g*b-Homeomorphisms and Contra g*b-continuous Maps in Topological Spaces

D.Vidhya and R.Parimelazhagan
Department of Science and Humanities, Karpagam college of Engineering, coimbatore -32. Tamil Nadu India

Abstract

In this paper, we first introduce a new class of closed maps called $\mathrm{g} * \mathrm{~b}$-closed map and gb-closed map. Also, we introduce a new class of homeomorphisms called $\mathrm{g} * \mathrm{~b}$-homeomorphism, gb-homeomorphism and we investigate a new generalization of contracontinuity called contra- $\mathrm{g}^{*} \mathrm{~b}$-continuity.

AMS
 54C10,54C08,54C05.

Classification(2000):

Keywords: $\mathrm{g}^{*} \mathrm{~b}$-closed map, $\mathrm{g} * \mathrm{~b}$-homeomorphism, gb- closed map, gb-homeomorphism, contra- $\mathrm{g}^{*} \mathrm{~b}$ continuous.

1. Introduction

Malghan[8] introduced the concept of generalized closed maps in topological spaces. Biswas[1], Mashour[9], Sundaram[13], Crossley and Hildebrand [2], and Devi[3] have introduced and studied semiopen maps, α-open maps, and generalized open maps respectively.
Several topologists have generalized homeomorphisms in topological spaces. Biswas[1], Crossley and Hilde- brand[2], Sundaram[13] have introduced and studied semi-homeomorphism and some what homeomorphism and generalized homeomorphism and gc-homeomorphism respectively.

The notion of contra-continuity was introduced and in- vestigated by Donchev[4]. Donchev and Noiri[5], S.Jafari and T.Noiri[7,6] have introduced and investigated contra-semi-continuous functions, contra-pre-continuous functions and contra- α-continuous functions between topological spaces.
Throughout this paper (X, τ) and (Y, σ)(or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, $\operatorname{cl}(\mathrm{A})$ and $\operatorname{int}(\mathrm{A})$ represents the closure of A and interior of A respectively.

2. Preliminaries

We recall the following definitions.
Definition 2.1[12]: A subset A of a
topological space (X, τ) is called a generalized b closed set (briefly gb-closed) if $\operatorname{bcl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $\mathrm{A} \subseteq \mathrm{U}$ and U is open in X

Definition 2.2[14]: A subset A of a topological space (X, τ) is called a $\mathrm{g}^{*} \mathrm{~b}$-closed set if $\operatorname{bcl}(\mathrm{A}) \subseteq$ U, whenever $A \subseteq U$ and U is g-open in X.

Definition 2.3[12]: A map f : $\mathrm{X} \rightarrow \mathrm{Y}$ is called gb-continuous if the inverse image of every closed set in Y is gb-closed in X .

Definition 2.4[15]: A map f : $\mathrm{X} \rightarrow \mathrm{Y}$ is called $\mathrm{g} * \mathrm{~b}$-continuous if the inverse image of every closed set in Y is $\mathrm{g} * \mathrm{~b}$-closed in X .

Definition 2.5[4]: $\quad \mathrm{A}$ map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called contra-continuous if the inverse image of every open set in Y is closed in X .

Definition 2.6[7]: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called contra-pre-continuous if the inverse image of every open set in Y is preclosed in X .

Definition 2.7[5]: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called contra-semi-continuous if the inverse image of every open set in Y is semi-closed in X .

Definition 2.8[6]: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called contra- α-continuous if the inverse image of every open1
set in Y is α-closed in
X.

Definition 2.9[10]: A map f : $\mathrm{X} \rightarrow \mathrm{Y}$ is called contra-b-continuous if the inverse image of every open set in Y is b-closed in X .

Definition 2.10[11]: A map f : $\mathrm{X} \rightarrow \mathrm{Y}$ is called almost-contra continuous if the inverse image of every regular open set in Y is open in X .

