
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

32

Application of Soft Computing Methods for Economic

Load Dispatch Problems

Hardiansyah

Department of Electrical
Engineering

Tanjungpura University
Pontianak 78124, Indonesia.

Junaidi
Department of Electrical

Engineering
Tanjungpura University

Pontianak 78124, Indonesia.

Yohannes MS
Department of Electrical

Engineering
Tanjungpura University

Pontianak 78124, Indonesia.

ABSTRACT

Economic load dispatch problem is an optimization problem

where objective function is highly non linear, non-convex,

non differentiable and may have multiple local minima.

Therefore, classical optimization methods may not converge

or get trapped to any local minima. This paper presents a

comparative study of three different evolutionary algorithms

i.e. differential evolution, artificial bee colony algorithm and

particle swarm optimization for solving the economic load

dispatch problem. All the methods are tested on 3-units and 6-

units test system. Simulation results are presented to show the

comparative performance of these methods.

Keywords

Economic Load Dispatch, Differential Evolution, Artificial

Bee Colony, Particle Swarm Optimization.

1. INTRODUCTION
Economic load dispatch (ELD) is defined as the process of

allocating generation levels to the generating unit in the mix,

so that the system load is supplied entirely and most

economically. The objective of an ELD problem in power

system operation is to determine the optimal combination of

power outputs for all generators, which minimizes the total

fuel cost while satisfying constraints [1]. In the traditional

ELD problem, the cost function for each generator is

approximately represented by a single quadratic function and

the problem is solved using mathematical programming based

on optimization techniques such as the lambda-iteration,

gradient and dynamic programming methods. However, many

mathematical assumptions such as convexity, quadratic,

differentiable or linear objectives are required to simplify the

problem [2].

Several classical optimization techniques need derivative

information of the objective function to determine the search

direction. But actual fuel cost functions are non-linear, non-

convex, non differentiable and may have multiple local

minima [3]. Recently some heuristic techniques such as

genetic algorithm [4], ant colony search algorithm [5],

evolutionary programming [6], improved tabu search [7],

differential evolution [8], particle swarm optimization [9] and

artificial bee colony algorithm [10] have been used to solve

the complex non-linear optimization problem.

In this paper ELD problem has been solved using three

different evolutionary algorithms i.e. differential evolution

(DE), artificial bee colony (ABC) algorithm and particle

swarm optimization (PSO). Performance of each algorithm for

solving the ELD problem has been investigated and

simulation results are presented in terms of accuracy,

reliability and execution time.

The rest of this paper is organized as follow. Section 2

presents the ELD formulation. Section 3 presents evolutionary

algorithm. Results and discussions are given in section 4, and

section 5 gives some conclusions.

2. ECONOMIC LOAD DISPATCH

FORMULATION
The objective of an ELD problem is to find the optimal

combination of power generations that minimizes the total

generation cost while satisfying an equality constraint and

inequality constraints. The fuel cost curve for any unit is

assumed to be approximated by segments of quadratic

functions of the active power output of the generator. For a

given power system network, the problem may be described

as optimization (minimization) of total fuel cost as defined by

(1) under a set of operating constraints.

n

i

iiiii

n

i

iT cPbPaPFF
1

2

1

)((1)

where TF is total fuel cost of generation in the system ($/hr),

ai, bi, and ci are the cost coefficient of the i th generator, Pi is

the power generated by the i th unit and n is the number of

generators.

The cost is minimized subjected to the following generator

capacities and active power balance constraints.

niPPP iii ,,2,1for max,min, (2)

where Pi, min and Pi, max are the minimum and maximum power

output of the i th unit.

Loss

n

i

iD PPP
1

 (3)

where PD is the total power demand and PLoss is total

transmission losses.

The transmission losses PLoss can be calculated by using B

matrix technique and is defined by (4) as,

jij

n

i

n

j

iLoss PBPP

1 1

 (4)

where Bij ‘s are the elements of loss coefficient matrix B.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

33

3. EVOLUTIONARY ALGORITHM

3.1 Differential Evolution (DE)
Differential evolution (DE) is a population based evolutionary

algorithm, capable of handling non-differentiable, non-linear

and multi-modal objective functions [11-13]. A brief

description of different steps of DE algorithm is given below:

3.1.1. Initialization

The population is initialized by randomly generating

individuals within the boundary constraints

DjNi

XXrandXX

p

jjjij

,,2,1 ; ,,2,1

* minmaxmin0

 (5)

where
0

ijX is the initialized jth decision variable of ith

population set; ‘rand’ function generates random values

uniformly in the interval [0,1]; Np is the size of the

population; D is the number of decision variables. The fitness

function is evaluated for each individual.
min

jX and
max

jX

are the lower and upper bound of the jth decision variable,

respectively.

