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ABSTRACT 

The portfolio optimization problem is an important 

management issue in financial economics. Its aim is to 

calculate an optimal asset allocation that satisfy specific 

investment goals, out of a given investment plan. 

In the past few years, more and more attention is given in 

applying Evolutionary Computation in solving complex 

optimization problems. The use of Multi-Objective 

Evolutionary Algorithms - MOEA in practical problems 

involving multi-objective optimizations is not restricted to a 

strict application of an existing algorithm described in 

literature. Oftenly, for a certain problem, one preferres an 

algorithm’ design that includes strategies characterizing 

different important algorithms used in the MOEA field.  

The main objective of this study was to develop an efficient 

and effective portfolio selection Multi-Objective Genetic 

Algorithm. 

Experimental tests presented for five benchmark data sets are 

given to demonstrate significant advantages regarding the 

solution quality and the speed of the algorithm.  

General Terms 

Evolutionary Computation, Multi-Objective Evolutionary 

Algorithms, Optimization, Investment management 

Keywords 
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1. INTRODUCTION 
The portfolio selection problem, initially proposed by 

Markowitz in 1952 applies mathematical programming 

methods to find the optimal investment portfolio, which can 

maximize the portfolio return and minimize the portfolio risk 

at the same time. “Markowitz' mean-variance model of stock 

portfolio selection and optimization is one of the best-known 

models in finance and was the bedrock of modern portfolio 

theory” [1]. 

In this model, it is assumed that asset returns follow a normal 

distribution. This involves that the return on a portfolio of 

assets can be perfectly characterized by the expected return 

and the associated risk measured by variance. 

The model relies on several initial hypotheses regarding 

investors’ behavior on the market: 

- all investors have the same amount of time to make 

investment decisions; 

- every stock asset return follows a normal distribution. 

- investors permanently try to maximize their profit; 

- investors face a decreasing marginal utility of  their fortune; 

- the expected return variability is used as a measure of the 

risk; 

- investors always prefer bigger returns at a certain level of 

the risk and lower-risk investments at a given level of the 

expected return; 

- all the portfolio securities are risky and characterized by a 

certain rate of return, dispersion and co-variation with other 

portfolio securities; 

- the expected portfolio rate of return is an exogenous variable 

of the model; 

An assets portfolio is efficient as long as no other portfolio 

with the same rate of return as the initial one but with a lower 

risk can be created.  

2. PORTFOLIO OPTIMIZATION     

PROBLEM  
An n stocks portfolio rate of return is given by the weighted 

average of the average returns of the constitutive stocks. This 

average is between the limits of the best and the worst return 

of the portfolio stocks in terms of the weights of the 

constitutive stocks (wi).  
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where : 

n – is the number of stocks in the portfolio 

wi , i=1,…,n – is the weight in the portfolio of stock i – which 

is the decision variable of the model 

The portfolio risk depends on three factors: 

-  the risk of every stock included in the portfolio 

- the covariance between the rates of return for assets in the 

portfolio 

-   weightings of its constituent stocks 

Thus, the risk of a portfolio of n stocks is given by: 

 

ij

n

i

n

j

jip ww  
 1 1

2
                  (2) 

and 

 

jiijij                     (3) 

 

where: 

σij = cov(i,j) – covariance between stock i and stock j 

σi , σj – standard deviations of stock i and stock j 

ρij – correlation coefficient between stock i and stock j 

These quantities must be calculated statistically.  

The covariance matrix derives from financial time series 

which contains stock returns tracked over a certain period of 

time. 

Thus: 
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and 

t

iR  the return of stock i at time t                   

k = the dimension of time series: t = 1,…,k 

The identification of efficient portfolios is realized by 

determining the portfolio structure with a given rate of return 

and the lowest risk. The efficient layout of portfolio must 

determine an weighted average of the expected returns of 

stocks E(Ri) equal to the expected portfolio rate of return 

(Rp*): 
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Thus, the efficient frontier (the curve that joins all the best 

possible combinations of the n-stocks portfolios) is generated 

by the solutions of the following optimization problem: 
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The portfolios on the efficient frontier represents the set of 

Pareto-optimal portfolios; each portfolio on this frontier has 

the maximum expected  return for a given amount of risk, or 

alternatively, the minimum risk for any given level of return. 

The quadratic programming approach to this problem requires 

method of Lagrange multipliers: the partial derivatives of 

variables are set to 0 and the corresponding linear equations 

are solved to determine the minimum variance portfolio 

structure. 