3. \mathbf{g}^{*} b -Closed Maps

In this section we introduce the concept of $\mathrm{g}^{*} \mathrm{~b}$ -
closed map, $\mathrm{g}^{*} \mathrm{~b}$-open map and gb-closed map in topological spaces.

Definition 3.1: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called $\mathrm{g}^{*} \mathrm{~b}$ - closed map if for each closed set F of $X, f(F$) is $\mathrm{g}^{*} \mathrm{~b}$-closed set in Y .

Definition 3.2: A map $f: X \rightarrow Y$ is called $g^{*} b-$ open map if for each open set F of $X, f(F)$ is $g^{*} b$-open set in Y.

Definition 3.3: A map f : $\mathrm{X} \rightarrow \mathrm{Y}$ is called gbclosed map if for each closed set F of $X, f(F)$ is gb-closed set in Y .

Theorem 3.4: Every closed map is a $\mathrm{g}^{*} \mathrm{~b}$-closed map.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be an closed map. Let F be any closed set in X . Then $\mathrm{f}(\mathrm{F})$ is an closed set in Y. Since every closed set is $g^{*} b$-closed, $f(F)$ is a $g^{*} b-$ closed set. Therefore f is $\mathrm{ag*}$ - -closed map.

Remark 3.5: The converse of the theorem 3.4 need not be true as seen from the following example.

Example 3.6: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}\},\{\mathrm{a}$, $\mathrm{b}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Then f is g^{*} b-closed but not closed, since the image of the closed set $\{b, c\}$ in X is $\{b, c\}$ which is not closed in Y.

Theorem 3.7: Every $\mathrm{g}^{*} \mathrm{~b}$-closed map is a gbclosed map.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a $\mathrm{g}^{*} \mathrm{~b}$-closed map. Let F be a closed set in X. Then $f(F)$ is a $g^{*} b$-closed set in Y. Since every g^{*} b-closed set is gb-closed, $\mathrm{f}(\mathrm{F})$ is a gb-closed set. Therefore f is a gb-closed map.
Remark 3.8: The converse of the theorem 3.7 need not be true as seen from the following example.

Example 3.9: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Then f is gb-closed but not $\mathrm{g}^{*} \mathrm{~b}$-closed, since the image of the closed
set $\{\mathrm{a}, \mathrm{b}\}$ in X is $\{\mathrm{a}, \mathrm{b}\}$ which is not $\mathrm{g}^{*} \mathrm{~b}$-closed in Y.

Theorem 3.10: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is closed and $\mathrm{h}: \mathrm{Y} \rightarrow$ Z is $\mathrm{g}^{*} \mathrm{~b}$-closed, then $\mathrm{h}^{\circ} \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed.

Proof: Let V be any closed set in X. Since $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, $\mathrm{f}(\mathrm{V})$ is closed in Y and since $\mathrm{h}: \mathrm{Y} \rightarrow \mathrm{Z}$ is $\mathrm{g}^{*} \mathrm{~b}$ closed,
$\mathrm{h}(\mathrm{f}(\mathrm{V}))$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in Z . Therefore $\mathrm{h}^{\circ} \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed map.

Remark 3.11: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed and
$\mathrm{h}: \mathrm{Y} \rightarrow \mathrm{Z}$ is closed, then their composition need not be a $\mathrm{g}^{*} \mathrm{~b}$-closed map as seen from the following example.

Example 3.12: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}, \sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}$, $c\}\}$ and $\eta=\{Z, \varphi,\{a\},\{c\},\{a, c\}\}$. Define a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ by $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})=\mathrm{b}$ and $\mathrm{f}(\mathrm{c})=\mathrm{a}$ and a map $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is defined by $\mathrm{g}(\mathrm{a})=\mathrm{b}, \mathrm{g}(\mathrm{b})=\mathrm{a}$ and $\mathrm{g}(\mathrm{c})=\mathrm{c}$. Then f is a $\mathrm{g}^{*} \mathrm{~b}$-closed map and g is a closed map. But their composition $\mathrm{g}{ }^{\circ} \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is not $\mathrm{a} \mathrm{g}^{*} \mathrm{~b}$-closed map, since for the closed set $\{\mathrm{b}, \mathrm{c}\}$ in $X, g^{\circ} f(\{b, c\})=\{a, b\}$ which is not $g^{*} b$-closed in Z .

