g*b-Homeomorphisms and Contra g*b-continuous Maps in Topological Spaces

D.Vidhya and R.Parimelazhagan Department of Science and Humanities, Karpagam college of Engineering, coimbatore -32. Tamil Nadu India

ABSTRACT

In this paper, we first introduce a new class of closed maps called g^*b -closed map and gb-closed map. Also, we introduce a new class of homeomorphisms called g^*b -homeomorphism, gb-homeomorphism and we investigate a new generalization of contracontinuity called contra- g^*b -continuity.

AMS Classification(2000): 54C10,54C08,54C05.

Keywords: g^*b -closed map, g^*b -homeomorphism, gb- closed map, gb-homeomorphism, contra- g^*b -continuous.

1. Introduction

Malghan[8] introduced the concept of generalized closed maps in topological spaces. Biswas[1], Mashour[9], Sundaram[13], Crossley and Hildebrand [2], and Devi[3] have introduced and studied semi-open maps, α -open maps, and generalized open maps respectively.

Several topologists have generalized homeomorphisms in topological spaces. Biswas[1], Crossley and Hilde- brand[2], Sundaram[13] have introduced and studied semi-homeomorphism and some what homeomorphism and generalized homeomorphism and gc-homeomorphism respectively.

The notion of contra-continuity was introduced and in- vestigated by Donchev[4]. Donchev and Noiri[5], S.Jafari and T.Noiri[7,6] have introduced and investigated contra-semi-continuous functions, contrapre-continuous functions and contra- α -continuous functions between topological spaces.

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

2. Preliminaries

We recall the following definitions.

Definition 2.1[12]: A subset A of a

topological space (X,τ) is called a generalized b-closed set (briefly gb-closed) if $bcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X

Definition 2.2[14]: A subset A of a topological space (X, τ) is called a g^*b -closed set if bcl(A) \subseteq U, whenever $A \subseteq U$ and U is g-open in X.

Definition 2.3[12]: A map $f : X \rightarrow Y$ is called gb-continuous if the inverse image of every closed set in Y is gb-closed in X.

Definition 2.4[15]: A map $f : X \rightarrow Y$ is called

g*b-continuous if the inverse image of every closed set

in Y is g*b-closed in X.

Definition 2.5[4]: A map $f : X \rightarrow Y$ is called contra-continuous if the inverse image of every open set in Y is closed in X.

Definition 2.6[7]: A map $f : X \rightarrow Y$ is called contra-pre-continuous if the inverse image of every open set in Y is preclosed in X.

Definition 2.7[5]: A map $f : X \rightarrow Y$ is called contra-semi-continuous if the inverse image of every open set in Y is semi-closed in X.

Definition 2.8[6]: A map $f : X \rightarrow Y$ is called contra- α -continuous if the inverse image of every open1

set in Y is α -closed in X.

Definition 2.9[10]: A map $f : X \rightarrow Y$ is called contra-b-continuous if the inverse image of every open set in Y is b-closed in X.

Definition 2.10[11]: A map $f : X \rightarrow Y$ is called almost-contra continuous if the inverse image of every regular open set in Y is open in X.

3. g*b -Closed Maps

In this section we introduce the concept of g^*b -

closed map, g*b -open map and gb-closed map in topological spaces.

Definition 3.1: A map $f : X \rightarrow Y$ is called g^*b - closed map if for each closed set F of X, f(F)) is g^*b -closed set in Y.

Definition 3.2: A map $f: X \rightarrow Y$ is called g^*b -

open map if for each open set F of X, f(F) is g*b-open set in Y.

Definition 3.3: A map $f : X \rightarrow Y$ is called gbclosed map if for each closed set F of X, f(F) is gb-closed set in Y.

Theorem 3.4: Every closed map is a g*b -closed map.

Proof: Let $f: X \rightarrow Y$ be an closed map. Let F

be any closed set in X. Then f(F) is an closed set in Y. Since every closed set is g^*b -closed, f(F) is a g^*b closed set. Therefore f is a g^*b -closed map.

