
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

41

An Efficient Cellular Automata based Leader

Election Scheme

ABSTRACT

This work reports an efficient scheme of electing a leader, in a

fully connected distributed system, having n number of nodes.

In the proposed scheme, the system state is modeled using

Cellular Automata. Each node is initialized with status

information. This information has to be maintained by the

nodes at all times so that they are aware of the current

working coordinator in the system. The proposed scheme

requires only O(n) messages for decision making.

Keywords

Distributed systems, cellular automata.

1. INTRODUCTION
In a distributed system, where nodes (processors) often

compete as well as cooperate to achieve a common goal, it is

sometimes needed to reach an agreement among the nodes.

Such a common problem is the coordinator/leader election

problem. It is defined as the process of choosing a node from

among a group of nodes in a distributed system to act as the

central coordinator. A leader or coordinator is elected to

coordinate a certain task. Such tasks may include mutual

exclusion handling or failure recovery.

The participating nodes can compete or cooperate among

themselves for such decision making. This results in

voluminous information exchanges. A number of such

algorithms have been proposed in literature [1], [2], [3].

However the worst case message exchange complexity of

these algorithms are O(n2).

In this paper, a different approach is presented to address this

problem. The system state is modeled by initializing with the

status information at each node and each node maintains this

model so that they are aware of the current coordinator.

Using this approach it is possible to elect a leader much

efficiently with minimum number of message exchanges.

In the following sections, first the proposed approach is

described, and then it is shown how the system model is

developed using CA (Cellular Automata).

2. PROPOSED APROACH
 In the proposed model, each node records an n-bit status

information for n number of nodes in the system. This

information represents the overall system state. If a node, say

pi is the current coordinator, then the ith bit from the right in

the status information is set to ‘1’ and rest of the bits are set to

‘0’. For example, if the status information recorded in any

node of a distributed system having 5 nodes is ‘0 0 1 0 0’, it

implies that node p3 is the current coordinator. The system

state needs to be kept consistent at all times. The whole

process of electing a coordinator is described next:

 First the system state is modeled by initializing

each node with the status information and each

node maintains this model so that they are

aware of the current working coordinator.

 When a node pi detects that the current

coordinator say pf is not responding, pi then

utilizes the proposed scheme for coordinator

selection to elect a new coordinator (pn).

Practically, the proposed approach does not

involve any communication among the nodes

for computing the coordinator node id. The

node pi can unanimously compute the

coordinator node id pn .

 Once node pi computes the new coordinator

node id (pn), it sends a request message to node

pn to ask whether it is ready to be the new

coordinator. The message delivery time is

bounded and is taken as T. If pn does not reply

within T time units then pi decides that pn is

non-existent, it updates the status information,

and starts the process from the beginning

considering pn as the current failed coordinator.

The failed coordinator pf is also detected and the

status information is modified to reflect that

information.

 If pn exists but it decides not to act as the

coordinator then it replies back to pi that it is not

ready. In this situation, pi continues to find

another coordinator considering pn as the

current failed coordinator.

 If pn replies positively to pi then pi updates its

system state and considers pn as the new

coordinator, broadcasts this information

throughout the network so that all other nodes

also update their states accordingly.

 If pf suddenly wakes up it broadcasts a message

throughout the network that it is awake, so that

all the other nodes can update their state

accordingly. pn sends a message to pf declaring

itself as the currently working coordinator.

During this time if any node sends a request to

pf to be the new coordinator it disagrees because

it is still not ready with a valid system state.

 I n the initial state, when no coordinator has

been elected, a node, after entering a system,

broadcasts a message throughout the network

Monalisa Dey
Computer science & Engineering Dept

JIS College of Engineering
Kalyani, Nadia, WB-741235, India

Prasenjit Dey
Nivio Technology Pvt. Ltd.

Gurgaon, Haryana, 122016.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

42

that it is alive. I t waits for 2T time units for

reply from the current coordinator. If it does not

receive a reply it assumes that there is no

coordinator. The new node then broadcasts a

message to inform the other nodes in the system

about this situation. If this is really the initial

state, they do not respond. The new node, after

2T time units, broadcasts a message declaring

itself as the new coordinator and wais for 2T

time units.

 If this is not really an initial state, all the nodes

send the coordinator information to the newly

added node.