Theorem 3.13: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a $g^{*} b$ open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq$ U.

Proof: Suppose f is $g^{*} b$-closed. Let S be a subset of Y and U is an open set of X such that $f^{-1}(S) \subseteq U$. Then
$\mathrm{V}=\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{U})$ is $\mathrm{g}^{*} \mathrm{~b}$-open set containing S such that $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \mathrm{U}$.

Conversely suppose that F is a closed set in X .

Then $\quad f^{-1}(Y-f(F))=X-F$ and X_{F} is open. By hypothesis, there is a $g^{*} b$-open set V of Y such that $\mathrm{Y}_{\mathrm{f}}(\mathrm{F}) \subseteq \mathrm{Y}$ and $\mathrm{f}^{-1}(\mathrm{~V}) \subseteq \mathrm{X}-\mathrm{F}$. Therefore $F \subseteq X-f^{-1}(V)$. Hence $Y-V \subseteq f(F$ $) \subseteq f\left(X-f^{-1}(\mathrm{~V})\right) \subseteq \mathrm{Y}-\mathrm{V}$, which implies $\mathrm{f}(\mathrm{F})=$ $\mathrm{Y}-\mathrm{V}$. Since $\mathrm{Y}-\mathrm{V}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed,
$\mathrm{f}(\mathrm{F})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed and therefore f is $\mathrm{g}^{*} \mathrm{~b}$-closed map.

Theorem 3.14: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is g -closed, $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be $\mathrm{g}^{*} \mathrm{~b}$-closed and Y is $\mathrm{T}_{1 / 2}$-space then their composition
$g \circ f: X \rightarrow Z$ is $g^{*} b$-closed map.
Proof: Let A be a closed set of X. Since f is g closed, $f(A)$ is g-closed in Y. Since Y is $T_{1 / 2}-$ space, $f(A)$ is closed in Y. Since g is $g^{*} b$-closed, $g(f(A))$ is $g^{*} b$-closed in Z and $g(f(A))=g \circ f(A)$. Therefore $\mathrm{g} \circ \mathrm{f}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed.

Theorem 3.15: If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g}^{*} \mathrm{~b}$-closed and
$A=f^{-1}(B)$ for some closed set B of Y, then $f_{A}: A \rightarrow Y$ is $g^{*} b$-closed.

Proof: Let F be a closed set in A. Then there is a closed set H in X such that $F=A \cap H$. Then $f_{A}(F)=f(A \cap H)=f(H) \cap B$. Since f is $g^{*} b-$ closed, $f(H)$ is $g^{*} b$-closed in Y. So $f(H) \cap B$ is $g^{*} b-$ closed, since the intersection of a g^{*} b-closed set and a closed set is $\mathrm{ag}^{*} \mathrm{~b}$ - closed set. Hence f_{A} is $\mathrm{g}^{*} \mathrm{~b}$-closed.

Remark 3.16: If B is not closed in Y then the theorem 3.15
may not hold as seen from the following example.
Example 3.17: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies
$\tau=\{X, \varphi,\{a\},\{b\},\{a, b\}\}$ and $\sigma=\{Y, \varphi,\{a\}\}$.
Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Take $\mathrm{B}=\{\mathrm{a}\}$ is not closed in A. Then $A=f^{-1}(B)=f^{-1}(\{a\})=$
$\{\mathrm{a}\}$ and $\{\mathrm{a}\}$ is closed in A. But $\mathrm{f}_{\mathrm{A}}(\{\mathrm{a}\})=\{\mathrm{a}\}$ is not $\mathrm{g}^{*} \mathrm{~b}$-closed in Y . Therefore $\{\mathrm{a}\}$ is also not $\mathrm{g}^{*} \mathrm{~b}$ closed in B.

