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ABSTRACT 

Economic load dispatch problem is an optimization problem 

where objective function is highly non linear, non-convex, 

non differentiable and may have multiple local minima. 

Therefore, classical optimization methods may not converge 

or get trapped to any local minima. This paper presents a 

comparative study of three different evolutionary algorithms 

i.e. differential evolution, artificial bee colony algorithm and 

particle swarm optimization for solving the economic load 

dispatch problem. All the methods are tested on 3-units and 6-

units test system. Simulation results are presented to show the 

comparative performance of these methods.   

Keywords 

Economic Load Dispatch, Differential Evolution, Artificial 

Bee Colony, Particle Swarm Optimization. 

1. INTRODUCTION 
Economic load dispatch (ELD) is defined as the process of 

allocating generation levels to the generating unit in the mix, 

so that the system load is supplied entirely and most 

economically. The objective of an ELD problem in power 

system operation is to determine the optimal combination of 

power outputs for all generators, which minimizes the total 

fuel cost while satisfying constraints [1]. In the traditional 

ELD problem, the cost function for each generator is 

approximately represented by a single quadratic function and 

the problem is solved using mathematical programming based 

on optimization techniques such as the lambda-iteration, 

gradient and dynamic programming methods. However, many 

mathematical assumptions such as convexity, quadratic, 

differentiable or linear objectives are required to simplify the 

problem [2].  

Several classical optimization techniques need derivative 

information of the objective function to determine the search 

direction. But actual fuel cost functions are non-linear, non-

convex, non differentiable and may have multiple local 

minima [3]. Recently some heuristic techniques such as 

genetic algorithm [4], ant colony search algorithm [5], 

evolutionary programming [6], improved tabu search [7], 

differential evolution [8], particle swarm optimization [9] and 

artificial bee colony algorithm [10] have been used to solve 

the complex non-linear optimization problem. 

In this paper ELD problem has been solved using three 

different evolutionary algorithms i.e. differential evolution 

(DE), artificial bee colony (ABC) algorithm and particle 

swarm optimization (PSO). Performance of each algorithm for 

solving the ELD problem has been investigated and 

simulation results are presented in terms of accuracy, 

reliability and execution time.  

The rest of this paper is organized as follow. Section 2 

presents the ELD formulation. Section 3 presents evolutionary 

algorithm. Results and discussions are given in section 4, and 

section 5 gives some conclusions. 

2. ECONOMIC LOAD DISPATCH 

FORMULATION 
The objective of an ELD problem is to find the optimal 

combination of power generations that minimizes the total 

generation cost while satisfying an equality constraint and 

inequality constraints. The fuel cost curve for any unit is 

assumed to be approximated by segments of quadratic 

functions of the active power output of the generator. For a 

given power system network, the problem may be described 

as optimization (minimization) of total fuel cost as defined by 

(1) under a set of operating constraints. 
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where TF is total fuel cost of generation in the system ($/hr), 

ai, bi, and ci are the cost coefficient of the i th generator, Pi is 

the power generated by the i th unit and n is the number of 

generators. 

The cost is minimized subjected to the following generator 

capacities and active power balance constraints.  

niPPP iii ,,2,1for    max,min,                       (2) 

where Pi, min and Pi, max are the minimum and maximum power 

output of the i th unit. 
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where PD is the total power demand and PLoss is total 

transmission losses. 

The transmission losses PLoss can be calculated by using B 

matrix technique and is defined by (4) as, 

jij

n

i

n

j

iLoss PBPP 
 


1 1

                                                    (4) 

where Bij ‘s are the elements of loss coefficient matrix B. 
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3. EVOLUTIONARY ALGORITHM 

3.1 Differential Evolution (DE) 
Differential evolution (DE) is a population based evolutionary 

algorithm, capable of handling non-differentiable, non-linear 

and multi-modal objective functions [11-13]. A brief 

description of different steps of DE algorithm is given below: 

3.1.1. Initialization 

The population is initialized by randomly generating 

individuals within the boundary constraints 
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where
0

ijX is the initialized jth decision variable of ith 

population set; ‘rand’ function generates random values 

uniformly in the interval [0,1]; Np is the size of the 

population; D is the number of decision variables. The fitness 

function is evaluated for each individual. 
min

jX  and 
max

jX

are the lower and upper bound of the jth decision variable, 

respectively. 