3.1.2. Mutation

As a step of generating offspring, the operations of ‘mutation’

are applied. ‘Mutation’ occupies quite an important role in the

reproduction cycle. The mutation operation creates mutant

vectors
k

iX '
by perturbing a randomly selected vector

k

aX

with the difference of two other randomly selected vectors
k

bX and
k

cX at kth iteration as per following equation.

p

k

c

k

b

k

a

k

i

Ni

XXFxXX

,,2,1

'

 (6)

where
k

iX '
is the newly generated ith population set after

performing mutation operation at kth iteration;
k

aX ,
k

bX and

k

cX are randomly chosen vectors at kth iteration

),,2,1(pN and icba .
k

aX ,
k

bX and

k

cX are selected for each new parent vector.

]2,0[Fx is known as ‘scaling factor’ used to control the

amount of perturbation in the mutation process and improve

convergence. Many schemes of creation of a candidate are

possible.

Here strategy 1 has been mentioned in the algorithm.

3.1.3. Crossover

Crossover represents a typical case of a ‘genes’ exchange. The

parent vector is mixed with the mutated vector to create a trial

vector, according to the following equation:

otherwiseX

qjorCrjrandifX
X

k

i

k

ijk

i

 '

"
 (7)

where i=1,2,…, Np ; j=1, …, D.
k

ij

k

ij

k

ij XXX "' and,, are the

jth individual of ith target vector, mutant vector, and trial

vector at kth iteration, respectively. q is a randomly chosen

index (j = 1,2, …, D) that guarantees that the trial vector

gets at least one parameter from the mutant vector even if Cr

= 0. Cr = [0, 1] is the ‘Crossover constant’ that controls the

diversity of the population and aids the algorithm to escape

from local optima.

3.1.4. Selection

Selection procedure is used among the set of trial vector and

the updated target vector to choose the best. Each solution in

the population has the same chance of being selected as

parents. Selection is realized by comparing the objective

function values of target vector and trial vector. For

minimization problem, if the trial vector has better value of

the objective function, then it replaces the updated one as per

following equation.

otherwiseX

XfXifX
X

k

i

k

i

k

i

k

ik

i

) (""

1
 (8)

where
1k

iX is the ith population set obtained after selection

operation at the end of kth iteration, to be used as parent

population set (in ith row of population matrix) in next

iteration (k + 1th).

3.2 Artificial Bee Colony (ABC)
Artificial Bee Colony (ABC) is one of the most recently

defined algorithms by Dervis Karaboga [14, 15]. It has been

developed by simulating the intelligent behavior of honey

bees. In ABC system, artificial bees fly around in a

multidimensional search space and the employed bees choose

food sources depending on the experience of themselves. The

onlooker bees choose food sources based on their nest mates

experience and adjust their positions. Scout bees fly and

choose the food sources randomly without using experience.

Each food source chosen represents a possible solution to the

problem under consideration. The nectar amount of the food

source represents the quality or fitness of the solution. The

number of employed bees or the onlooker bees is equal to the

number of food sources or possible solutions in the

population. A randomly distributed initial population is

generated and then the population of solutions is subjected to

repeated cycles of the search process of the employed bees,

onlookers and scouts. An employed bee or onlooker

probabilistically produces a modification on the position in

her memory to find a new food source (solution) and

evaluates the nectar amount (fitness) of the new food source.

