b^{*}-Continuous Functions in Topological Spaces

S. Muthuvel and R Parimelazhagan Department of Science and Humanities, Karpagam college of Engineering, coimbatore -32.Tamil Nadu India

ABSTRACT

The aim of this paper is to introduce and study b*-continuous functions in topological spaces. Also we investigate topological properties of b*-open map and closed map in topological spaces.

AMS Classification 2010: 54C05, 54C10

Keywords: b*-continuous functions, b*-open map, b*- closed map.

1. Introduction

Levine[4, 5] introduced the concepts of semi-open sets and semi-continuous in a topological space and investi- gated some of their properties. Strong forms of stronger and weaker forms of continuous map have been in- troduced and investigated by several mathematicians. Ekici [3] introduced and studied b-continuous functions in topological spaces. In this paper we introduce a new class of function called b*-continuous functions. Moreover we obtain basic properties and preservation theorem of b*continuous functions.

2. Preliminaries

Before entering into our work we recall the following definitions

Definition 2.1 [2]: A function $f : X \rightarrow Y$ is said to be generalized continuous (gcontinuous) if $f^{-1}(V)$ is g-open in X for each open set V of Y.

Definition 2.2 [3]: A function f: $X \rightarrow Y$ is said to be b-continuous if for each $x \in X$ and for each open set of V of Y containing f(x), there exists $U \in bO(X, x)$ such that $f(U) \subseteq V$.

Definition 2.3 [1]: A subset A of a topological space

 (X, τ) is called a b-open set if $A \subseteq cl(int(A)) \cup$ int(cl(A)) and b-closed set if $cl(int(A)) \cup$ int $(cl(A)) \subseteq A$.

Definition 2.4 [5]: A subset A of a topological space (X, τ) is called a generalized closed set(briefly g-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in X.

Definition 2.5 [6]: A subset A of a topological space (X, τ) is called a b^{*} closed set if $int(cl(A)) \subseteq U$, whenever $A \subseteq U$ and U is bopen.

Definition 2.7 [4]: A subset A of a topological space (X, τ) is called a semi-open set if $A \subseteq cl(int(A))$ and semi-closed set if $int(cl(A)) \subseteq A$.

3. Some basic properties of b*continuous functions

In this section we introduce the concept of b^* -continuous functions in topological space.

Definition 3.1: A map $f : X \rightarrow Y$ from a topo-logical space X into a topological space Y is called b*-continuous map if the inverse image of every closed set in Y is b*-closed in X.

Theorem 3.2: If a map $f : X \rightarrow Y$ from a topo-logical space X into a topological space Y is continuous then it is b*-continuous but not conversely.

Proof: Let $f : X \rightarrow Y$ be continuous. Let M be any closed in Y. Then the inverse image $f^{-1}(M)$ is closed in Y. Since every closed set is b*-closed, $f^{-1}(M)$ is b*-closed in X. Therefore, f is b*-continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example.

Example 3.4: Let X={a,b,c} with the topology

$$\begin{split} \tau &= \{X, \phi, \{c\}, \{a, c\}\}, \ Y = \{a, b, c\}, \sigma &= \{X, \phi, \{c\}\}. \ A \ function \ f : X \rightarrow Y \ is \ defined \ by \ f(a) \\ &= c, \qquad f(b) = b, f(c) = a. \ Then, \ f \ is \ b^*- continuous. \ But \ f \ is \ not \ continuous \ since \ f^{-1}\{c\} \\ &= \{a\} \ is \ not \ open \ in \ X \ . \end{split}$$

Theorem 3.5: Every b-continuous is b*-continuous but not conversely.

Remark 3.6: The converse of the above theorem need not be true as seen from the following example.

Example 3.7: Let X={d, e, h} with the topology $\tau = \{X, \varphi, \{h\}, \{d, h\}\}, Y=\{d, e, h\}, \sigma = \{X, \varphi, \{h\}\}$. A function $f : X \rightarrow Y$ is defined by f(d) = h, f(e) = e, f(h) = d. Then, f is b^* -continuous. But f is not b-continuous since $f^{-1}{h} = \{d\}$ is not open in X.

Theorem 3.8: Let $f : X \rightarrow Y$ be a single valued function, where X and Y are topological spaces. Then the following are equivalent.

(i) The function f is b^* -continuous.

(ii) The inverse image of each b-open set in Y is b^* -open in X.

(iii) If $f : X \rightarrow Y$ is b*-continuous, then τ

 $f(cl^*(A)) \subset cl(f(A))$ for every subset A of X.