Remark 3.5: The converse of the theorem 3.4 need not be true as seen from the following example.

Example 3.6: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, b\}\}$. Let $f: X \rightarrow Y$ be the identity map. Then f is g*b-closed but not closed, since the image of the closed set $\{b, c\}$ in X is $\{b, c\}$ which is not closed in Y.

Theorem 3.7: Every g*b-closed map is a gb-closed map.

Proof: Let $f: X \rightarrow Y$ be a g^*b -closed map. Let F be a closed set in X. Then f(F) is a g^*b -closed set in Y. Since every g^*b -closed set is gb-closed, f(F) is a gb-closed set. Therefore f is a gb-closed map.

Remark 3.8: The converse of the theorem 3.7 need not be true as seen from the following example.

Example 3.9: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f: X \rightarrow Y$ be the identity map. Then f is gb-closed but not g*b-closed, since the image of the closed

set $\{a, b\}$ in X is $\{a, b\}$ which is not g^*b -closed in Y.

Theorem 3.10: If $f: X \to Y$ is closed and $h: Y \to Z$ is g^*b -closed, then $h^\circ f: X \to Z$ is g^*b -closed.

Proof: Let V be any closed set in X. Since $f: X \to Y$, f (V) is closed in Y and since $h: Y \to Z$ is g^*b -closed,

h(f (V)) is g*b -closed in Z . Therefore h ° f : X \rightarrow Z is g*b -closed map.

Remark 3.11: If $f : X \rightarrow Y$ is g^*b -closed and

 $h: Y \rightarrow Z$ is closed, then their composition need not be a g*b -closed map as seen from the following example.

Example 3.12: Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b, c\}\}, \sigma = \{Y, \phi, \{a, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{c\}, \{a, c\}\}$. Define a map $f: X \rightarrow Y$ by f(a) = f(b) = b and f(c) = a and a map $g: Y \rightarrow Z$ is defined by g(a) = b, g(b) = a and g(c) = c. Then f is a g*b -closed map and g is a closed map. But their composition $g \circ f: X \rightarrow Z$ is not a g*b -closed map, since for the closed set $\{b, c\}$ in X, $g \circ f(\{b, c\}) = \{a, b\}$ which is not g*b -closed in Z.

Theorem 3.13: A map $f: X \to Y$ is g^*b -closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a g^*b open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq$ U.

Proof: Suppose f is g^*b -closed. Let S be a subset of Y and U is an open set of X such that $f^{-1}(S) \subseteq U$. Then

V = Y - f(X - U) is g*b -open set containing S such that $f^{-1}(V) \subseteq U$.

Conversely suppose that F is a closed set in X.

Then $f^{-1}(Y - f(F)) = X - F$ and X_F is open. By hypothesis, there is a g^*b -open set V of Y such that $Y_f(F) \subseteq Y$ and $f^{-1}(V) \subseteq X - F$. Therefore $F \subseteq X - f^{-1}(V)$. Hence $Y - V \subseteq f(F)$ $0 \subseteq f(X - f^{-1}(V)) \subseteq Y - V$, which implies f(F) = Y - V. Since Y - V is g^*b -closed,

f (F) is g^*b -closed and therefore f is g^*b -closed map.

Theorem 3.14: If $f: X \to Y$ is g-closed, $g: Y \to Z$ be g^*b -closed and Y is $T_{1/2}$ -space then their composition

 $g \circ f: X \rightarrow Z$ is g^*b -closed map.

Proof: Let A be a closed set of X. Since f is gclosed, f (A) is g-closed in Y. Since Y is $T_{1/2}$ space, f (A) is closed in Y. Since g is g*b-closed, g(f (A)) is g*b-closed in Z and g(f (A)) = g \circ f (A). Therefore g \circ f is g*b-closed.

