b^{*}-Continuous Functions in Topological Spaces

S. Muthuvel and R Parimelazhagan
Department of Science and Humanities, Karpagam college of Engineering, coimbatore -32.Tamil
Nadu India

Abstract

The aim of this paper is to introduce and study b^{*}-continuous functions in topological spaces. Also we investigate topological properties of b^{*}-open map and closed map in topological spaces.

AMS Classification 2010: 54C05, 54C10

Keywords: b^{*}-continuous functions, b^{*}-open map, b^{*} - closed map.

1. Introduction

Levine $[4,5]$ introduced the concepts of semi-open sets and semi-continuous in a topological space and investi- gated some of their properties. Strong forms of stronger and weaker forms of continuous map have been in- troduced and investigated by several mathematicians. Ekici [3] introduced and studied b-continuous functions in topological spaces. In this paper we introduce a new class of function called b^{*}-continuous functions. Moreover we obtain basic properties and preservation theorem of b^{*} continuous functions.

2. Preliminaries

Before entering into our work we recall the following definitions

Definition 2.1 [2]: A function f : $X \rightarrow$ Y is said to be generalized continuous (gcontinuous) if $f^{-1}(V)$ is g-open in X for each open set V of Y .

Definition 2.2 [3]: A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be b-continuous if for each $\mathrm{x} \in \mathrm{X}$ and for each open set of V of Y containing $f(x)$, there exists $U \in \operatorname{bO}(X, x)$ such that $f(U) \subseteq V$.

Definition 2.3 [1]: A subset A of a topological space
(X, τ) is called a b-open set if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A})) \mathrm{U}$ $\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ and b -closed set if $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \quad U$ $\operatorname{int}(\mathrm{cl}(\mathrm{A})) \subseteq \mathrm{A}$.

Definition 2.4 [5]: A subset A of a topological space (X, τ) is called a generalized closed set(briefly g-closed) if $\operatorname{cl}(\mathrm{A}) \subseteq \mathrm{U}$, whenever $A \subseteq U$ and U is open in X.

Definition 2.5 [6]: A subset A of a topological space (X, τ) is called $a b^{*}$ closed set if $\operatorname{int}(\operatorname{cl}(A)) \subseteq U$, whenever $A \subseteq U$ and U is bopen.
Definition 2.7 [4]: A subset A of a topological space (X, τ) is called a semi-open set if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ and semi closed set if $\operatorname{int}(\mathrm{cl}(\mathrm{A}))$ \subseteq A.

3. Some basic properties of b^{*} continuous functions

In this section we introduce the concept of b^{*} continuous functions in topological space.

Definition 3.1: A map $f: X \rightarrow Y$ from a topo- logical space X into a topological space Y is called b^{*}-continuous map if the inverse image of every closed set in Y is b^{*}-closed in X .

Theorem 3.2: If a map $f: X \rightarrow Y$ from a topo- logical space X into a topological space Y is continuous then it is b^{*}-continuous but not conversely.

Proof: Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be continuous. Let M be any closed in Y . Then the inverse image $f^{-1}(M)$ is closed in Y. Since every closed set is b^{*}-closed, $\mathrm{f}^{-1}(\mathrm{M})$ is b^{*}-closed in X. Therefore, f is b^{*}-continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4: Let $X=\{a, b, c\}$ with the topology
$\tau=\{X, \varphi,\{c\},\{\mathrm{a}, \mathrm{c}\}\}, \quad \mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \sigma=\{\mathrm{X}, \varphi$, $\{c\}\}$. A function $\mathbf{f}: X \rightarrow Y$ is defined by $\mathbf{f}(\mathrm{a})$ $=\mathrm{c}, \quad \mathbf{f}(\mathrm{b})=\mathrm{b}, \mathbf{f}(\mathrm{c})=\mathrm{a}$. Then, \mathbf{f} is b^{*} continuous. But f is not continuous since $f^{-1}\{c\}$ $=\{\mathrm{a}\}$ is not open in X .

Theorem 3.5: Every b-continuous is b^{*} continuous but not conversely.