Proof: (i)Assume that $f : X \rightarrow Y$ is b^{*}continu- ous. Let M be open in Y. Then M^c is closed in Y. Since Y is b^{*}-continuous $f^{-1}(M^c)$ is b^{*}-closed in X. But $f^{-1}(M^c) = X - f^{-1}(G)$. Thus $X - f^{-1}(G)$ is b^{*}-closed in X and so $f^{-1}(M$) is b^{*}-open in X. Therefore (i) \Rightarrow (ii).

conversely assume that the inverse image of each open set in Y is b*-open in X. Let B be any closed set in Y. Then B^c is open in Y. By assumption, $f^{-1}(B^c)$ is b*-open in X. But $f^{-1}(B^c) = X - f^{-1}(B)$. Thus $X - f^{-1}(B)$ is b*-open in X and so $f^{-1}(B)$ is b*-closed in X. Therefore f is b*-continuous. Hence (ii) \Rightarrow (i). Thus (i) and (ii) are equivalent.

(iii) Assume that f is b*-continuous. Let A be any subset of X. Then cl(f(A)) is a closed set in Y. Since f is b*-continuous , $f^{-1}(cl(f(A)))$ is b*-closed in X and it contains A. But $cl^*(A)$ is the intersection of all b*-closed sets containing A. Therefore $cl^*(A) \subseteq f^{-1}(cl(f(A)))$ and so f $(cl^*(A)) \subset cl(f(A))$.

Theorem 3.9: A map $f : X \rightarrow Y$ is b^{*}-continuous if and only if the inverse image of every closed set in Y is b^{*}-closed in X.

Proof: Let F be closed in Y. Then F^c is open in Y. Since f is b*-continuous, $f^{-1}(F)$ is b*-open in X. But $f^{-1}(F^c) = X - f^{-1}(F)$ and so $f^{-1}(F)$ is b*-closed in X.

2

Conversely assume that the inverse image of every closed

set in Y is b*-closed in X. Let V be an open

set in Y then V^c is closed in Y. By hypothesis, $f^{-1}(V^c) = X - f^{-1}(V)$ is b*-closed in X and so $f^{-1}(V)$ is b*-open in X. Thus f is b*-continuous.

Theorem 3.10: Let X and Y be topological spaces. If a map $f : X \rightarrow Y$ is b-continuous then it is b*-continuous.

Proof: Assume that a map $f : X \rightarrow Y$ is bcontinuous. Let V be an open set in Y. Since f is b-continuous, $f^{-1}(V)$ is b-open and hence b^{*}open in X. Therefore f is b^{*}-continuous.

Remark 3.11: The converse of the above theorem need not be true as seen from the following example.

Example 3.12: Let $X=Y=\{a,b,c\}$ with $\tau =$

 $\{X, \varphi, \{a\}, \{a, b\}\}\$ and $\sigma = \{Y, \varphi, \{a, c\}\}\$ and f be the identity map. Then f is b*-continuous but not b- continuous as the inverse image of the open set $\{a,c\}$ in Y is $\{a,c\}$ in X is not b-open.

4. b*-open map and b*-closed map

Definition 4.1: Let x and Y be two topological spaces. A map $f : X \rightarrow Y$ is called b*-open map, if the image of every open set in X is b*-open in Y.

Definition 4.2: Let x and Y be two topological spaces. A map $f : X \rightarrow Y$ is called b^{*}-closed map, if the image of every closed set in X is b^{*}-closed in Y.

Theorem 4.3: Every open map is b*-open but not conversely.

Proof: Let $f : X \rightarrow Y$ is an open map and V be an open set in X. Then f(V) is open and hence b^* -open in Y. Thus f is b^* -open.

Remark 4.4: The converse of the above theorem need not be true as seen from the following example.

Example 4.5: Consider $X = Y = {a, b, c}, \tau = {X, \phi, {a}, {a, b}, {a, c}}$ and $\sigma = {Y, \phi, {a}}$. Let a map $f : X \rightarrow Y$ be defined by f(a) = a = f(b), f(c) = c. Then this function is b*-open but not open as the image of the open set {a,c} in X is {a,c} is not open in Y

Theorem 4.6: Every closed map is b^{*}-closed but not conversely.

Proof: Let $f : X \rightarrow Y$ be closed map and V be an closed set in X. Then f(V) is closed and hence b*-closed in Y. Thus f is b*-closed.

Remark 4.7: The converse of the above

theorem need not be true as seen from the following example.