If the nectar amount of the new food source is higher than that

of the previous one then the bee remembers the new position

and forgets the old one. Once the employed bees complete

their search process, they share the nectar information of the

food sources and their position information with the onlooker

bees on the dance area. The onlooker bees evaluate the nectar

information and choose a food source depending on the

probability value associated with that food source using (9).

eN

j

j

i
i

fit

fit
P

1

 (9)

where fiti is the fitness value of the solution i which is

proportional to the nectar amount of the food source in the

position i and Ne (i.e. Npop/2) is the number of food sources

which is equal to the number of employed bees, ne. Now the

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

34

onlookers produce a modification in the position selected by it

using (10) and evaluate the nectar amount of the new source.

 kjijijijij xxxv (10)

where k {1, 2,…., ne} and j {1, 2, …,D} are randomly

chosen indexes. Although k is determined randomly, it has to

be different from i. ij is a random number between [-1, 1]. It

controls the production of neighborhood food sources. If the

nectar amount of the new source is higher than that of the

previous one, the onlookers remember the new position;

otherwise, it retains the old one. In other words, greedy

selection method is employed as the selection operation

between old and new food sources.

If a predetermined number of trials do not improve a solution

representing a food source, then that food source is abandoned

and the employed bee associated with that food source

becomes a scout. The number of trials for releasing a food

source is equal to the value of ‘limit’, which is an important

control parameter of ABC algorithm. The limit value usually

varies from 0.001NeD to NeD. If the abandoned source is xij, j

 (1, 2,..., D) then the scout discovers a new food source xij

using (11).

 minmaxmin)1,0(jjjij xxrandxx (11)

Where minjx and maxjx are the minimum and maximum

limits of the parameter to be optimized. There are four control

parameters used in ABC algorithm. They are the number of

employed bees, number of unemployed or onlooker bees, the

limit value and the colony size. Thus, ABC system combines

local search carried out by employed and onlooker bees, and

global search managed by onlookers and scouts, attempting to

balance exploration and exploitation process [15].

The algorithmic steps involved in ABC algorithm are as

follows:

1) Generate n random solutions with in boundaries of the

system

)(minmaxmin PPrandPP

2) Calculate the objective function and fitness of each

solution

3) Store the best fit as Pbest solution

4) A mutant solution is formed using a randomly selected

neighbour,

 12)()()(tan randiPiPiPP kjktmuk

 Where j is the randomly selected neighbour and i is a

 random parameter

5) Replace tmukP tan by kP , if the mutant has higher fitness

or lower fuel cost of generation.

6) Repeat the above procedure for all the solutions

7) Probability of each solution is calculated as

 Probability (i) =a*fitness (i)/max (fitness) + b

 Where {a+b =1}

8) The solution P is selected if its Probability is greater than a

random number,

 If (rand<probability (i))

 Solution is accepted for mutation

 Else

 Go for next solution

 Counter is Incremented

 While (Counter = population/2)

 9) Again the best P is determined

10) Replace a P by random P if its trial counter exceeds

 threshold

11) Repeat the above for max no of iterations

12) The Pbest and F (Pbest) are the best solution and

 global min of the objective function.

3.3 Particle Swarm Optimization (PSO)
Natural creatures sometime behave as a Swarm. One of the

main streams of artificial life researches is to examine how

natural creatures behave as a Swarm and reconfigure the

Swarm models inside the computer. Dr. Eberhart and

Kennedy develop PSO, based on analogy of the Swarm of

birds and fish school. Each individual exchanges previous

experiences among themselves [16, 17]. PSO as an

optimization tool provides a population based search

procedure in which individuals called particles change their

position with time. In a PSO system, particles fly around in a

multi dimensional search space. During flight each particles

adjust its position according its own experience and the

experience of the neighboring particles, making use of the

best position encountered by itself and its neighbors.

In the multidimensional space where the optimal solution is

sought, each particle in the swarm is moved toward the

optimal point by adding a velocity with its position. The

velocity of a particle is influenced by three components,

namely, inertial, cognitive, and social. The inertial component

simulates the inertial behavior of the bird to fly in the

previous direction. The cognitive component models the

memory of the bird about its previous best position, and the

social component models the memory of the bird about the

best position among the particles. The particles move around

the multi-dimensional search space until they find the optimal

solution. The modified velocity of each agent can be

calculated using the current velocity and the distance from

Pbest and Gbest as given below.

parD

t

ij

t

i

t

ij

t

ij

t

ij

t

ij

NjNi

XGbestrC

XPbestrCVwV

,,2,1 ; ,,2,1

 11

22

11

11

1

 … (12)