Remark 3.6: The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let $X=\{d, e, h\}$ with the topology $\tau=\{X, \varphi,\{h\},\{d, h\}\}, Y=\{d, e, h\}$, $\sigma=\{X, \varphi,\{\mathrm{~h}\}\}$. A function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is defined by $\mathbf{f}(\mathrm{d})=\mathrm{h}, \mathbf{f}(\mathrm{e})=\mathrm{e}, \mathbf{f}(\mathrm{h})=\mathrm{d}$. Then, \mathbf{f} is b^{*}-continuous. But \mathbf{f} is not b continuous since $\quad \mathbf{f}^{-1}\{\mathrm{~h}\}=\{\mathrm{d}\}$ is not open in X .

Theorem 3.8: Let $f: X \rightarrow Y$ be a single valued function, where X and Y are topological spaces. Then the following are equivalent.
(i) The function \mathbf{f} is b^{*} -
continuous.
(ii) The inverse image of each b-open set in Y is b^{*}-open in X .
(iii) If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is b^{*}-continuous,
$\mathbf{f}\left(\mathrm{cl}^{*}(\mathrm{~A})\right) \subset \operatorname{cl}(\mathbf{f}(\mathrm{A}))$ for every subset A of X .

Proof: (i)Assume that $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is b^{*} -continu- ous. Let M be open in Y. Then M^{c} is closed in Y. Since Y is b^{*}-continuous $f^{-1}\left(M^{c}\right)$ is b^{*}-closed in X . But $\mathrm{f}^{-1}\left(\mathrm{M}^{\mathrm{c}}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{G})$. Thus $X-f^{-1}(G)$ is b^{*}-closed in X and so $f^{-1}(M$) is b^{*}-open in X. Therefore (i) \Rightarrow (ii).
conversely assume that the inverse image of each open set in Y is b^{*}-open in X. Let B be any closed set in Y. Then B^{c} is open in Y. By assumption, $\mathrm{f}^{-1}\left(\mathrm{~B}^{\mathrm{c}}\right)$ is b^{*}-open in X . But f^{-1} $\left(B^{c}\right)=X-f^{-1}(B)$. Thus $X-f^{-1}(B)$ is $b^{*}-$ open in X and so $f^{-1}(B)$ is b^{*}-closed in X.
Therefore \mathbf{f} is b^{*}-continuous. Hence (ii) \Rightarrow (i). Thus (i) and (ii) are equivalent.
(iii) Assume that f is b^{*}-continuous. Let A be any subset of X. Then $\operatorname{cl}(f(A))$ is a closed set in Y. Since \mathbf{f} is b^{*}-continuous , $\mathbf{f}^{-1}(\mathrm{cl}(\mathbf{f}(\mathrm{A})))$ is b^{*}-closed in X and it contains A . But $\mathrm{cl}^{*}(\mathrm{~A})$ is the intersection of all b^{*}-closed sets containing A . Therefore $\mathrm{cl}^{*}(\mathrm{~A}) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathbf{f}(\mathrm{A})))$ and so \mathbf{f} $\left(\mathrm{cl}^{*}(\mathrm{~A})\right) \subset \operatorname{cl}(\mathrm{f}(\mathrm{A}))$.

Theorem 3.9: A map $f: X \rightarrow Y$ is b^{*} continuous if and only if the inverse image of every closed set in Y is b^{*}-closed in X .

Proof: Let F be closed in Y. Then F^{c} is open in Y. Since f is b^{*}-continuous, $f^{-1}(F)$ is b^{*}-open in X. But $f^{-1}\left(\mathrm{~F}^{\mathrm{c}}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~F})$ and so $\mathrm{f}^{-1}(\mathrm{~F})$ is b^{*}-closed in X .

Conversely assume that the inverse image of every closed
set in Y is b^{*}-closed in X . Let V be an open
set in Y then V^{c} is closed in Y . By hypothesis, $\mathbf{f}^{-1}\left(\mathrm{~V}^{\mathrm{c}}\right)=\mathrm{X}-\mathrm{f}^{-1}(\mathrm{~V})$ is b^{*}-closed in X and so $\mathbf{f}^{-1}(V)$ is b^{*}-open in X. Thus f is b^{*}-continuous.