Remark 3.18: The Composition of two $\mathrm{g}^{*} \mathrm{~b}$ closed maps need not be g^{*} b-closed map in general and this is shown by the following example.

Example 3.19: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi$, $\{\mathrm{a}\}\}$ and $\eta=\{Z, \varphi,\{\mathrm{~b}\},\{\mathrm{a}, \mathrm{b}\}\}$. Define $\mathrm{f}: \mathrm{X}$ $\rightarrow \mathrm{Y} \quad$ by $\quad \mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$ and $\mathrm{g}: \mathrm{Y}$ $\rightarrow \mathrm{Z}$ be the identity map. Then f and g are $\mathrm{g}^{*} \mathrm{~b}$ -closed maps, but their composition $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow$ Z is not $\mathrm{g}^{*} \mathrm{~b}$-closed map, because $\mathrm{F}=\{\mathrm{b}\}$ is closed in X, but $g \circ f(F)=$
$g \circ f(\{b\})=g(\{b\})=\{b\}$ which is not $g^{*} b-$ closed in Z.

4. $\mathbf{g * b}$-Homeomorphisms

Definition 4.1: A bijection $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called $\mathrm{g} * \mathrm{~b}$-homeomorphism if f is both $\mathrm{g}^{*} \mathrm{~b}$ continuous and $\mathrm{g} * \mathrm{~b}$-closed.

Definition 4.2: A bijection $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called gb- homeomorphism if f is both gb -continuous and gb-closed.

Theorem 4.3: Every homeomorphism is a $\mathrm{g}^{*} \mathrm{~b}$ homeomorphism.

Proof: Let f: X \rightarrow Y be a homeomorphism. Then f is continuous and closed. Since every continuous function is $\mathrm{g}^{*} \mathrm{~b}$-continuous and every closed map is $g^{*} b$-closed, f is $g^{*} b$-continuous and $\mathrm{g}^{*} \mathrm{~b}$-closed. Hence f is $\mathrm{a} \mathrm{g}^{*} \mathrm{~b}$-homeomorphism.

Remark 4.4: The converse of the theorem 4.3 need not be true as seen from the following example.

Example 4.5: Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi$, $\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Then f is g^{*} b-homeomorphism but not a
homeomorphism, since the inverse image of $\{b, c\}$ in Y is not closed in X .

Theorem 4.6: Every $\mathrm{g}^{*} \mathrm{~b}$-homeomorphism is a gbhomeomorphism.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be $\mathrm{a} \mathrm{g}^{*} \mathrm{~b}$ homeomorphism. Then f is $g^{*} b$-continuous and $g^{*} b$ -closed. Since every $\mathrm{g}^{*} \mathrm{~b}$-continuous function is gb-continuous and every g^{*} b b-closed map is gbclosed, f is gb-continuous and gb-closed. Hence f is a gb-homeomorphism.
Remark 4.7:The converse of the theorem 4.6 need not be true as seen from the following example.

Example 4.8: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\quad \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Then f is gbhomeomorphism but not a g^{*} b-homeomorphism, since the inverse image of $\{a, c\}$ in Y is not $g^{*} b$ closed in X .

Theorem 4.9: For any bijection $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ the following statements are equivalent.
(a) Its inverse map $\mathrm{f}^{-1}: \mathrm{Y} \rightarrow \mathrm{X}$ is $\mathrm{g}^{*} \mathrm{~b}-$ continuous.
(b) f is $\mathrm{a} \mathrm{g}^{*} \mathrm{~b}$-open
map.
(c) f is a $g^{*} b$-closed
map.
Proof: $(\mathrm{a}) \Rightarrow$ (b)
Let G be any open set in X . Since f^{-1} is $g^{*} b$ continuous, the inverse image of G under f^{-1}, namely $f(G)$ is $g^{*} b$-open in Y and so f is $a g^{*} b$ open map.
(b) \Rightarrow (c)