In fact, the mathematical problem can be expressed in various 

ways: 

1. Minimize risk for a specified expected return (as already 

shown) 

2. Maximize the expected return for a specified risk 

3. Minimize the risk and maximize the expected return: 
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0≤wi ≤1, i=1,…,n                 (13) 

 

In this mathematical model: 

- parameters are:  

 i= E(Ri): the expected return of stock i,  i=1,…,n 

σij: the covariance between the returns of stock i and stock j , 

i,j=1,...,n 

- decision variables are: 

wi: weight of stock i, i=1,…,n 

 

This model represents a bi-objective optimization problem. A 

solution of this problem must simultaneously minimizes 

portfolio variance (Eq. 10) and maximizes expected return 

(Eq. 11) while satisfying the set of equalities (Eq. 12) and 

inequalities (Eq. 13) constraints. 

The feasible space F of the problem is defined by (Eq. 12) and 

(Eq. 13): 
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Generally, the result of the problem consists of efficient 

portfolios. A portfolio is said to be efficient (or Pareto optimal 

or non-dominated) if and only if there is no other feasible 

portfolio that improves at least one of the two objective 

functions of the model without worsening the other. More 

specific, if X is the set of all feasible portfolios, we say that a 

portfolio x’ ∊ X dominates another portfolio x’’ ∊ X (x’≻x’’) 

if  w (x’)≥  w (x’’) and ρw(x’)≤ ρw(x’’) with at least one strict 

inequality. 

Several methods have been proposed in the Operations 

Research literature for solving multi-objective optimization 

problems. According to [2], these methods can be grouped 

into following approaches: 

- A priori preference articulation: the decision-maker is 

allowed to specify the preferences that are articulated in terms 

of goals or the relative importance of each objective function. 

Most of these methods aggregate the objective functions into 

a linear or nonlinear scalar cost function. 

The most usual approach for evolutionary optimization is the 

weighted sum of objective functions:  
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Thus, the multi-objective problem is converted into a single 

objective one. 

The bi-objective portfolio optimization problem is usually 

solved with such a method: a trade-off coefficient  ∊[0,1] 

(which is also called a risk aversion parameter) is introduced 

to combine the two objective functions into a scalar to be 

minimized: 
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      0≤wi ≤1, i=1,…,n                             (18) 

 

This approach generates non-dominated solutions by varying 

the   coefficient: from the minimum variance portfolio ( =1) 

to the maximum return portfolio ( =0). 

A known drawback of this method is the multitude of trials 

that must be performed, corresponding to different values of   

in the interval [0,1]. This requires substantial computing 

effort. Fig. 1 to Fig. 5 show the efficient frontiers computed 

taking 2000 different   values for the five benchmark 

problems described in section 5 based on the data made 

available by Beasley in the OR library[3]. These are also 

called as standard efficient frontiers of global optimal Pareto 

set. 

In literature there are described some other approaches of the 

a priori preference articulation. For example in [4] genetic 

algorithm with a combined fitness function based on the 

objective function of the portfolio variance and on the 

objective function of the portfolio return is used. The fitness 

function designed in [5] defines a balance between risk and 

return by adjustable constants. In [6] the designed genetic 

algorithm is based on a fitness function that combines the two 

objectives into a linear scalar cost function. Another approach 

is presented in [7]: the authors formulate a portfolio 

optimization problem involving multiple objectives and 

transform the multi-objective problem into a single-objective 

problem by weighting the objectives into the fitness function.  

- Progressive preference articulation: during the 

optimization process, the decision-maker is confronted to 

different possible solutions and interacts with the optimization 

program. 

- A posteriori preference articulation: the decision-maker is 

not capable to specify in advance the relative importance (by 

setting the weighting factors) of the objective functions. Once 

the set of non-dominated solutions has been found, the 

decision-maker can select the desired solution. Most 

Evolutionary Algorithms for multi-objective optimization can 

be viewed as a posteriori optimization techniques. Because 

they perform a search for multiple solutions in parallel, they 

try to discover the whole set of non-dominated solutions, or at 

least a well-distributed set of representatives [8]. A well-

distributed set is obtained when the relative distance between 

the non-dominated solutions is as equal as possible.  

According to the definition presented in [9], a good spread of 

solutions is obtained by the optimization problem: 
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The proposed approach belongs to this class of optimization 

techniques In our model, the two objective functions will be 

tracked at the same time, so that an approximation of the 

Pareto frontier is obtained in a single run, unlike the multiple 

runs needed in the case of converting the two objectives into a 

single objective one. 