Theorem 3.10: Let X and Y be topological spaces. If a map $f: X \rightarrow Y$ is b-continuous then it is b^{*}-continuous.

Proof: Assume that a map $f: X \rightarrow Y$ is $b-$ continuous. Let V be an open set in Y. Since f is b-continuous, $f^{-1}(V)$ is b-open and hence b^{*} open in X . Therefore f is b^{*}-continuous.

Remark 3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ with then τ
$\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\} \mathbf{\}}$ and $\sigma=\{\mathrm{Y}, \varphi,\{\mathrm{a}, \mathrm{c}\}\}$ and f be the identity map. Then \mathbf{f} is b^{*}-continuous but not b-continuous as the inverse image of the open set $\{\mathrm{a}, \mathrm{c}\}$ in Y is $\{\mathrm{a}, \mathrm{c}\}$ in X is not b -open.

4. b^{*}-open map and b^{*}-closed map

Definition 4.1: Let x and Y be two topological spaces. A map $f: X \rightarrow Y$ is called b^{*}-open map, if the image of every open set in X is b^{*}-open in Y .

Definition 4.2: Let x and Y be two topological spaces. A map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is called b^{*} closed map, if the image of every closed set in X is b^{*}-closed in Y.

Theorem 4.3: Every open map is b^{*}-open but not conversely.

Proof: Let $f: X \rightarrow Y$ is an open map and V be an open set in X. Then $f(V)$ is open and hence b^{*}-open in Y. Thus f is b^{*}-open.

Remark 4.4: The converse of the above theorem need not be true as seen from the following example.

Example 4.5: Consider $X \quad=Y=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}$, c\}\} and $\sigma=\{Y, \varphi,\{\mathrm{a}\}$. Let a map $\mathrm{f}: \mathrm{X} \rightarrow$ Y be defined by $\mathbf{f}(\mathrm{a})=\mathrm{a}=\mathbf{f}(\mathrm{b}), \mathbf{f}(\mathrm{c})=\mathrm{c}$. Then this function is b^{*}-open but not open as the image of the open set $\{\mathrm{a}, \mathrm{c}\}$ in X is $\{\mathrm{a}, \mathrm{c}\}$ is not open in Y

Theorem 4.6: Every closed map is b^{*} closed but not conversely.

Proof: Let $\mathbf{f}: X \rightarrow Y$ be closed map and V be an closed set in X. Then $f(V)$ is closed and hence b^{*}-closed in Y . Thus f is b^{*}-closed.

Remark 4.7: The converse of the above
theorem need not be true as seen from the following example.
Example 4.8: Consider $X \quad=Y=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \varphi,\{\mathrm{a}\} \boldsymbol{\}}$ and σ $=\{\mathrm{Y}, \varphi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b} \mathbf{\}}\}$ and $\mathrm{a} \operatorname{map} \mathbf{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be defined by $\mathbf{f}(\mathrm{a})=\mathrm{b}, \mathbf{f}(\mathrm{b})=\mathrm{a}, \mathbf{f}(\mathrm{c})=\mathrm{c}$. Thus function \mathbf{f} is b^{*}-closed but not closed as \mathbf{f} $(\{b, c\})=\{a, c\}$ is not closed in Y.

Theorem 4.9: A map $f: X \rightarrow Y$ is b^{*} closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a b^{*}-open set V of Y such that $S \subseteq U$ and $f^{-1}(V)$ $\subseteq \mathrm{U}$.

Proof: Supposef is b^{*}-closed. Let S be a subset of Y and U be an open set of X such that $\mathrm{f}^{-1}(\mathrm{~S}) \subseteq \mathrm{U} . \mathrm{U}=\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{V})$ is a b^{*}-open set containing S such that $f^{-1}(V) \subseteq U$.

For the converse, suppose that F is a closed set of X. Then $f^{-1}(Y-\mathbf{f}(F))$ is b^{*}-closed map.

