 3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\boldsymbol{\varphi},\{a\},\{c\},\{a, c\}\} \quad, \quad \sigma=\{Y, \quad \varphi,\{b\},\{c\},\{b, c\}\}$ and $\mathrm{f}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{b}),(\mathrm{c}, \mathrm{c})\}$. Then f is b -continuous but not sb^{*}-continuous. Since the inverse image of the open set $\{\mathrm{b}\}$ in Y is $\{\mathrm{a}, \mathrm{b}\}$ in X is not sb* - open.

Theorem 3.13: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is α-continuous then it is sb*-continuous but not conversely.
Proof: Assume that f is α-continuous. Let V be an open set in Y . Since f is α-continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is α-open and hence it is sb *-open in X . Thenf is sb^{*}-continuous.
Remark 3.14: The converse of the above theorem be true as seen from the following example.
Example 3.15: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\boldsymbol{\varphi},\{b\},\{a, c\}\}$ and $\sigma=\{Y, \varphi,\{a, c\}\}$. Consider $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ which is defined as $f(a)=f(b)=b, f(c)=c$. This function f is sb^{*} - continuous but not α-continuous, Since the pre image of the open set $\{\mathrm{a}, \mathrm{c}\}$ in Y is $\{\mathrm{c}\}$ in X is not α-open.

Theorem 3.16: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{sb}{ }^{*}$ - continuous then it is wg-continuous but not conversely.

Proof: Assume that a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb*- continuous. Let V be an open set in Y. Since f is sb^{*} - continuous, $\mathrm{f}^{-1}(\mathrm{~V})$ is sb*-open and hence it is wg-open in X. Then f is wg continuous.

Remark 3.17: The converse of the above theorem need not be true as seen from the following exampl

Example 3.18: Let $\mathrm{X}=\mathrm{Y}=\square\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\square\{\mathrm{X}$, $\varphi, \square\{\mathrm{b}\}\}$ and $\sigma=\square\{\mathrm{Y}, \varphi, \square\{\mathrm{a}\}, \square\{\mathrm{a}, \mathrm{b}\}\}$ and f be the identity map. Then f is wg -continuous but not sb^{*} continuous, as the inverse image of the open set $\square\{\mathrm{a}\} \square$ in Y is $\square\{\mathrm{a}\}$ in X is not sb^{*} - open.

Theorem 3.19: If a map $f: X \rightarrow Y$ is w-continuous then it is sb*- continuous but not conversely.
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is w -continuous and V be an open set in Y then $f^{-1}(V)$ is w - open and hence sb* - open in X. Then f is sb^{*} - continuous. The converse of the above theorem need not be true as seen from the following example.

Exmple 3.20: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X, \varphi,\{b\}\}$ and $\sigma=\{Y, \varphi,\{b, c\}\}$ and f be the identity map. Then f is sb^{*} - continuous but not w -continuous, as the inverse image of the open set $\{b, c\}$ in Y is $\{\mathrm{b}, \mathrm{c}\}$ in X is not w- open.

Theorem 3.21: If a map $f: X \rightarrow Y$ is sb^{*}-continuous then it is semi pre continuous but not conversely
Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb^{*}-continuous and V be an open set in Y then $f^{-1}(V)$ is $s b^{*}$-open set and hence semi pre open set in X. Then f is semi pre continuous.
Remark 3.22: The converse of the above theorem need not be true as seen from the following example.

Example 3.23: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi,\{a\},\{c\},\{a, c\}\}$ and $\sigma=\{Y, \varphi,\{b, c\}\}$ and f be the identity map. Then f is semi pre continuous but not sb* - continuous, since the inverse image of the open set $\{b, c\}$ in Y is $\{b, c\}$ in X is not s^{*} - open.

Remark 3.24: From the above results the diagram follows:

Remark 3.25: The following example shows that the gcontinuous function and sb^{*} - continuous function are independent.

Example 3.26: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi,\{b\}\}$ and $\sigma=\{Y, \varphi,\{a\},\{b, c\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}$, σ) be defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{a}$. This function f is g - continuous but not sb^{*} - continuous since the inverse image of the open set $\{a\}$ in Y is $\{c\}$ in X is not sb^{*} open.

Example 3.27: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\boldsymbol{\varphi},\{a\},\{a, b\}\}$ and $\sigma=\{Y, \varphi,\{a, b\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$
(Y, σ) be defined by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{c})=\mathrm{b}$ and $\mathrm{f}(\mathrm{b})=\mathrm{c}$. Here the inverse image of the open set $\{a, b\}$ in Y is $\{a, c\}$ in X which is sb^{*} - open but not g - open. Therefore this function is sb^{*} - continuous but not g-continuous
Remark 3.28: The following example shows that the $\alpha \mathrm{g}$ - continuous function and sb^{*} - continuous function are independent.
Example 3.29: Consider $X=Y=\{a, b, c\}$ with $\tau=\{X, \boldsymbol{\varphi},\{b\}\}$ and $\sigma=\{Y, \boldsymbol{\varphi},\{c\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}$, σ) be defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Here the inverse image of the open set $\{\mathrm{c}\}$ in Y is $\{\mathrm{c}\}$ in X which is $\alpha \mathrm{g}$ open set but not sb^{*} - open. Therefore the defined function is $\alpha \mathrm{g}$-continuous but not sb^{*}-continuous.