3.1.2. Mutation 

As a step of generating offspring, the operations of ‘mutation’ 

are applied. ‘Mutation’ occupies quite an important role in the 

reproduction cycle. The mutation operation creates mutant 

vectors 
k

iX '
by perturbing a randomly selected vector 

k

aX  

with the difference of two other randomly selected vectors 
k

bX  and 
k

cX  at kth iteration as per following equation. 
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where
k

iX '
is the newly generated ith population set after 

performing mutation operation at kth iteration; 
k

aX ,
k

bX  and 

k

cX are randomly chosen vectors at kth iteration 

),,2,1( pN  and icba  . 
k

aX ,
k

bX  and 

k

cX are selected for each new parent vector. 

]2,0[Fx is known as ‘scaling factor’ used to control the 

amount of perturbation in the mutation process and improve 

convergence. Many schemes of creation of a candidate are 

possible. 

Here strategy 1 has been mentioned in the algorithm. 

3.1.3. Crossover 

Crossover represents a typical case of a ‘genes’ exchange. The 

parent vector is mixed with the mutated vector to create a trial 

vector, according to the following equation: 
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where i=1,2,…, Np ; j=1, …, D. 
k

ij

k

ij

k

ij XXX "'  and,,  are the 

jth individual of ith target vector, mutant vector, and trial 

vector at kth iteration, respectively. q is a randomly chosen 

index    (j = 1,2, …, D) that guarantees that the trial vector 

gets at least one parameter from the mutant vector even if Cr 

= 0. Cr = [0, 1] is the ‘Crossover constant’ that controls the 

diversity of the population and aids the algorithm to escape 

from local optima. 

3.1.4. Selection 

Selection procedure is used among the set of trial vector and 

the updated target vector to choose the best. Each solution in 

the population has the same chance of being selected as 

parents. Selection is realized by comparing the objective 

function values of target vector and trial vector. For 

minimization problem, if the trial vector has better value of 

the objective function, then it replaces the updated one as per 

following equation. 
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where
1k

iX  is the ith population set obtained after selection 

operation at the end of kth iteration, to be used as parent 

population set (in ith row of population matrix) in next 

iteration (k + 1th). 

3.2 Artificial Bee Colony (ABC) 
Artificial Bee Colony (ABC) is one of the most recently 

defined algorithms by Dervis Karaboga [14, 15]. It has been 

developed by simulating the intelligent behavior of honey 

bees. In ABC system, artificial bees fly around in a 

multidimensional search space and the employed bees choose 

food sources depending on the experience of themselves. The 

onlooker bees choose food sources based on their nest mates 

experience and adjust their positions. Scout bees fly and 

choose the food sources randomly without using experience. 

Each food source chosen represents a possible solution to the 

problem under consideration. The nectar amount of the food 

source represents the quality or fitness of the solution. The 

number of employed bees or the onlooker bees is equal to the 

number of food sources or possible solutions in the 

population. A randomly distributed initial population is 

generated and then the population of solutions is subjected to 

repeated cycles of the search process of the employed bees, 

onlookers and scouts. An employed bee or onlooker 

probabilistically produces a modification on the position in 

her memory to find a new food source (solution) and 

evaluates the nectar amount (fitness) of the new food source. 

If the nectar amount of the new food source is higher than that 

of the previous one then the bee remembers the new position 

and forgets the old one. Once the employed bees complete 

their search process, they share the nectar information of the 

food sources and their position information with the onlooker 

bees on the dance area. The onlooker bees evaluate the nectar 

information and choose a food source depending on the 

probability value associated with that food source using (9). 
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where fiti is the fitness value of the solution i which is 

proportional to the nectar amount of the food source in the 

position i and Ne (i.e. Npop/2 ) is the number of food sources 

which is equal to the number of employed bees, ne. Now the 



International Journal of Computer Applications (0975 – 8887)  

Volume 58– No.13, November 2012 

34 

onlookers produce a modification in the position selected by it 

using (10) and evaluate the nectar amount of the new source. 

        kjijijijij xxxv                                         (10) 

where k {1, 2,…., ne} and j {1, 2, …,D} are randomly 

chosen indexes. Although k is determined randomly, it has to 

be different from i. ij  is a random number between [-1, 1]. It 

controls the production of neighborhood food sources. If the 

nectar amount of the new source is higher than that of the 

previous one, the onlookers remember the new position; 

otherwise, it retains the old one. In other words, greedy 

selection method is employed as the selection operation 

between old and new food sources. 