Let F be any closed set in X . Then F^{c} open in X. Since f is $g^{*} b$-open, $f\left(F^{c}\right)$ is $g^{*} b$-open in Y. But
$f\left(F^{c}\right)=Y-f(F)$ and so $f(F)$ is $g^{*} b$-closed in Y. Therefore f is a $g^{*} b$-closed map.
(c) \Rightarrow (a)

Let F be any closed set in X. Then the inverse image of F under f^{-1}, namely $f(F)$ is $g^{*} b$-closed in Y since f is a $g^{*} b$-closed map. Therefore f^{-1} is $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Theorem 4.10: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijective and $\mathrm{g}^{*} \mathrm{~b}$-continuous map. Then, the following statements are equivalent.
(a) f is a $\mathrm{g}^{*} \mathrm{~b}$-open map
(b) f is $\mathrm{ag}^{*} \mathrm{~b}$-homeomorphism.
(c) f is $\mathrm{ag}^{*} \mathrm{~b}$-closed map.

Proof: $(a) \Rightarrow(b)$
Given $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a bijective, $\mathrm{g}^{*} \mathrm{~b}$-continuous and $\mathrm{g}^{*} \mathrm{~b}$-open. Then by definition, f is $\mathrm{a} \mathrm{g}^{*} \mathrm{~b}$ homeomorphism.
(b) \Rightarrow (c)

Given f is $\mathrm{g}^{*} \mathrm{~b}$-open and bijective. By theorem 4.9, f is a $\mathrm{g}^{*} \mathrm{~b}$-closed map.

$$
(\mathrm{c}) \Rightarrow(\mathrm{a})
$$

Given f is $\mathrm{g} * \mathrm{~b}$-closed and bijective. By theorem 4.9, f is $\mathrm{ag}^{*} \mathrm{~b}$-open map.

Remark 4.11: The following example shows that the composition of two $\mathrm{g}^{*} \mathrm{~b}$-homeomorphism is not $a g^{*} b$-homeomorphism.

Example 4.12: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies
$\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}$, $\mathrm{b}\}\}$ and $\eta=\{\mathrm{Z}, \varphi,\{\mathrm{a}\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y}$ $\rightarrow \mathrm{Z}$ be the identity maps. Then both f and g are $\mathrm{g}^{*} \mathrm{~b}$ - homeomorphisms but their composition $\mathrm{g} \circ \mathrm{f}$:
$X \rightarrow Z$ is not $a g^{*} b$ - homeomorphism, since $F=\{a$, $c\}$ is closed in X, but $\quad g \circ f(F)=g \circ f(\{a, c\})$
$=\{\mathrm{a}, \mathrm{c}\}$ which is not $\mathrm{g}^{*} \mathrm{~b}$-closed in Z .

5. Contra- \mathbf{g}^{*} b -Continuous Maps

In this section we introduce the concept of contra$\mathrm{g}^{*} \mathrm{~b}$ - continuous map, almost contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous map and locally $\mathrm{g}^{*} \mathrm{~b}$-indiscrete space in topological spaces.

Definition 5.1: A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous if the inverse image of every open
set in Y is $\mathrm{g}^{*} \mathrm{~b}$-closed
in X .
Definition 5.2: A map $f: X \rightarrow Y$ is called Almost contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous if the inverse image of every regular open set in Y is $\mathrm{g}^{*} \mathrm{~b}$-closed in X .

Definition 5.3: A space X is said to be locally
$\mathrm{g}^{*} \mathrm{~b}$-indiscrete if every $\mathrm{g}^{*} \mathrm{~b}$-open set of X is closed in X .
Theorem 5.4: Every contra-continuous function is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.