Theorem 3.15: If $f : X \rightarrow Y$ is g^*b -closed and

 $A = f^{-1}(B)$ for some closed set B of Y, then

 $f_A: A \to Y \ \text{is} \ g^*b \text{-closed}.$

Proof: Let F be a closed set in A. Then there is a closed set H in X such that $F = A \cap H$. Then $f_A(F) = f(A \cap H) = f(H) \cap B$. Since f is g^*b closed, f(H) is g^*b -closed in Y. So $f(H) \cap B$ is g^*b closed, since the intersection of a g^*b -closed set and a closed set is a g^*b -closed set. Hence f_A is g^*b -closed.

Remark 3.16: If B is not closed in Y then the theorem 3.15

may not hold as seen from the following example.

Example 3.17: Let $X = Y = \{a, b, c\}$ with topologies

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}\}.$ Let $f: X \rightarrow Y$ be the identity map. Take $B = \{a\}$ is not closed in A. Then $A = f^{-1}(B) = f^{-1}(\{a\}) =$ {a} and {a} is closed in A. But $f_A(\{a\}) = \{a\}$ is not g^*b -closed in Y. Therefore $\{a\}$ is also not g^*b - closed in B.

Remark 3.18: The Composition of two g^*b -closed maps need not be g^*b -closed map in general and this is shown by the following example.

Example 3.19: Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$ and $\eta = \{Z, \phi, \{b\}, \{a, b\}\}$. Define $f : X \rightarrow Y$ by f(a) = a, f(b) = b, f(c) = c and $g : Y \rightarrow Z$ be the identity map. Then f and g are g^*b -closed maps, but their composition $g \circ f : X \rightarrow Z$ is not g^*b -closed map, because $F=\{b\}$ is closed in X, but $g \circ f(F) =$

 $g \circ f({b}) = g({b}) = {b}$ which is not g^*b - closed in Z.

4. g*b-Homeomorphisms

Definition 4.1: A bijection $f : X \rightarrow Y$ is called g*b-homeomorphism if f is both g*b - continuous and g*b-closed.

Definition 4.2: A bijection $f: X \rightarrow Y$ is called gb-homeomorphism if f is both gb-continuous and gb-closed.

Theorem 4.3: Every homeomorphism is a g*b-homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a homeomorphism. Then f is continuous and closed. Since every continuous function is g^*b -continuous and every closed map is g^*b -closed, f is g^*b -continuous and g^*b -closed. Hence f is a g^*b -homeomorphism.

Remark 4.4: The converse of the theorem 4.3 need not be true as seen from the following example.

Example 4.5: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, c\}\}$. Let $f : X \rightarrow Y$ be the identity map. Then f is g*b-homeomorphism but not a

homeomorphism, since the inverse image of $\{b, c\}$ in Y is not closed in X.

Theorem 4.6: Every g*b -homeomorphism is a gb-homeomorphism.

Proof: Let $f : X \rightarrow Y$ be a g^*b homeomorphism. Then f is g^*b -continuous and g^*b -closed. Since every g^*b -continuous function is gb-continuous and every g^*b b-closed map is gbclosed, f is gb-continuous and gb-closed. Hence f is a gb-homeomorphism.

Remark 4.7:The converse of the theorem 4.6 need not be true as seen from the following example.

Example 4.8: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}\}$ and $\sigma = \{Y, \phi, \{b\}\}$. Let $f : X \rightarrow Y$ be the identity map. Then f is gb-homeomorphism but not a g*b-homeomorphism, since the inverse image of $\{a, c\}$ in Y is not g*b-closed in X.

Theorem 4.9: For any bijection $f : X \rightarrow Y$ the following statements are equivalent.

(a) Its inverse map f⁻¹ : Y \rightarrow X is g*b - continuous.

(b) f is a g*b -open

map.

(c) f is a g*b -closed map.

Proof: (a) \Rightarrow (b)

Let G be any open set in X. Since f^{-1} is g^*b continuous, the inverse image of G under f^{-1} , namely f(G) is g^*b -open in Y and so f is a g^*b open map.