Example 3.30: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\square\{$ $X, \varphi, \square\{a\},\{a, b\}\}$ and $\sigma=\square\{Y, \varphi, \square\{a, c\}\}$. Let the function $\quad \mathrm{f}:(\mathrm{X}, \tau) \square \rightarrow(\mathrm{Y}, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})$ $=c, f(b)=b$ and $f(c)=a$. Here the inverse image of the open set $\{a, c\}$ in Y is $\square\{a, c\}$ in X is $s b^{*}$ - open but not $\alpha \mathrm{g}$ - open. Therefore the defined function is sb^{*} continuous but not α g-continuous.

Remark 3.31: The following example shows that the sb^{*} - continuous function and sg - continuous function are independent

Example 3.32: Consider $\mathrm{X}=\mathrm{Y}=\square\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi, \square\{a\},\{c\},\{a, c\}\}$ and $\sigma=\square\{Y, \varphi, \square\{a, c\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \square \rightarrow(\mathrm{Y}, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{b}$, $f(b)=a, f(c)=c$. Here the inverse image of the open set $\square\{a, c\}$ in Y is $\square\{b, c\}$ in X is sg-open set but not sb^{*} - open. Therefore the defined function is sg continuous but not sb^{*}-continuous.

Example 3.33: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi,\{a, c\}\}$ and $\sigma=\{Y, \varphi,\{a\},\{a, b\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow$ (Y, σ) be defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{b})=\mathrm{b}$ and $\mathrm{f}(\mathrm{c})=\mathrm{a}$. Here the inverse image of the open set $\{a, b\}$ in Y is $\{b, c\}$ in X is sb^{*} - open but not sg-open. Therefore the defined function is sg - continuous but not sb^{*}-continuous.
Remark 3.34: The following example shows that the sb^{*} - continuous function and semi - continuous function are independent.

Example 3.35: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi,\{a, c\}\}$ and $\sigma=\{Y, \varphi,\{a\},\{b\},\{a, b\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}, \mathrm{f}(\mathrm{c})=\mathrm{b}$. Here the inverse image of the open set $\{a\}$ in Y is $\{a\}$ in X which is not semi open but it is sb^{*} - open. Therefore the defined function is sb^{*} - continuous but not semicontinuous.

Example 3.36: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with $\tau=\{X$, $\varphi,\{a\},\{c\},\{a, c\}\}$ and $\sigma=\{Y, \varphi,\{b, c\}\}$. Let the function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{c}$ and $\mathrm{f}(\mathrm{c})=\mathrm{b}$. Here the inverse image of the open set $\{b, c\}$ in Y is $\{b, c\}$ in X which is semi- open but not sb^{*} - open. Therefore the defined function is semi - continuous but not sb^{*}-continuous.

Remark 3.37: From the above results the diagram follows:

4. STRONGLY b*- OPEN AND CLOSED MAPS

In this section we introduce the new concept of sb* closed maps and studied some of their properties
Definition 4.1: Let X and Y be a topological spaces. A map $f: X \rightarrow Y$ is called strongly b^{*}-closed (sb* - closed) map if the image of every closed set in X is sb^{*} - closed set in Y .

Theorem 4.2: Every closed map is sb*-closed but not conversely.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be closed map and V be a closed set in X . Then $\mathrm{f}(\mathrm{V})$ is closed and hence sb^{*}-closed in Y . Thus f is sb^{*} - closed. The converse of the above theorem need not be true as seen from the following example.

Example 4.3: Consider $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad \tau=\{X$, $\varphi,\{a\}\}$ and $\sigma=\{Y, \varphi,\{a\},\{a, b\}\}$ and a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be defined by $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{c})=\mathrm{b}$. This function f is sb^{*}-closed but not closed as $f(\{b, c\})=\{b\}$ is not closed in Y.

Theorem 4.4: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is continuous and sb^{*}-closed, A is sb^{*} - closed set of X then $\mathrm{f}(\mathrm{A})$ is sb*-closed in Y.

Proof: Let $f(A) \subseteq O$, where O is b-open set of Y. Since f is continuous $\mathrm{f}^{-1}(\mathrm{O})$ is b-open set containing A . Hence $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{f}^{-1}(\mathrm{O})$, as A is sb^{*}-closed. Since f is sb^{*}-closed $\mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A})))$ is a sb^{*}-closed set contained in the b-open set O , which implies $\mathrm{cl}(\mathrm{int} \mathrm{f}(\mathrm{A})) \subseteq \mathrm{O}$. So, $\mathrm{f}(\mathrm{A})$ is sb*${ }^{*}$-open in Y .
Theorem 4.5: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is sb*-closed if and only if for each subset S of Y and for each open set U containing $\mathrm{f}^{-1}(\mathrm{~S})$ there is a sb*-open set V of Y such that $\mathrm{S} \subseteq \mathrm{V}^{*}$ and $\mathrm{f}^{-1}(V) \subseteq \mathrm{U}$.