Proof:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be contra-continuous. Let V be any open set in Y . Then the inverse image f^{-1} (V) is closed in X. Since every closed set is $\mathrm{g}^{*} \mathrm{~b}$ closed, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g} * \mathrm{~b}$-closed in X . Therefore f is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Example 5.5: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi$, $\{a\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Here the image of the open set is $\mathrm{g}^{*} \mathrm{~b}$-closed and hence f is contra- $g^{*} b$-continuous. But f is not contra-continuous since $f^{-1}\{a\}=\{a\}$ is not closed in X .
Theorem 5.6: Every contra-b-continuous function is contra $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.

Proof:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be contra-b-continuous. Let V be any open set in Y . Then the inverse image f^{-1}
(V) is b-closed in X. Since every b-closed set is $\mathrm{g}^{*} \mathrm{~b}$-closed,
$f^{-1}(V)$ is $g^{*} b$-closed in X. Therefore f is contra$\mathrm{g} * \mathrm{~b}$-continuous.

Example 5.7: Let $X=Y=\{a, b, c\}$ with topologies $\tau=$
$\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{c}\},\{\mathrm{a}, \mathrm{c}\}\}$. Let us define $f(a)=a, f(b)=c, f(c)=b$. Here the image of the open set is $g^{*} b$-closed and hence f is contra $g^{*} b-$ continuous. But f is not contra-b-continuous since f ${ }^{1}\{\mathrm{a}, \mathrm{c}\}=\{\mathrm{a}, \mathrm{b}\}$ is not b -closed in X

Theorem 5.8: Every contra-pre-continuous function is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.

Proof:Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be contra-precontinuous. Let V be any open set in Y . Then the inverse image
$f^{-1}(V)$ is pre-closed in X. Since every pre-closed set is $\mathrm{g}^{*} \mathrm{~b}$-closed, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in X . Therefore f is
contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous.
Example 5.9: Let $X=Y=\{a, b, c\}$ with topologies $\quad \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\sigma=$ $\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{b}\}\}$ Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Here the image of the open set is $g * b$-closed and hence f is contra- $g^{*} b$ continuous. But f is not contra-pre-continuous since $\mathrm{f}^{-1}\{\mathrm{a}$, $\mathrm{b}\}=\{\mathrm{a}, \mathrm{b}\}$ is not pre-closed in X .

Theorem 5.10: Every contra-semi-continuous function is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.

Proof:Let f : X $\rightarrow \mathrm{Y}$ be contra-semi-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is semi-closed in X. Since every semiclosed set is $\mathrm{g}^{*} \mathrm{~b}$-closed, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in X . Therefore f is contra- $g^{*} b$-continuous.

Example 5.11: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{X, \varphi,\{a\},\{a, b\}\}$ and $\sigma=\{Y, \varphi,\{b\},\{a, c\}\}$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be the identity map. Here the
image of the open set is $g * b$-closed and hence f is contra- $\mathrm{g}^{*} \mathrm{~b}$ - continuous. But f is not contra-semi-continuous since
$f^{-1}\{a, c\}=\{a, c\}$ is not semi-closed in X.
Theorem 5.12: Every contra- α-continuous function is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be contra- α-continuous. Let V be any open set in Y. Then the inverse image $f^{-1}(V)$ is α-closed in X. Since every α closed set is $\mathrm{g}^{*} \mathrm{~b}$-closed, $\mathrm{f}^{-1}(\mathrm{~V})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in X. Therefore f is contra- $g^{*} b$-continuous.

Example 5.13: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{b}, \mathrm{c}\}\}$. Let us define $\mathrm{f}(\mathrm{a})=\mathrm{b}, \mathrm{f}(\mathrm{b})=\mathrm{a}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Here the image of the open set is $g * b$-closed and hence f is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous. But f is not contra- α continuous since $\quad f^{-1}\{b, c\}=\{a, c\}$ is not α closed in X.

Theorem 5.14: Every contra- g^{*} b -continuous function is almost contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous but not conversely.
Proof: The Proof follows as every regular open set is open.

Example 5.15: Let $X=Y=\{a, b, c\}$ with topologies $\tau=\{X, \varphi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{a}$, b\}\}.