 $(b) \Rightarrow (c)$

Let F be any closed set in X. Then F^{c} open in X. Since f is $g^{*}b$ -open, $f(F^{c})$ is $g^{*}b$ -open in Y. But

 $f(F^{c}) = Y - f(F)$ and so f(F) is $g^{*}b$ -closed in Y. Therefore f is a $g^{*}b$ -closed map. $(c) \Rightarrow (a)$

Let F be any closed set in X. Then the inverse image of F under f^{-1} , namely f(F) is g^*b -closed in Y since f is a g^*b -closed map. Therefore f^{-1} is g^*b -continuous.

Theorem 4.10: Let $f : X \rightarrow Y$ be a bijective and g^*b -continuous map. Then, the following statements are equivalent.

- (a) f is a g*b -open map
- (b) f is a g*b -homeomorphism.
- (c) f is a g*b -closed map.

Proof: (a) \Rightarrow (b)

Given $f: X \rightarrow Y$ be a bijective, g^*b -continuous and g^*b -open. Then by definition, f is a g^*b -homeomorphism.

 $(b) \Rightarrow (c)$

Given f is g*b -open and bijective. By theorem 4.9, f is a g*b -closed map.

 $(c) \Rightarrow (a)$

Given f is g*b-closed and bijective. By theorem 4.9, f is a g*b-open map.

Remark 4.11: The following example shows that the composition of two g^*b -homeomorphism is not a g^*b -homeomorphism.

Example 4.12: Let $X = Y = Z = \{a, b, c\}$ with topologies

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$ and $\eta = \{Z, \phi, \{a\}\}$. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be the identity maps. Then both f and g are g*b-homeomorphisms but their composition $g \circ f: X \rightarrow Z$ is not a g*b-homeomorphism, since $F = \{a, c\}$ is closed in X, but $g \circ f(F) = g \circ f(\{a, c\})$

= $\{a, c\}$ which is not g^*b -closed in Z.

5. Contra-g*b-Continuous Maps

In this section we introduce the concept of contra- g^*b - continuous map, almost contra- g^*b - continuous map and locally g^*b -indiscrete space in topological spaces.

Definition 5.1: A map $f : X \rightarrow Y$ is called contra- g*b -continuous if the inverse image of every open

set in Y is g*b -closed in X.

Definition 5.2: A map $f : X \rightarrow Y$ is called Almost contra- g*b -continuous if the inverse image of every regular open set in Y is g*b -closed in X.

Definition 5.3: A space X is said to be locally

g*b -indiscrete if every g*b -open set of X is closed in X.

Theorem 5.4: Every contra-continuous function is contra- g*b -continuous but not conversely.

Proof:Let $f : X \rightarrow Y$ be contra-continuous. Let V be any open set in Y. Then the inverse image f^{-1} (V) is closed in X. Since every closed set is g^*b closed, f^{-1} (V) is g^*b -closed in X. Therefore f is contra- g^*b -continuous.

Example 5.5: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{b\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f : X \rightarrow Y$ be the identity map. Here the image of the open set is g^*b -closed and hence f is contra- g^*b -continuous. But f is not contra-continuous since $f^{-1}\{a\} = \{a\}$ is not closed in X.

Theorem 5.6: Every contra-b-continuous function is contra g*b -continuous but not conversely.

Proof:Let $f : X \to Y$ be contra-b-continuous. Let V be any open set in Y. Then the inverse image f^{-1}

(V) is b-closed in X. Since every b-closed set is g^*b -closed,

 $f^{-1}(V)$ is g*b-closed in X. Therefore f is contrag*b-continuous.

Example 5.7: Let $X = Y = \{a, b, c\}$ with topologies $\tau =$

{X, ϕ , {a}, {a,c}} and $\sigma =$ {Y, ϕ , {c}, {a, c}}. Let us define f(a) = a, f(b) = c, f(c) = b. Here the image of the open set is g*b -closed and hence f is contra g*b – continuous. But f is not contra-b-continuous since f⁻¹ {a,c} = {a, b} is not b-closed in X

Theorem 5.8: Every contra-pre-continuous function is contra- g*b -continuous but not conversely.