3. STOCK ALLOCATION 

OPTIMIZATION USING A MULTI-

OBJECTIVE GENETIC ALGORITHM 
To apply a genetic algorithm for this problem, an appropriate 

chromosome coding and a correct fitness function design are 

required. Solution for stock allocation should be a 

composition of the stock quantity to be held to minimize the 

risk on a given level of expected return that will represent the 

optimal solution.  

Considering the admissibility condition: 1
1


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n

i

iw , we 

propose a real coding, the kth chromosome of the current 

generation has the decisional values encoded in the following 

structure:  

 

array w: w[i], i=1,...,m represents is the weight in the 

portfolio of stock i 

 

Initial population P(0) is randomly generated: in every 

chromosome, a value of a gene (a weight) is randomly 

generated. We have also to rescale the weight to satisfy:
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As the result, we convert every weight into a normalized 

weight: 
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Let say PS is the population size. Therefore, the generation at 

time t is a set of PS strings: 

P(t) = { chrom[1]t, chrom[2]t, ……, chrom[PS]t } and the 

length of each string is n.  

In the portfolio optimization, the fitness function must 

produce a reasonable trade-off between minimizing risk and 

maximizing return. For the multi-objective optimization 

we’ve applied a technique of archiving the non-dominated 

solutions, combined with a strategy that characterizes the 

VEGA algorithm [10]: randomly dividing the population of 

chromosomes into two sub-populations of equal size (2= 

number of objectives), according to proportional selection, 

running consecutively for each objective: 

 

procedure Selection (P(t)) //P(t) is the current population 

begin 

let q=PS/2;//PS is the population size 

for i=1,2 //for every objective 

 for j=1+(i-1)⋅q,...,i⋅q   

 chrom[j].valf   objective_functioni ;  

 //chrom[j] is the jth chromosome in the current population P(t) 

 fmax   
qi

qij



 )1(1
max {chrom[j].valf}; 

 chrom[j].probability   


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valfkchromf

valfjchromf

)1(1

max

max

)].[(

].[
; 

 repeat 

Based on these probabilities, one select q solutions by 

tournament selection;  

// these solutions will form the sub-population Pi(t) 

repeat 

return  P(t)=
2

1

)(
i

i tP // P(t ) is the new population 

end 
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Subpopulations were then combined to form a population of 

size PS on which the crossover and mutation operators will be 

applied.  

In the algorithm efficient solutions against one of the 

objectives are favored.  

To obtain also intermediate solutions, the algorithm allows 

crossover between any two solutions in the population.  

In this way, a crossover between two efficient solutions (each 

corresponding to one of the objectives) can result in 

offsprings that represent a good compromise between the two 

objectives. 

To eliminate the disadvantage related to the fact that an 

individual which is not dominated in a generation can become 

dominated in a subsequent generation, we used two archives: 

 - an archive that saves the non-dominated individuals in the 

current generation; 

- a second archive that saves  non-dominated individuals 

identified until the current search.  

In the new generation, a percentage of the population P(t +1) 

will be replaced randomly with solutions of this second 

external archive.  

These procedures are described below: 

 

procedure Domination (P(t)) 

 //calculates the non-dominated individuals 

begin 

   for i=1,PS 

     //initially all individuals are non-dominated 

    chrom[i].domination   1;  

   repeat 

   for i=1,PS 

      for j=1,PS 

        if (j≠i)   

            and (((chrom[j].objective1≤ chrom[i].objective1)   

            and(chrom[j].objective2< chrom[i].objective2))  

              or ((chrom[j].objective1<chrom[i].objective1)  

            and(chrom[j].objective2≤ chrom[i].objective2)) 

              or ((chrom[j].objective1<chrom[i].objective1)  

            and(chrom[j].objective2< chrom[i].objective2))) 

                then chrom[i].domination   0;  

                       // the ith chromosome is dominated 

       endif 

     repeat 

   repeat 

end 

 

procedure Current_generation_archiving (P(t)) 

begin   

  // „archive” will contain the non-dominated individuals from 

the current generation 

// initially the current position in this archive is 0 

   position_archive_currentgen   0;   

  for i=1,PS 

      if (chrom[i].domination=1) then  

   position_archive_currentgen  position_archive_currentgen+1;  

  archive[position_archive_currentgen]   chrom[i]; 

     endif 

   repeat 

end 

 

procedure Current_search_archiving (P(t))  

begin   
//” current_gen_archive” will contain the non-dominated 

individuals identified until the current search 

  // initially the current position in this archive is 0 

   