Using the above equation, a certain velocity, which gradually

gets close to Pbest and Gbest, can be calculated. The current

position (searching point in the solution space), each

individual moves from the current position to the next one by

the modified velocity in (12) using the following equation:

t

ij

t

ij

t

ij VXX 1
 (13)

where,

t Iteration count
t

ijV Dimension i of the velocity of particle j at

 iteration t
t

ijX Dimension i of the position of particle j at

 iteration t

w Inertia weight

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

35

21,CC Acceleration coefficients

t

ijPbest Dimension i of the own best position of

 particle j until iteration t
t

ijGbest Dimension i of the best particle in the

 swarm at iteration t

DN Dimension of the optimization problem

 (number of decision variables)

parN Number of particles in the swarm

21 , rr Two separately generated uniformly distributed

 random numbers in the range [0, 1]

The following weighting function is usually utilized:

 Iter
Iter

max

minmax

max

(
 (14)

where,

minmax , Initial and final weights

maxIter Maximum iteration number

Iter Current iteration number

Suitable selection of inertia weight in above equation provides

a balance between global and local explorations, thus

requiring less number of iterations on an average to find a

sufficient optimal solution. As originally developed, inertia

weight often decreases linearly from about 0.9 to 0.4 during a

run.

The algorithmic steps involved in particle swarm optimization

technique are as follows:

1) Select the various parameters of PSO.

2) Initialize a population of particles with random positions

and velocities in the problem space.

3) Evaluate the desired optimization fitness function for each

particle.

4) For each individual particle, compare the particles fitness

value with its Pbest. If the current value is better than the

Pbest value, then set this value as the Pbest for agent i.

5) Identify the particle that has the best fitness value. The

value of its fitness function is identified as Gbest.

6) Compute the new velocities and positions of the particles

according to equation (12) & (13).

7) Repeat steps 3-6 until the stopping criterion of maximum

generations is met.

4. RESULTS AND DISCUSSIONS
The applicability and validity of the proposed evolutionary

algorithm for practical applications have been tested on

various test cases consisting of 3-units and 6-units system [18,

19]. A reasonable B-loss coefficients matrix of power system

network has been employed to calculate the transmission

losses. The software is developed in MATLAB and executed

on Pentium IV PC (2.80 GHz) with 2.046 GB RAM.

Case 1: 3-units system
In this case, a simple power system consists of three-unit

thermal power plant is used to demonstrate how the work of

the proposed approach. Characteristics of thermal units are

given in Table 1, the following coefficient matrix Bij losses.

Table 1 Generating unit capacity and coefficients

Unit
min

iP

(MW)

max

iP

(MW)

ai

($/MW2)

bi

($/MW)

ci

($)

1 50 250 0.00525 8.663 328.13

2 5 150 0.00609 10.04 136.91

3 15 100 0.00592 9.76 59.16

000161.0 0002830.0 000184.0

000283.0 0001540.0 000175.0

000184.0 0000175.0 000136.0

ijB

Economic load dispatch (ELD) solution for three-unit system

is solved using evolutionary algorithms such as DE, ABC, and

PSO. Table 2 shows the optimal power output, total cost of

generation, as well as active power loss for the power

demands of 275 MW, 300 MW, 350 MW and 400 MW. It

showed that the evolutionary algorithm has succeeded in

finding a global optimal solution for this case.

Table 2 Comparison of three methods: best result for case 1

PDemand

(MW)
Methods

P1

(MW)

P2

(MW)

P3

(MW)

PLoss

(MW)

Fcost

($/hr)

275

 DE

 ABC
 PSO

189.95

189.95
185.82

70.44

70.44
73.42

23.40

23.40
24.57

8.80

8.80
8.80

3328.3

3328.3
3328.5

300

 DE

 ABC
 PSO

202.47

202.47
202.59

80.98

80.98
81.40

27.08

27.08
26.50

10.54

10.54
10.49

3615.1

3615.1
3615.1

350

 DE

 ABC

 PSO

228.08

228.08

227.26

102.62

102.61

102.91

33.81

33.81

34.38

14.50

14.50

14.54

4204.3

4204.3

4204.3

400

 DE

 ABC

 PSO

250.00

249.84

248.45

126.64

130.56

129.74

42.72

38.48

40.94

19.36

18.87

19.14

4815.0

4815.2

4815.3

Case 2: 6-units system
To verify the effectiveness of the proposed evolutionary

algorithm, a six-unit thermal power generating plant acquired

from the standard IEEE 30 bus- test system (Figure 1) was

tested. Characteristics of thermal units are given in Table 3,

the following coefficient matrix Bij losses.