Example 1: The following example illustrates the scheme

precisely:

Let us consider a distributed network having four nodes. Node

p1 is assumed to be the current coordinator. Thus the current

state of each node is ‘0 0 0 1’. The ith bit (from the right)

corresponds to ith node. Let us consider node p1 has failed to

act and node p3 has detected it because it did not get any

response when it had made request to the coordinator for

some services. Node p3 then follows the proposed scheme and

elects node p2 as the new coordinator. Node p3 then informs

this to node p2. Node p2 agrees to act as coordinator and

responds affirmatively to node p3. In the next step node p3

broadcasts the information of new coordinator so that all

nodes can modify their system state accordingly. The whole

process is described in Fig. 1.

3. SYSTEM MODEL
A different approach is presented here to address the problem

of leader election. A model of the system is developed which

is the partial view of the global state of the system. Each node

is supposed to maintain the model and update it accordingly.

The system under consideration is a distributed network

consisting of n different nodes that are interconnected through

network. The number of nodes may vary from a few to a few

thousands. The proposed solution scheme is designed around

the Cellular Automata (CA), an unconventional modeling tool

invented by von Neumann.

4. INTRODUCTION TO CA
In its simplest form cellular automata evolves in discrete

space and time, and can be viewed as an autonomous finite

state machine (FSM). Each cell stores a discrete variable at

time t that refers to the present state (PS) of the cell. The next

state (NS) of the cell at (t + 1) is affected by its state and the

states of its neighbors at time t. We will use a two state three

neighborhood CA which can have two states (0 and 1) and the

the next state function and St i-1, St i and St i+1 are the

present states of left, self and right neighbors of cell i. The

collection of the states of all cells is called a state of the n-cell

CA at time t.

The next state function of the ith CA cell can be expressed in

the form of a truth table shown. The decimal equivalent of the

8 outputs is called Rule Ri. In a 2-state 3-neighborhood CA,

there can be 28(256) rules. Two such rules 30 and 18 are

illustrated in Fig. 2. The first row lists the possible 23(8)

combinations of present states of (i − 1)th, ith and (i + 1)th

cells at time t. The last two rows indicate the next states of

the ith cell at time (t + 1).

Fig. 1. The Process Model

5. CA BASED MODEL
 In the current application, for a system of n nodes, an n-cell

null boundary CA, configured with rule 18 at each node. The

current status information maintained at a node is considered

as the present state (PS) of the CA at that node. During the

coordinator election process, the node that identifies the

absence of a coordinator runs the CA for a single step

considering the current system status information as the initial

seed and the next state (NS) of the CA correctly indicates the

newly elected coordinator id.

Example 1 Revisited:

Consider the distributed system as described in example 1

earlier. After node p3 detects that p1 is not responding it runs

the 4-cell CA (configured with rule 18) for one step and

reaches the pattern ‘0 0 1 0’. Here we will take node p2 to be

the next coordinator if it agrees. If not we will carry on the

selection process considering node p2 as the current failed

coordinator and the failure information of node p3 is also

reflected in the state information. If in the beginning node p3

was the non- responding coordinator and node p1 ran the CA

then in the next step the pattern we get is ‘1 0 1 0’. In this case

we will always select the node with the higher Id to be the

next coordinator step.

6. EXPERIMENTAL RESULTS
Previously, Kalyan Mahato and Sukanto Das [4], had

proposed a cellular automata based approach to elect a

coordinator, however they had used rule 30. The CA

configured with rule 30 was ran for n/2 steps (n is the total

number of nodes in the system). From the pattern they got

They identified the middle cell of the sequence which has

largest number of active neighbouring cells and then

considered the node of the corresponding mid cell as the new

 Fig. 2. The RMT’s for Rule 30 and 18

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

43

new coordinator.

The two approaches are compared in Table I in terms of the

maximum number of active cells present in the next state

pattern generated after running the CA rule 30 for n/2 steps

and CA rule 18 for 1 step.

The 1st column represents the length of the CA that

corresponds to the number of nodes in the system, the 2nd

column gives the present state of the system, the 3rd column

represents the next state pattern generated. Columns (3-5)

give the results of the proposed scheme using rule 18. Column

6 shows the next state pattern generated after running the CA

for n/2 steps applying rule 30, column 7 and column 8 shows

the total number of conflicts and maximum number of active

cells, respectively for scheme [4].It is clearly seen that the

number of conflicts that are arising in the next state pattern

generated after running the CA for 1 step using rule 18 are

much less than the number of conflicts that are arising after

using rule 30. Also the maximum number of active cells in the

next state pattern generated is much more in number when

rule 30 is used. For example, in a CA with length, say 32, the

maximum number of active cells in the next state pattern

when rule 18 is used is 2. Whereas for rule 30 it is 15. As the

length of the CA goes on increasing the number of active cells

increases for rule 30 and thus the problem of selecting the

same coordinator increases further. Whereas for rule 18 the

maximum number of active cells are always 2. Thus the

proposed scheme shows more clarity and efficiency compared

to the scheme [4].