Proof:Let $f : X \rightarrow Y$ be contra-precontinuous. Let V be any open set in Y. Then the inverse image

 $f^{-1}(V)$ is pre-closed in X. Since every pre-closed set is g*b -closed, f⁻¹(V) is g*b -closed in X. Therefore f is

contra- g*b -continuous.

Example 5.9: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma = \{Y, \phi, \{a, b\}\}$. Let $f: X \rightarrow Y$ be the identity map. Here the image of the open set is g*b-closed and hence f is contra- g*b continuous. But f is not contra-pre-continuous since $f^{-1}\{a, b\} = \{a, b\}$ is not pre-closed in X.

Theorem 5.10: Every contra-semi-continuous function is contra- g*b -continuous but not conversely.

Proof:Let $f : X \rightarrow Y$ be contra-semi-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is semi-closed in X. Since every semiclosed set is g^*b -closed, $f^{-1}(V)$ is g^*b -closed in X. Therefore f is contra- g^*b -continuous.

Example 5.11: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{b\}, \{a, c\}\}$. Let $f: X \rightarrow Y$ be the identity map. Here the image of the open set is g*b-closed and hence f is contra- g*b- continuous. But f is not contra-semi-continuous since

 $f^{-1} \{a, c\} = \{a, c\}$ is not semi-closed in X.

Theorem 5.12: Every contra- α -continuous function is contra- g*b -continuous but not conversely.

Proof: Let $f : X \to Y$ be contra- α -continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is α -closed in X. Since every α closed set is g*b-closed, $f^{-1}(V)$ is g*b-closed in X. Therefore f is contra-g*b-continuous.

Example 5.13: Let $X = Y = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma = \{Y, \phi, \{b, c\}\}$. Let us define f(a) = b, f(b) = a, f(c) = c. Here the image of the open set is g*b-closed and hence f is contra- g*b -continuous. But f is not contra- α -continuous since $f^{-1}\{b, c\} = \{a, c\}$ is not α -closed in X.

Theorem 5.14: Every contra- g^*b -continuous function is almost contra- g^*b -continuous but not conversely.

Proof: The Proof follows as every regular open set is open.

Example 5.15: Let $X = Y = \{a, b, c\}$ with topologies

 $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \text{ and } \sigma = \{Y, \phi, \{a\}, \{a, b\}\}.$

Let us define f(a) = a, f(b) = b, f(c) = c. Here the image of the regular open set is g^*b -closed and hence f is almost contra- g^*b -continuous. But f is not contra- g^*b -continuous since $f^{-1} \{a, b\} = \{a, b\}$ is not g^*b -closed in X.

Theorem 5.16: If a map $f : X \rightarrow Y$ from a topological space X into a topological space Y. The following statements are equivalent.

```
(a) f is almost contra- g*b-
continuous.
```

(b) For every regular closed set F of Y, $f^{-1}(F)$

is g*b -openin X.

```
Proof: (a) \Rightarrow (b)
```

Let F be a regular closed set in Y, then Y - F is a regular open set in Y. By (a), $f^{-1}(Y - F) = X - f^{-1}(F)$

is g^*b -closed set in X. This implies $f^{-1}(F)$ is g^*b -open set in X. Therefore (b) holds. (b) \Rightarrow (a)

Let G be a regular open set of Y. Then Y - G is a regular closed set in Y. By (b), $f^{-1}(Y - G)$ is g^*b open set in X. This implies $X - f^{-1}(G)$ is g^*b -open set in X, which implies $f^{-1}(G)$ is g^*b -closed set in X. Therefore (a) holds.

Remark 5.17: The composition of two contra- g*b - continuous map need not be contra- g*b -continuous.

Let us prove the remark by the following example.