Proof: Suppose f is sb^{*}-closed. Let S be a subset of Y and U be a open set of X such that $f^{-1}(S) \subseteq U . V=Y-f(X-U)$ is a sb* - open set containing S such that $\mathrm{f}^{-1}(V) \subseteq \mathrm{U}$.
For the converse, suppose that F is a closed set of X . Then $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{f}(\mathrm{F})) \subseteq \mathrm{X}-\mathrm{F}$ and $\mathrm{X}-\mathrm{F}$ is open. By hypothesis, there is a sb*-open set V of Y such that $Y-f(F) \subseteq V$ and $f^{-1}(V) \subseteq X-F$. Therefore $F \subseteq X-f^{1}(V)$. Hence $Y-V \subseteq f(F) \subseteq f\left(X-f^{1}(V) \subseteq Y-V\right.$. Which implies $f(F)=Y-V$. Since $Y-V$ is s^{*}-closed, $f(F)$ is sb^{*}-closed and thus f is sb^{*}-closed map.

Theorem 4.7: If a map $f: X \rightarrow Y$ is closed and a map g : $\mathrm{Y} \rightarrow \mathrm{Z}$ is sb*-closed then gof: $\mathrm{X} \rightarrow \mathrm{Z}$ is sb* -closed.

Proof: Let V be a closed set in X. Since $f: X \rightarrow Y$ is closed, $\mathrm{f}(\mathrm{V})$ is closed set in Y . Since $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is sb^{*} - closed, $\mathrm{h}\left(\mathrm{f}(\mathrm{V})\right.$) is sb^{*} - closed set in Z . Therefore (g f): $\mathrm{X} \rightarrow \mathrm{Z}$ is sb ${ }^{*}$ - closed map.

REFERENCES

[1] M E Abd El- Monsef S N El - Deeb and R A Mahmoud, β - continuous mapping, Bull. Fac.Sci.Assiut Univ.A 12 (1)(1983), 77-90.
[2] Balachandran K, Sundaram P and Maki H, On Generalized Continuous maps in Topological spaces, Mem. Fac.Sci.Kochi.Univ.Math.12(1991).
[3] Biswas N, On characterizations of semi-continuous functions, Atti Acad. Naz. Lincei

Rend.Cl.Sci.Fis.Mat.Natur.,48(1970), 399-402.
[4] Devi R, Balachandran and Maki H, On Generalized α continuous maps and α-generalized continuous maps, For East J. Math Sci. (Special Volume Part I), (1997), 1-15.
[5] Dontchev J, Contra - continuous functions and strongly s - closed spaces, Internat. J Mat. Sci 19(1996), 303-310.
[6] Dontchev J, Ganster M and Reilly I L, More on almost s- continuous, Indian. J. Math.41(1999), 139-146.
[7] Dunham. W, $\mathrm{T}_{1} / 2$ - spaces, Kyungpook math. J.17(1977), 161-169.
[8] Dunham. W and Levine. N, Further results on generalized closed sets in topology, Kyungpook math.J.20.(1980),165-175.
[9] Erdal Eckici, Almost contra - pre continuous functions, Bull. Malaysian Math. Sc. Soc.(Second Series)27(2004)53-65.
[10] Ekici. E and Caldas M, Slightly γ-continuous functions, Bol. Soc. Parana. Mat(3) 22(2004),2,63-74.
[11] Jafari S and Noiri T, On contra - pre continuous functions, Bull. Malaysian Math. Sc. Soc.25(2002),115-128.
[12] Levine. N, Generalised closed sets in Topology, Rend. Circ. Mat. Palerno (2), 19 (1970), 89-96.
[13] Levine. N, Strong continuity in topological spaces, Amer.Math. Monthly.67(1960)269.
[14] Mashhour A S, Hasanain I A and El-Deeb S N , $\alpha-$ continuous and α-open mappings, Acta Math Hungar, 41(1983), 213-218.
[15] Munshi B M and Bassan D S., Super continuous mappings, Indian J. Pure Appl. Maths, 13(1982), 229 236.
[16] Nagaveni N , Studies on generalization of homeomorphisms in topological spaces, Ph.D, Thesis, Bharathiar University, Coimbatore(1999).
[17] Noiri T, Ahmeeed B and Khan M, Almost s- continuous functions, Kyungpook Math. J. 35(1995)311-322.
[18] Noiri T, super -continuity and some strong forms of continuity Indian J. Pure. Appl. Math., 15(1984), 241250.
[19] Poongothai A and Parimelazhagan R, sb*-closed sets in Topological spaces, Int. Journal of Math. Analysis Vol. 6, 2012, no.47, 2325-2333.
[20] Reilly I L and Vamanamurthy M K, On supercontinuous mappings, Indian J. Pure. Appl. Math. 14(1983), 767-772.
[21] Sundaram P, Studies on Generalizations of continuous maps in topological spaces, Ph.D, thesis, Bharathiar University, Coimbatore 1991.
[22] Sundaram P and Sheik John M, Weakly closed sets and weakly continuous maps in topological spaces, Proc.82nd session of the Indian Science Congress, Calcutta, 1995, p-49.