Example 4.8: Consider $X = Y = {a, b, c}, \tau = {X, \phi, {a}}$ and $\sigma = {Y, \phi, {a}, {a, b}}$ and a map $f : X \rightarrow Y$ be defined by f(a) = b, f(b) = a, f(c) = c. Thus function f is b^* -closed but not closed as $f ({b, c}) = {a, c}$ is not closed in Y.

Theorem 4.9: A map $f : X \rightarrow Y$ is b^{*}closed if and only if for each subset S of Y and for each open set U containing $f^{-1}(S)$ there is a b^{*}-open set V of Y such that $S \subseteq U$ and $f^{-1}(V)$ $\subseteq U$.

Proof: Suppose f is b*-closed. Let S be a subset of Y and U be an open set of X such that $f^{-1}(S) \subseteq U$. U = Y - f(X - V) is a b*-open set containing S such that $f^{-1}(V) \subseteq U$.

For the converse, suppose that F is a closed set of X. Then $f^{-1}(Y - f(F)) \subseteq$ is b*-closed map.

Theorem 4.10: If a map $f : X \rightarrow Y$ is continuous and b*-closed, A is b*-closed set of X then f(A) is b*-closed in Y.

Proof: Let $f(A) \subseteq O$ where O is an open set of Y. Since f is continuous $f^{-1}(O)$ is an open set containing A. Hence $cl(int(A)) \subseteq f^{-1}(O)$ as A is b*-closed. Since f is b*-closed f (cl(int(A))) is a b*-closed set contained in the open set O, which implies $cl(int(f(cl(A)))) \subseteq O$ and hence $cl(int(A)) \subseteq O$. So f(A) is b*-closed in Y.

Corollary 4.11: If a map $f : X \to Y$ is continuous and closed and A is b*-closed, then f(A) is b*-closed in Y.

Corollary 4.12: If a map $f : X \rightarrow Y$ is b*-closed and A is a closed set of X then $f_A : A \rightarrow Y$ is b*-closed.

Corollary 4.13: If a map $f : X \to Y$ is b*-closed and continuous and A is b*-closed set of X, then $f_A : A \to Y$ is continuous and b*-closed.

Proof: Let F be a closed set of A then F is b^* -closed set of X.From theorem [4.10] it follows that

3

 $f_{\mathbf{A}}(F\,)=f(F\,)$ is b*-closed set of Y . Hence $f_{\mathbf{A}}$ is b*-closed

and also continuous.

Theorem 4.14: If a map $f : X \rightarrow Y$ is open, continuous, b*-closed, and surjection, where X is regular then Y is regular.

Proof: Let V be an open set containing a point x of X, such that f(x) = P. Since X is regular and f is continuous, there is an open set V such that $x \in V \subseteq f^{-1}(V)$. Here $P \in f(V) \subseteq f(cl(V)) \subseteq U$. Since f is b*-closed, f(cl(V)) is b*-closed set contained in the open set U. It follows that $cl(int(f(cl(V)))) \subseteq U$ and hence $P \in f(V) \subseteq cl(f(V)) \subseteq U$ and f(V) is open. Since f is open. Hence Y is regular.

Theorem 4.15: If a map $f : X \to Y$ is closed map and a map $g: Y \to \tau$ is b*-closed then $g \circ f : X \to \tau$ is b*-closed.

X $\overline{\mathbf{Proof:}}$ F and X $\overline{\mathbf{H}}$ F is open By hypothesis, there is a b* (H) is closed and $(\mathbf{g} \circ \mathbf{f})(\mathbf{H}) = \mathbf{g}(\mathbf{f}(\mathbf{H}))$ is b*closed as g is b*-closed. Thus $\mathbf{g} \circ \mathbf{f}$ is b*-closed.

5. References

- [1] Andrijevic. D, On b-open sets, Mat. Vesink, 48(1996), 59 64.
- [2] Balachandran. K. Sundaram. P.and Maki. H. On generalized continuous maps in topological spaces, Mem. Fac.Sci. Kochi Univ. Math. 12 (1991),5-13.
- [3] Ekici. E and Caldas. M, Slightly γ-continuous func- tions, Bol. Soc. Parana. Mat, (3) 22(2004), 2, 63-74.
- [4] Levine. N, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963),36-41.
- [5] Levine. N, Generalized closed sets in topology, Rend.Circ. Math. Palermo, 19(2)(1970), 89-96.
- [6] Muthuvel. S and Parimelazhagan. R , b*-Closed sets in topological spaces, Int. Journal of Math. Analysis, Vol. 6, 2012, no. 47, 2317-2323.