If a predetermined number of trials do not improve a solution 

representing a food source, then that food source is abandoned 

and the employed bee associated with that food source 

becomes a scout. The number of trials for releasing a food 

source is equal to the value of ‘limit’, which is an important 

control parameter of ABC algorithm. The limit value usually 

varies from 0.001NeD to NeD. If the abandoned source is xij, j 

  (1, 2,..., D) then the scout discovers a new food source xij 

using (11). 

      minmaxmin )1,0( jjjij xxrandxx       (11) 

Where minjx and maxjx are the minimum and maximum 

limits of the parameter to be optimized. There are four control 

parameters used in ABC algorithm. They are the number of 

employed bees, number of unemployed or onlooker bees, the 

limit value and the colony size. Thus, ABC system combines 

local search carried out by employed and onlooker bees, and 

global search managed by onlookers and scouts, attempting to 

balance exploration and exploitation process [15]. 

The algorithmic steps involved in ABC algorithm are as 

follows: 

1)  Generate n random solutions with in boundaries of the 

system  

     )( minmaxmin PPrandPP   

2)  Calculate the objective function and fitness of each 

solution  

3)  Store the best fit as Pbest solution  

4)  A mutant solution is formed using a randomly selected 

neighbour,  

        12)()()(tan  randiPiPiPP kjktmuk
 

     Where j is the randomly selected neighbour and i is a 

      random parameter  

5)  Replace tmukP tan by kP , if the mutant has higher fitness 

or lower fuel cost of generation.  

6)   Repeat the above procedure for all the solutions  

7)   Probability of each solution is calculated as  

      Probability (i) =a*fitness (i)/max (fitness) + b  

     Where {a+b =1}  

8)  The solution P is selected if its Probability is greater than a 

random number,  

           If (rand<probability (i))  

                Solution is accepted for mutation  

           Else  

                Go for next solution  

                Counter is Incremented  

           While (Counter = population/2)  

  9)  Again the best P is determined  

10)  Replace a P by random P if its trial counter exceeds 

        threshold  

11)  Repeat the above for max no of iterations  

12)  The Pbest and F (Pbest) are the best solution and 

        global min of the objective function. 

3.3 Particle Swarm Optimization (PSO) 
Natural creatures sometime behave as a Swarm. One of the 

main streams of artificial life researches is to examine how 

natural creatures behave as a Swarm and reconfigure the 

Swarm models inside the computer. Dr. Eberhart and 

Kennedy develop PSO, based on analogy of the Swarm of 

birds and fish school. Each individual exchanges previous 

experiences among themselves [16, 17]. PSO as an 

optimization tool provides a population based search 

procedure in which individuals called particles change their 

position with time. In a PSO system, particles fly around in a 

multi dimensional search space. During flight each particles 

adjust its position according its own experience and the 

experience of the neighboring particles, making use of the 

best position encountered by itself and its neighbors. 

In the multidimensional space where the optimal solution is 

sought, each particle in the swarm is moved toward the 

optimal point by adding a velocity with its position. The 

velocity of a particle is influenced by three components, 

namely, inertial, cognitive, and social. The inertial component 

simulates the inertial behavior of the bird to fly in the 

previous direction. The cognitive component models the 

memory of the bird about its previous best position, and the 

social component models the memory of the bird about the 

best position among the particles. The particles move around 

the multi-dimensional search space until they find the optimal 

solution. The modified velocity of each agent can be 

calculated using the current velocity and the distance from 

Pbest and Gbest as given below. 
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Using the above equation, a certain velocity, which gradually 

gets close to Pbest and Gbest, can be calculated. The current 

position (searching point in the solution space), each 

individual moves from the current position to the next one by 

the modified velocity in (12) using the following equation: 

    
t

ij

t
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where, 

t                 Iteration count 
t

ijV             Dimension i of the velocity of particle j at  

                   iteration t 
t

ijX            Dimension i of the position of particle j at  

                   iteration t 

w                Inertia weight 
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21,CC      Acceleration coefficients 

t

ijPbest    Dimension i of the own best position of  

                   particle j until iteration t 
t

ijGbest    Dimension i of the best particle in the  

                   swarm at iteration t 

DN           Dimension of the optimization problem  

                   (number of decision variables) 

parN         Number of particles in the swarm 

21 , rr        Two separately generated uniformly distributed 

                  random numbers in the range [0, 1] 