Let us define $\mathrm{f}(\mathrm{a})=\mathrm{a}, \mathrm{f}(\mathrm{b})=\mathrm{b}, \mathrm{f}(\mathrm{c})=\mathrm{c}$. Here the image of the regular open set is $g^{*} b$-closed and hence f is almost contra- $\mathrm{g} * \mathrm{~b}$-continuous. But f is not contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous since $\mathrm{f}^{-1}\{\mathrm{a}, \mathrm{b}\}=\{\mathrm{a}, \mathrm{b}\}$ is not $g^{*} b$-closed in X .

Theorem 5.16: If a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ from a topological space X into a topological space Y. The following statements are equivalent.
(a) f is almost contra- g^{*} b-
continuous.
(b) For every regular closed set F of $\mathrm{Y}, \mathrm{f}^{-1}(\mathrm{~F})$
is $\mathrm{g}^{*} \mathrm{~b}$-openin X .
Proof: (a)
\Rightarrow (b)
Let F be a regular closed set in Y , then $\mathrm{Y}-\mathrm{F}$ is a regular open set in $\mathrm{Y} . \mathrm{By}(\mathrm{a}), \mathrm{f}^{-1}(\mathrm{Y}-\mathrm{F})=\mathrm{X}-$ $\mathrm{f}^{-1}(\mathrm{~F})$
is $\mathrm{g}^{*} \mathrm{~b}$-closed set in X . This implies $\mathrm{f}^{-1}(\mathrm{~F})$ is $\mathrm{g}^{*} b$ -open set in X. Therefore (b) holds. (b) \Rightarrow (a)

Let G be a regular open set of Y. Then $Y-G$ is a regular closed set in Y. $B y(b), f^{-1}(Y-G)$ is $g^{*} b-$ open set in X . This implies $\mathrm{X}-\mathrm{f}^{-1}(\mathrm{G})$ is $\mathrm{g}^{*} \mathrm{~b}$-open set in X, which implies $f^{-1}(G)$ is $g^{*} b$-closed set in X. Therefore (a) holds.

Remark 5.17: The composition of two contra- $\mathrm{g}^{*} \mathrm{~b}$ continuous map need not be contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Let us prove the remark by the following example.

Example 5.18: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with topologies $\tau=\{X, \varphi,\{a\},\{b\},\{a, b\}\}, \sigma=\{Y$, $\varphi,\{a\},\{a, c\}\}$ and $\eta=\{Z, \varphi,\{a\},\{b\},\{a, b\}$, $\{\mathrm{a}, \mathrm{c}\}\}$. Let $\mathrm{g}:(\mathrm{X}, \tau) \rightarrow \quad(\mathrm{Y}, \sigma)$ be a map defined by $g(a)=a, g(b)=b$ and $g(c)=c$. Let $f:(Z, \eta) \rightarrow(X$, τ) be a map defined by $\mathrm{f}(\mathrm{a})=\mathrm{c}$,
$\mathrm{f}(\mathrm{b})=\mathrm{a}$ and $\mathrm{f}(\mathrm{c})=\mathrm{b}$. Both f and g are contra- $\mathrm{g}^{*} \mathrm{~b}$ -continuous.