 

position_archive_currentsearch   0; 

   for i=1, position_archive_currentgen 

      for j=1, position_archive_currentgen 

        if (j≠i) and (((archive[j].objective1≤archive[i].objective1)  

                  and (archive [j].objective2<archive [i].objective2)) 

                     or ((archive [j].objective1<archive [i].objective1) 

                   and (archive[j].objective2≤archive [i].objective2)) 

                     or((archive[j].objective1<archive[i].objective1) 

                 and (archive [j].objective2<archive [i].objective2))) 

             then archive [i].domination   0; 

       endif 

      repeat 

   repeat 

   for i=1, position_archive_currentgen 

      if (archive[i].domination=1) then    

                                             position_archive_currentsearch    

                                             position_archive_currentsearch +1;   

            current_gen_archive[position_archive_currentsearch]     
                                                                                   archive[i]; 

      endif 

   repeat 

end 

 

procedure Random_replacing (position_archive_currentsearch) 

begin 
   for i=1, position_archive_currentsearch  

       chrom[1+rand()%PS]   current_gen_archive[i]; 

   repeat 

end 

 

The algorithm displays solutions from external archive 

„current_gen_archive”.  

These form the set of non-dominant Pareto solutions (Pareto 

optimal solutions): 

 

procedure Pareto_optimality (P(t))  

begin 
for i=1, position_archive_currentsearch 

   write current_gen_archive[i].objective1;  

   write current_gen_archive[i].objective2; //best portfolio 

   for k=1,n 

      write current_gen_archive[i].w[k];  

              // the structure of the best portfolio 

   repeat 

repeat 

end 

 

Crossover: 

This study uses the one-cut point crossover method: cutting 

two strings at a randomly chosen position and swapping the 

two tails.  

This allows introduction of new genetic material and 

maintaining genetic diversity. 

The probability of crossover is pc ,  so that an average of pc x 

100% chromosomes undergo crossover. 

Crossover is performed in the following way: 

 

1. generate a random integer number r from the range 

{1, …, n-1} 

2. child1[i]   parent1[i] 

                child2[i]   parent2[i]     

                                                   for i=1,…,r 

3. child1[i]   parent2[i] 

                child2[i]   parent1[i]     

                                                   for i=r+1,…,n 
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Mutation:  

This study uses the swap mutation technique: randomly pick 

two genes and swap their position in chromosome.  

The probability of mutation is pmut, so that on average of pmutx 

100% of total genes undergo mutation. 

Mutation probability is adjusted according to the scheme 

proposed in [11]: 

 

pm(t)=

1

)2(2
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pm ∈[1/n, 1/2], where n is the length of the chromosome.                        

Thus, the algorithm for solving this optimization problem is: 

 

t   0; 

//generate initial population 

P(0)   {chrom[1]0, chrom[2]0, ……, chrom[PS]0};  

while (stopping condition not fulfilled) 

   //calculate the non-dominated individuals  

   Domination ((P(t)) ;    

  //calculate the non-dominated individuals from the current 

generation 

   Current_generation_archiving (P(t)) ;  

  //calculate the non-dominated individuals identified until the 

current search 

   Current_search_archiving (P(t)) ;  

   Selection (P(t)) ; // VEGA algorithm 

   Crossover ((P(t)) ; 

   Adaptive_mutation ((P(t)) ;  

  //some individuals will be randomly replaced with 

nondominated ones 

   Random_replacing (position_archive_currentsearch) ;   

   t   t+1 ; 

repeat 

//display the non-dominated solutions that shape the final 

Pareto frontier  

Pareto_optimality (P(t)) ; 

4. PARETO FRONT QUALITY 
In the multi-objective optimization problems, the proper 

evaluation of the performance of an evolutionary algorithm is 

based on two aspects: 

- Proximity: the convergence of generated solutions to the 

Pareto-optimal set; 

- Diversity: distribution of generated solutions 

The heuristic efficient frontier generated by the proposed 

algorithm is evaluated by using some standard quality 

indicators of these aspects: 

Proximity was measured using the Generational Distance 

(GD) metric [12]. It estimates how close the generated 

efficient frontier PFgenerated is from the known Pareto front, 

PFtrue. Mathematically, GD is defined as: 

 

n

d
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n

i
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                (22)  

where:       

-  n is the number of solutions generated (the number of 

vectors in the obtained non-dominated set); 

-  di is the Euclidean phenotypic distance between each 

member i of the PFgenerated and the nearest member of the 

PFtrue. 

 

A lower GD signifies that PFgenerated is very close to the PFtrue. 