Theorem 4.10: If a map $f: X \rightarrow Y$ is continu ous and b^{*}-closed, A is b^{*}-closed set of X then $f(A)$ is b^{*}-closed in Y.
Proof: Let $\mathrm{f}(\mathrm{A}) \subseteq \mathrm{O}$ where O is an open set of Y. Since f is continuous $f^{-1}(O)$ is an open set containing A. Hence $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{f}^{-1}(\mathrm{O})$ as A is b^{*}-closed. Since \mathbf{f} is b^{*}-closed $f(\operatorname{cl}(\operatorname{int}(\mathrm{~A})))$ is a b^{*}-closed set contained in the open set O, which implies $\quad \operatorname{cl}(\operatorname{int}(f(\operatorname{cl}(\mathrm{~A})))) \subseteq \mathrm{O}$ and hence $\mathrm{cl}(\operatorname{int}(\mathrm{A})) \subseteq \mathrm{O}$. So $\mathrm{f}(\mathrm{A})$ is b^{*}-closed in Y .

Corollary 4.11: If a map $f: X \rightarrow Y$ is continuous and closed and A is b^{*}-closed, then $f(A)$ is b^{*}-closed in Y .

Corollary 4.12: If a map $f: X \rightarrow Y$ is b^{*}-closed and A is a closed set of X then $\mathrm{f}_{\mathrm{A}}: \mathrm{A} \rightarrow$ Y is b^{*}-closed.

Corollary 4.13: If a map $f: X \rightarrow Y$ is b^{*}-closed and continuous and A is b^{*}-closed set of X, then $f_{A}: A \rightarrow Y$ is continuous and b^{*} closed.

Proof: Let F be a closed set of A then F is b^{*} - closed set of X. From theorem [4.10] it follows that
$f_{A}(F)=f(F)$ is b^{*}-closed set of Y. Hence f_{A} is b^{*} closed
and also continuous.
Theorem 4.14: If a map $f: X \rightarrow Y$ is open, continuous, b^{*}-closed, and surjection, where X is regular then Y is regular.

Proof: Let V be an open set containing a point x of X, such that $f(x)=P$. Since X is regular and \mathbf{f} is continuous, there is an open set V such that $x \in V \subseteq f^{-1}(V)$. Here $P \in f(V) \subseteq f(c l(V)) \subseteq U$. Since f is b^{*}-closed, $\mathrm{f}(\mathrm{cl}(\mathrm{V}))$ is b^{*}-closed set contained in the open set U . It follows that $\operatorname{cl}(\operatorname{int}(\mathbf{f}(\mathrm{cl}(\mathrm{V})))) \subseteq \mathrm{U}$ and hence $\mathrm{P} \in \mathrm{f}(\mathrm{V}) \subseteq \operatorname{cl}(\mathrm{f}(\mathrm{V})) \subseteq \mathrm{U}$ and $\mathrm{f}(\mathrm{V})$ is open. Since f is open. Hence Y is regular.

Theorem 4.15: If a map $f: X \rightarrow Y$ is closed map and a map $\mathrm{g}: \mathrm{Y} \rightarrow \tau$ is b^{*}-closed then g $\circ \mathrm{f}: \mathrm{X} \rightarrow \tau$ is b^{*}-closed.
 (H) is closed and $(g \circ \mathbf{f})(H)=g(f(H))$ is $b^{*}-$ closed as g is b^{*}-closed. Thus $g \circ \mathbf{f}$ is b^{*}-closed.

5. References

[1] Andrijevic. D, On b-open sets, Mat. Vesink, 48(1996), 59-64.
[2] Balachandran. K. Sundaram. P.and Maki. H. On generalized continuous maps in topological spaces, Mem. Fac.Sci. Kochi Univ. Math. 12 (1991),5-13.
[3] Ekici. E and Caldas. M, Slightly γ-continuous func- tions, Bol. Soc. Parana. Mat, (3) 22(2004), 2, 63-74.
[4] Levine. N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963),36-41.
[5] Levine. N, Generalized closed sets in topology, Rend.Circ. Math. Palermo, 19(2)(1970), 89-96.
[6] Muthuvel. S and Parimelazhagan. R , b*Closed sets in topological spaces, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 47, 2317-2323.