 

The following weighting function is usually utilized: 

     Iter
Iter
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where, 

minmax ,      Initial and final weights 

maxIter              Maximum iteration number 

Iter                   Current iteration number 

Suitable selection of inertia weight in above equation provides 

a balance between global and local explorations, thus 

requiring less number of iterations on an average to find a 

sufficient optimal solution. As originally developed, inertia 

weight often decreases linearly from about 0.9 to 0.4 during a 

run. 

The algorithmic steps involved in particle swarm optimization 

technique are as follows: 

1)  Select the various parameters of PSO. 

2)  Initialize a population of particles with random positions 

and velocities in the problem space. 

3)  Evaluate the desired optimization fitness function for each 

particle. 

4)  For each individual particle, compare the particles fitness 

value with its Pbest. If the current value is better than the 

Pbest value, then set this value as the Pbest for agent i. 

5)  Identify the particle that has the best fitness value. The 

value of its fitness function is identified as Gbest. 

6)  Compute the new velocities and positions of the particles 

according to equation (12) & (13). 

7)  Repeat steps 3-6 until the stopping criterion of maximum 

generations is met. 

4. RESULTS AND DISCUSSIONS 
The applicability and validity of the proposed evolutionary 

algorithm for practical applications have been tested on 

various test cases consisting of 3-units and 6-units system [18, 

19].  A reasonable B-loss coefficients matrix of power system 

network has been employed to calculate the transmission 

losses. The software is developed in MATLAB and executed 

on Pentium IV PC (2.80 GHz) with 2.046 GB RAM. 

Case 1: 3-units system 
In this case, a simple power system consists of three-unit 

thermal power plant is used to demonstrate how the work of 

the proposed approach. Characteristics of thermal units are 

given in Table 1, the following coefficient matrix Bij losses. 

Table 1   Generating unit capacity and coefficients 

Unit 
min

iP  

(MW) 

max

iP  

(MW) 

ai 

($/MW2) 

bi 

($/MW) 

ci 

($) 

1    50 250 0.00525 8.663 328.13 

2      5 150 0.00609 10.04 136.91 

3    15 100 0.00592 9.76 59.16 

 

       



















000161.0  0002830.0  000184.0

000283.0  0001540.0  000175.0

000184.0  0000175.0  000136.0

ijB
 

Economic load dispatch (ELD) solution for three-unit system 

is solved using evolutionary algorithms such as DE, ABC, and 

PSO. Table 2 shows the optimal power output, total cost of 

generation, as well as active power loss for the power 

demands of 275 MW, 300 MW, 350 MW and 400 MW. It 

showed that the evolutionary algorithm has succeeded in 

finding a global optimal solution for this case. 

Table 2 Comparison of three methods: best result for case 1 

PDemand 

(MW) 
Methods 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

PLoss 

(MW) 

Fcost 

($/hr) 

 

275 

 DE 

 ABC 
 PSO 

189.95 

189.95 
185.82 

70.44 

70.44 
73.42 

23.40 

23.40 
24.57 

8.80 

8.80 
8.80 

3328.3 

3328.3 
3328.5 

 

300 

 DE 

 ABC 
 PSO 

202.47 

202.47 
202.59 

80.98 

80.98 
81.40 

27.08 

27.08 
26.50 

10.54 

10.54 
10.49 

3615.1 

3615.1 
3615.1 

 

350 

 DE 

 ABC 

 PSO 

228.08 

228.08 

227.26 

102.62 

102.61 

102.91 

33.81 

33.81 

34.38 

14.50 

14.50 

14.54 

4204.3 

4204.3 

4204.3 

 

400 

 DE 

 ABC 

 PSO 

250.00 

249.84 

248.45 

126.64 

130.56 

129.74 

42.72 

38.48 

40.94 

19.36 

18.87 

19.14 

4815.0 

4815.2 

4815.3 

 

Case 2: 6-units system 
To verify the effectiveness of the proposed evolutionary 

algorithm, a six-unit thermal power generating plant acquired 

from the standard IEEE 30 bus- test system (Figure 1) was 

tested. Characteristics of thermal units are given in Table 3, 

the following coefficient matrix Bij losses. 