The obtained results for this case using the proposed

evolutionary algorithm respectively were given in Table 4,

Table 5 and Table 6 with the variation of loading 700 MW,

800 MW and 900 MW. From the above comparison it is

found that the result obtained by DE algorithm is les

computation time when it compared with ABC and PSO

algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

36

1

2 5

7

8643

11 9

101213

14 16 22

21

20

191815

17

23 24

25
26

30

29

27
28

Figure 1: IEEE 30-bus 6-generator test system

Table 3 Generating unit capacity and coefficients

Unit

min

iP

(MW)

max

iP

(MW)

ai

($/MW2)

bi

($/MW)

ci ($)

1 10 125 0.0033870 0.856440 16.817750

2 10 150 0.0023500 1.025760 10.029450

3 35 225 0.0006230 0.897700 23.333280

4 35 210 0.0007880 0.851234 27.634000

5 130 325 0.0004690 0.807285 36.856880

6 125 315 0.0003998 0.850454 30.147980

000085.0 000032.0 000025.0 000019.0 0000200 000022.0

000032.0 000069.0 000030.0 000024.0 0000150 000026.0

000025.0 000030.0 000071.0 000017.0 0000160 000019.0

000019.0 000024.0 000017.0 000065.0 0000130 000015.0

000020.0 000015.0 000016.0 000013.0 0000600 000017.0

000022.0 000026.0 000019.0 000015.0 0000170 000140.0

.

.

.

.

.

.

Bij

Table 4 Comparison of three methods: best result for case

2 with PD = 700 MW

Unit Output DE ABC PSO
P1 (MW) 28.3056 27.3761 35.2774

P2 (MW) 10.0000 10.5000 40.3285

P3 (MW) 118.9572 118.7326 130.3539

P4 (MW) 118.6410 118.9831 125.1370

P5 (MW) 230.8075 230.6243 212.2078

P6 (MW) 212.7207 212.7142 174.5335

Total power
output (MW)

700.4319 718.9303 717.8380

Total generation

cost ($/hr)
820.2665 820.2667 823.9455

Power losses
(MW)

19.4319 18.9303 17.8380

CPU time (sec) 0.7773 2.0688 3.6866

Table 5 Comparison of three methods: best result for case

2 with PD = 800 MW

Unit Output DE ABC PSO
P1 (MW) 32.5970 32.5652 38.0626

P2 (MW) 14.5060 14.4528 38.1482

P3 (MW) 141.4784 141.4528 156.6319

P4 (MW) 135.9652 135.8041 123.5354

P5 (MW) 257.7397 257.9472 242.6754

P6 (MW) 243.0464 243.3640 224.9756

Total power

output (MW)
825.3327 825.3461 824.0292

Total generation
cost ($/hr)

931.0322 931.0324 933.0468

Power losses

(MW)
25.3327 25.3461 24.0292

CPU time (sec) 0.7658 2.0360 3.7776

Table 6 Comparison of three methods: best result for case

2 with PD = 900 MW

Unit Output DE ABC PSO
P1 (MW) 36.8560 37.2907 52.9447

P2 (MW) 21.0658 24.2945 27.2979

P3 (MW) 164.0120 159.4317 181.4476

P4 (MW) 153.1907 158.2795 141.9827

P5 (MW) 284.3371 284.2858 298.3627

P6 (MW) 272.5243 268.2504 228.8827

Total power

output (MW)
931.9858 931.8325 930.9183

Total generation
cost ($/hr)

1045.4429 1045.5100 1047.7652

Power losses

(MW)
31.9858 31.8325 30.9183

CPU time (sec) 0.7610 2.0377 3.8754

5. CONCLUSION
In this paper a comparative study of different evolutionary

techniques to solve the power system economic load dispatch

problem is investigated. The proposed approach has been

demonstrated by two different cases to have superior features,

including high quality solution, stable convergence

characteristic, and good computation efficiency. The

simulation results obtained that the DE algorithm reaches

convergence faster than ABC and PSO methods. However,

the proposed three different evolutionary algorithms showed a

good performance by reducing total operating costs and

transmission losses.