A value of zero means that all the generated solutions are 

placed on the PFtrue. 

Diversity was measured using the Spacing (SP) metric [13]. It 

estimates the spread of generated solutions, how uniformly 

are these solutions distributed in the objective space. 

Mathematically, S is defined as: 
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n

S 
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               (23) 

  

where:       

-  n is the number of solutions generated (the number of 

vectors in the obtained non-dominated set); 
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A lower S signifies that the solutions in PFgenerated are 

uniformly spread out. A value of zero means that all the 

generated solutions are equidistantly spaced. 

5. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 
In order to evaluate the efficiency of our algorithm and the 

superiority of the solutions obtained, the experiments have 

been conducted with a public available data set, obtained from 

the OR Library [3].  

This data set offers input data for groups of assets in some 

stock market indices: Hang Seng with 31 assets (P1) - 

representative for the performance of the Hong Kong stock 

market, Dax 100 in Germany with 85 assets (P2), FTSE 100 

in UK with 89 assets (P3), The US S&P 100 with 98 assets 

(P4) and Nikkei 225 in Japan with 225 assets (P5). These data 

correspond to weekly prices between March 1992 and 

September 1997.  

The risk and the corresponding tradeoff return for standard 

efficient frontiers are available in portref1 to portref5 files [x]. 

The standard efficient frontiers and the obtained heuristic 

efficient frontiers are illustrated in Fig. 1 to Fig.5:
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Fig 1: Standard and heuristic efficient frontiers for Hang Seng with 31 assets (P1) 

 

 
Fig 2: Standard and heuristic efficient frontiers for Dax 100 with 85 assets (P2) 

 

 
Fig 3: Standard and heuristic efficient frontiers for FTSE 100 with 89 assets (P3) 
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Fig 4: Standard and heuristic efficient frontiers for S&P 100 with 98 assets (P4) 

 

 
Fig 5: Standard and heuristic efficient frontiers for Nikkei 225 with 225 assets (P5) 

The performance of the proposed approach is evaluated 

against another MOEA, namely Pareto Envelope-based 

Selection Algorithm - PESA [14].  

Inspired by the analysis described in [15], 50 independent 

runs were performed for each of the two algorithms, 

corresponding to the five test problems. In order to ensure a 

fair comparison, the same random seed was assigned to each 

corresponding set of runs. 

Table 1 presents the minimum, the maximum, the mean and 

the standard error of the two metrics: GD and S obtained for 

each algorithm. 

 

Table 1. Performances of the proposed algorithm and the 

PESA algorithm 

Metric 

Algorithm 
GD S 

Min Max Mean Std.err Min Max Mean Std.err 

PESA 0.96 

E-2 

2.71 

E-2 

1.82 

E-2 

0.49 

E-2 

8.02 

E-3 

9.46 

E-3 

8.64 

E-3 

2.71 

E-3 

Proposed 

approach 

0.68 

E-2 

2.04 

E-2 

1.41 

E-2 

0.26 

E-2 

4.22 

E-3 

5.94 

E-3 

5.29 

E-3 

1.68 

E-3 

Table 2 presents the average of the run time results for each of 

the algorithms, corresponding to the five tests problems. 

Table 2. The average of the run time results for each of the 

algorithms 

Index Assets PESA Proposed 

approach 

Hang Seng 31 58  (s) 36 (s) 

DAX 100 85 188 (s) 114 (s) 

FTSE 100 89 218(s)  145 (s) 

S&P 100 98 241 (s) 182 (s) 

Nikkei 225 225 968 (s) 719 (s) 

 

As presented in Table 2, the convergence speed of the 

proposed algorithm is better that of PESA algorithm. 

6. CONCLUDING REMARKS 
Experimental results show that our algorithm solves the 

problem efficiently (in terms of computation time and 

memory space), and produces a relatively well-distributed set 
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of non-dominated solutions that approximate the Pareto-

optimal front in a single simulation run.  
The algorithm described can be additionally improved by 

altering genetic algorithm parameters selected for 

implementation. The population size, crossover rate, mutation 

rate, selection, crossover and mutation methods could be 

analyzed in order to find the best parameter design. 

Due to the flexibility of the genetic algorithms, further 

complex constraints of practical interest can be easily 

integrated to enhance the realism of the model.  

Further aspects will concern the integration of some other 

specific features of MOEAs in order to improve the 

robustness of the algorithm. 

And because genetic algorithms are well appropriated for 

parallel implementations, one can achieve such 

implementations as well.    
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