Define $g \circ f:(Z, \eta) \rightarrow(Y, \sigma)$. Here $\{a, c\}$ is a open set of (Y, σ). Therefore $(\mathrm{g} \circ \mathrm{f})^{-1}(\{\mathrm{a}, \mathrm{c}\})=\{\mathrm{a}, \mathrm{b}\}$ is not $a g^{*} b$-closed set of (Z, η). Hence $g \circ f$ is not contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Theorem 5.19: If a map $f: X \rightarrow Y \quad$ is $g^{*} b-$ irresolute map and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is $\mathrm{g}^{*} \mathrm{~b}-$ continuous map ,then $\quad \mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is contra $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Proof: Let F be an open set in Z . Then $\mathrm{g}^{-1}(\mathrm{~F})$ is
$\mathrm{g}^{*} \mathrm{~b}$-closed in Y , because g is contra- $\mathrm{g}^{*} \mathrm{~b}$ continuous. Since f is $\mathrm{g} * \mathrm{~b}$-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~F})\right)=$ $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{~F})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in X . Therefore $\mathrm{g} \circ \mathrm{f}$ is contra $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Theorem 5.19: If a map $f: X \rightarrow Y$ is $g^{*} b-$ irresolute map with Y as locally $\mathrm{g}^{*} \mathrm{~b}$-indiscrete space and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous map, then $\mathrm{g} \circ \mathrm{f}: \mathrm{X} \rightarrow \mathrm{Z}$ is contra $\mathrm{g}^{*} \mathrm{~b}$-continuous.

Proof: Let F be any closed set in Z. Since g is contra- $\mathrm{g}^{*} \mathrm{~b}$-continuous, $\mathrm{g}^{-1}(\mathrm{~F})$ is $\mathrm{g}^{*} \mathrm{~b}$-open in Y. Since Y is locally $g^{*} b$-indiscrete, $g^{-1}(F)$ is closed in Y. Hence $\mathrm{g}^{-1}(\mathrm{~F})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed set in Y. Since f is $\mathrm{g}^{*} \mathrm{~b}$-irresolute, $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{~F})\right)=(\mathrm{g}$ 。 $\mathbf{f})^{-1}(\mathrm{~F})$ is $\mathrm{g}^{*} \mathrm{~b}$-closed in X . Therefore $\mathrm{g} \circ \mathbf{f}$ is contra $\mathrm{g}^{*} \mathrm{~b}$-continuous.

References

[1] N.Biswas, On some mappings in topological spaces, Bull. Cal. Math. Soc. 61(1969), 127-135.
[2] S.G. Crossley and S.K. Hildebrand, semitopological properties, Fund Math; 74(19720, 233-254.
[3] R. Devi, H.Maki,and K. Balachandran, Associ- ated topologies of generalized α-closed sets and α-generalized closed sets Mem. Fac. Sci. Kochi. Univ. Ser. A. Math.15(1994), 51-63.
[4] J.Dontchev, Contra-continuous functions
and strongly S-closed spaces, Internat. J. Math. Sci.19(2) (1996), 303-310.
[5] J.Dontchev and T.Noiri, Contra semi-continuous functions, Math.Pannon, 10(2)(1999), 159-168.
[6] S.Jafari and T.Noiri, Contra- α-continuous functions between topological spaces, Iran. Int. J. Sci. 2(2) (2001), 153-167.
[7] S.Jafari and T.Noiri, On contra-precontinuous func- tions, Bull. Malays. Math. Sci. Soc(2) 25(2) (2002), 115-128.
[8] S.R.Malghan, Generalized closed maps, J.Karnatak.Univ.Sci., 27(1982), 82-88.
[9] A.S. Mashhour, I.A. Hasanein and S.N. EIDeeb, On α-continuous and α-open mapping, Acta Math. Hungar, 41(1983), 213-218.
[10] A.A. Nasef, Some properties of Contra- γ continuous functions", Chaos Solitons Fractals 24(2005), 471-477.
[11]T.Noiri, On almost continuous functions, Indian J.Pure.Appl. Math. 20(1989), 571-576.
[12] A.A.Omari and M.S.M.Noorani, On Gen- eralized b-closed sets, Bull. Malays. Math. Sci.Soc(2),32(1)(2009), 19-30.
[13] P.Sundaram, Studies on Generalizations of con- tinuous maps in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore(1991).
[14]D.Vidhya and R.Parimelazhagan , g*b -closed Sets in topological spaces,Int.J.Contemp.Math.Science 7(2012), 13051312.
[15]D.Vidhya and R.Parimelazhagan , g*b Continuous Maps and Pasting Lemma in Topological spaces, Int.J.Math.Analysis, 6(2012), 2307-2315.