6. REFERENCES
[1] B. H. Chowdhury and S. Rahman. 1990. “A review of

recent advances in economic dispatch,” IEEE

Transactions on Power Systems, vol. 5 (4), pp. 1248-

1259

[2] A. J. Wood and B. F. Wollenberg. 1984. “Power

Generation, Operation, and Control”, John Wiley and

Sons, New York

[3] J. B. Park, K. S. Lee, J. R. Shin and K. Y. Lee. 2005. “A

particle swarm optimization for economic dispatch with

non smooth cost functions”, IEEE Trans. on Power

Systems, vol. 20 (1), pp. 34-42

[4] D. C. Walters and G. B. Sheble. 1993. “Genetic

algorithm solution of economic dispatch with the valve-

point loading”, IEEE Trans. on Power Systems, vol. 8

(3), pp. 1125-1132

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.13, November 2012

37

[5] K. Lenin and M. R. Mohan. 2006. “Ant colony search

algorithm for optimal reactive power optimization”,

Serbian Journal of electrical Engineering, vol. 3 (1), pp.

77-88

[6] H. T. Yang, P. C. Yang and C. L. Huang. 1996.

“Evolutionary programming based economic dispatch for

units with non-smooth fuel cost functions”, IEEE

Transactions on Power Systems, vol. 11 (1), pp. 112-118

[7] W. M. Lin, F. S. Cheng and M. T. Tsay. 2002. “An

improved tabu search for economic dispatch with

multiple minima”, IEEE Trans. on Power Systems, vol.

17 (1), pp.108-112

[8] Nasimul Nomana, Hitoshi Iba. 2008. “Differential

evolution for economic load dispatch problems”, Electric

Power Systems Research, vol. 78, pp. 1322-1331

[9] Pancholi, R. K., and Swarup, K. S. 2004. “Particle

swarm optimization for security constrained economic

dispatch”, International Conference on Intelligent

Sensing and Information Processing, Chennai, India, pp.

712

[10] H. Gozde, M. C. Taplamacioglu, and I. Kocaarslan.

2010. “Application of artificial bee colony algorithm in

an automatic voltage regulator (AVR) system”, vol. 2

(4), pp. 88-92

[11] R. Storn, and K.V. Price. 1997. “Differential evolution a

simple and efficient heuristic for global optimization

over continuous spaces”, J. Global Optim. Vol. 11 (4) ,

pp. 341–359

[12] K. V. Price, R. M. Storn, and J. A. Lampinen. 2005. “

Differential evolution: a practical approach to global

optimization”, Springer, Berlin, Heidelberg

[13] T. Takahama, and S. Sakai. 2006. “Constrained

optimization by the epsilon constrained differential

evolution with gradient-based mutation and feasible

elites”, Proceedings of the 2006 IEEE Congress on

Evolutionary Computation, pp. 308–315.

[14] D. Karaboga, and B. Basturk. 2008. “On the performance

of artificial bee colony (ABC) algorithm”, Applied Soft

Computing, vol. 8 (1), pp. 687- 697

[15] Dervis Karaboga, and Bahriye Akay. 2009. “A

comparative study of artificial bee colony algorithm”,

App. Mathematics and Computation, Elsevier, pp.108-

132

[16] J. Kennedy, and R. C. Eberhart. 1995. “Particle swarm

optimization”, Proceedings of IEEE International

Conference on Neural Networks (ICNN’95), Perth,

Australia, vol. 4, pp. 1942-1948

[17] Y. Shi and R. C. Eberhart. 2001. “Particle swarm

optimization: development, applications, and resources,

Proceedings of the 2001 Congress on Evolutionary

Computation, vol. 1, pp. 81-86

[18] M. Vanitha, and K. Tanushkodi. 2011. “Solution to

economic dispatch problem by differential evolution

algorithm considering linear equality and inequality

constrains”, International Journal of Research and

Reviews in Electrical and Computer Engineering, vol.

1(1), pp. 21-26

[19] Attia A. El-Fergany. 2011. “Solution of economic load

dispatch problem with smooth and non-smooth fuel cost

functions including line losses using genetic algorithm”,

International Journal of Computer and Electrical

Engineering, vol. 1 (2), pp. 706-710