Example 5.18: Let $X = Y = Z = \{a, b, c\}$ with topologies $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{a, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Let $g : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by g(a) = a, g(b) = b and g(c) = c. Let $f : (Z, \eta) \rightarrow (X, \tau)$ be a map defined by f(a) = c,

f(b) = a and f(c) = b. Both f and g are contra- g*b -continuous.

Define $g \circ f: (Z, \eta) \rightarrow (Y, \sigma)$. Here $\{a, c\}$ is a open set of (Y, σ) . Therefore $(g \circ f)^{-1}(\{a, c\}) = \{a, b\}$ is not a g*b -closed set of (Z, η) . Hence $g \circ f$ is not contra- g*b -continuous.

Theorem 5.19: If a map $f: X \to Y$ is g^*b irresolute map and $g: Y \to Z$ is g^*b continuous map ,then $g \circ f: X \to Z$ is contra g^*b -continuous.

Proof: Let F be an open set in Z. Then $g^{-1}(F)$ is

 g^*b -closed in Y, because g is contra- g^*b continuous. Since f is g^*b -irresolute, $f^{-1}(g^{-1}(F)) =$ $(g \circ f)^{-1}(F)$ is g^*b -closed in X. Therefore $g \circ f$ is contra g^*b -continuous.

Theorem 5.19: If a map $f: X \to Y$ is g^*b irresolute map with Y as locally g^*b -indiscrete space and $g: Y \to Z$ is contra- g^*b -continuous map, then $g \circ f: X \to Z$ is contra g^*b -continuous.

Proof: Let F be any closed set in Z. Since g is contra- g*b -continuous, $g^{-1}(F)$ is g*b -open in Y. Since Y is locally g*b -indiscrete, $g^{-1}(F)$ is closed in Y. Hence $g^{-1}(F)$ is g*b -closed set in Y. Since f is g*b -irresolute, $f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F)$ is g*b-closed in X. Therefore $g \circ f$ is contra

g*b -continuous.

References

- N.Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc. 61(1969), 127-135.
- [2] S.G. Crossley and S.K. Hildebrand, semitopological properties, Fund Math; 74(19720, 233-254.
- [3] R. Devi, H.Maki,and K. Balachandran, Associ- ated topologies of generalized α-closed sets and α- generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.15(1994), 51-63.
- [4] J.Dontchev, Contra-continuous functions

and strongly S-closed spaces, Internat. J. Math. Sci.19(2) (1996), 303-310.

- [5] J.Dontchev and T.Noiri, Contra semi-continuous functions, Math.Pannon, 10(2)(1999), 159-168.
- [6] S.Jafari and T.Noiri, Contra-α-continuous functions between topological spaces, Iran. Int. J. Sci. 2(2) (2001), 153-167.
- [7] S.Jafari and T.Noiri, On contra-precontinuous func- tions, Bull. Malays. Math. Sci. Soc(2) 25(2) (2002), 115-128.
- [8] S.R.Malghan, Generalized closed maps, J.Karnatak.Univ.Sci., 27(1982), 82-88.
- [9] A.S. Mashhour, I.A. Hasanein and S.N. EI-Deeb, On α-continuous and α-open mapping, Acta Math. Hungar, 41(1983), 213-218.
- [10] A.A. Nasef, Some properties of Contra-γcontinuous functions", Chaos Solitons Fractals 24(2005), 471-477.
- [11] T.Noiri, On almost continuous functions, Indian J.Pure.Appl. Math. 20(1989), 571-576.
- [12] A.A.Omari and M.S.M.Noorani, On Gen- eralized b-closed sets, Bull. Malays. Math. Sci.Soc(2),32(1)(2009), 19-30.
- [13] P.Sundaram, Studies on Generalizations of con- tinuous maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore(1991).
- [14] D.Vidhya and R.Parimelazhagan, g*b-closed Sets in topological spaces,Int.J.Contemp.Math.Science 7(2012), 1305-1312.
- [15] D.Vidhya and R.Parimelazhagan, g*b Continuous Maps and Pasting Lemma in Topological spaces, Int.J.Math.Analysis, 6(2012), 2307-2315.