The obtained results for this case using the proposed 

evolutionary algorithm respectively were given in Table 4, 

Table 5 and Table 6 with the variation of loading 700 MW, 

800 MW and 900 MW. From the above comparison it is 

found that the result obtained by DE algorithm is les 

computation time when it compared with ABC and PSO 

algorithm. 
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Figure 1:  IEEE 30-bus 6-generator test system 

Table 3   Generating unit capacity and coefficients 

Unit 

min

iP  

(MW) 

max

iP  

(MW) 

ai  

($/MW2) 

bi 

($/MW) 

ci ($) 

1 10 125 0.0033870 0.856440 16.817750 

2 10 150 0.0023500 1.025760 10.029450 

3 35 225 0.0006230 0.897700 23.333280 

4 35 210 0.0007880 0.851234 27.634000 

5 130 325 0.0004690 0.807285 36.856880 

6 125 315 0.0003998 0.850454 30.147980 
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Table 4 Comparison of three methods: best result for case 

2 with PD = 700 MW 

 

Unit Output DE ABC PSO 
P1 (MW) 28.3056 27.3761 35.2774 

P2 (MW) 10.0000 10.5000 40.3285 

P3 (MW) 118.9572 118.7326 130.3539 

P4 (MW) 118.6410 118.9831 125.1370 

P5 (MW) 230.8075 230.6243 212.2078 

P6 (MW) 212.7207 212.7142 174.5335 

Total power 
output (MW) 

700.4319 718.9303 717.8380 

Total generation 

cost ($/hr) 
820.2665 820.2667 823.9455 

Power losses 
(MW) 

19.4319 18.9303 17.8380 

CPU time (sec)  0.7773 2.0688 3.6866 

Table 5 Comparison of three methods: best result for case 

2 with PD = 800 MW 

 

Unit Output DE ABC PSO 
P1 (MW) 32.5970 32.5652 38.0626 

P2 (MW) 14.5060 14.4528 38.1482 

P3 (MW) 141.4784 141.4528 156.6319 

P4 (MW) 135.9652 135.8041 123.5354 

P5 (MW) 257.7397 257.9472 242.6754 

P6 (MW) 243.0464 243.3640 224.9756 

Total power 

output (MW) 
825.3327 825.3461 824.0292 

Total generation 
cost ($/hr) 

931.0322 931.0324 933.0468 

Power losses 

(MW) 
25.3327 25.3461 24.0292 

CPU time (sec)  0.7658 2.0360 3.7776 

 

Table 6 Comparison of three methods: best result for case 

2 with PD = 900 MW 

 

Unit Output DE ABC PSO 
P1 (MW) 36.8560 37.2907 52.9447 

P2 (MW) 21.0658 24.2945 27.2979 

P3 (MW) 164.0120 159.4317 181.4476 

P4 (MW) 153.1907 158.2795 141.9827 

P5 (MW) 284.3371 284.2858 298.3627 

P6 (MW) 272.5243 268.2504 228.8827 

Total power 

output (MW) 
931.9858 931.8325 930.9183 

Total generation 
cost ($/hr) 

1045.4429 1045.5100 1047.7652 

Power losses 

(MW) 
31.9858 31.8325 30.9183 

CPU time (sec)  0.7610 2.0377 3.8754 

 

5. CONCLUSION 
In this paper a comparative study of different evolutionary 

techniques to solve the power system economic load dispatch 

problem is investigated. The proposed approach has been 

demonstrated by two different cases to have superior features, 

including high quality solution, stable convergence 

characteristic, and good computation efficiency. The 

simulation results obtained that the DE algorithm reaches 

convergence faster than ABC and PSO methods. However, 

the proposed three different evolutionary algorithms showed a 

good performance by reducing total operating costs and 

transmission losses. 
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