7. PERFORMANCE STUDY
 The approach proposed in [4] had a certain

random nature associated with it. After running

n/2 steps the numbers of active neighbouring

cells (i.e. number of 1’s) are much more

compared to the proposed approach. Thus it

may be confusing so as to which active cell
should be selected.

 In [4] using rule 30, from the pattern obtained,

the middle cell of the sequence which has

largest number of active neighbouring cells was

identified and then considered the node of the

corresponding mid cell as new coordinator. This

means they had to find out the largest common

subsequence of 1’s and then identify the middle

cell. This increases the complexity of searching

in their scheme. Whereas in the proposed

scheme the method of selecting a new

coordinator is much more simple. If more than

one active cell is coming in the next state

pattern, we just select the node having the
higher node id as the new coordinator.

 The scheme proposed in [4] doesn’t guarantee

that the currently failed coordinator won’t be

elected immediately since after running the CA

for n/2 steps the cell which was active in the

present state may also be active in the next state.

For example, the next state corresponding to the

present state ‘1 0 0 0 0’ (after the CA runs n/2

steps), is ‘1 0 1 0 0’. Here, the fifth cell is still

active and it might have a chance to be selected

as the coordinator again. But the proposed

approach ensures that a failed coordinator won’t

be elected again. As seen from the column 2 and

column 3 of Table 2, the bit which was active

before will not be active in the next state pattern

generated. It is also to be noted that only a

single bit is active in most of the cases and in

some cases there are more than one active bit.

However, the numbers of active bits are at most

two in all cases.

 In scheme [4], the CA has been run for n/2

steps, so the run time and hence power

consumption is more as compared to our

approach where the CA is run for just a single

step.

Message Complexity:

In the proposed model, let the elected

coordinator is not alive and overall, say d,

number of nodes are dead where (1 ≤ d ≤ n−2)

then node pi requires (d+2) messages to select

new coordinator and (n-d-1) for broadcasting

the information. Therefore, the message

requirement is n+1, i.e. message complexity is

O(n).

8. CONCLUSION
In a distributed system, a very common problem is process of

choosing a node from among a group of nodes in a distributed

system to act as the central coordinator. A leader or

coordinator is elected to coordinate a certain task. So, an

efficient leader election algorithm is essential.

In the proposed work, a cellular automata based approach to

elect a leader with minimum amount of confusion is

presented. A null boundary CA configured with rule 18 is

used for this purpose. Previously in the approach [4] rule 30

was used, however as shown in the previous sections, the

approach where rule 18 is used is more efficient and has more

clarity than the previous approach. Results show that as the

length and hence the number of nodes goes on increasing the

number of active cells increases for rule 30 and thus the

coordinator selection procedure among those active cells

become more intensive. Whereas for rule 18, the maximum

number of active cells are always 2. Thus the proposed

scheme has much more clarity and is less complex than the

scheme in [4]

.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

44

Length Present State

Rule 18 Rule 30

Next State #conflicts Max 1’s Next State #conflicts Max 1’s

4

0001 0010 0

2

0110 1

2

0010 0101 1 1100 1

0100 1010 1 1001 1

1000 0100 0 1010 1

8

00000001 00000010 0

2

00011001 2

4

00000010 00000101 1 00110011 3

00000100 00001010 1 01100100 2

00001000 00010100 1 11001000 2

00010000 00101000 1 10010001 2

00100000 01010000 1 10100010 2

01000000 10100000 1 10000100 1

10000000 01000000 0 10101000 2

16

0000000000000001 0000000000000010 0

2

0000000110010001 3

7

0000000000000010 0000000000000101 1 0000001100100000 2

0000000000000100 0000000000001010 1 0000011001000010 3

0000000000001000 0000000000010100 1 0000110010000100 3

0000000000010000 0000000000101000 1 0001100100011100 5

0000000000100000 0000000001010000 1 0011001000111001 6

0000000001000000 0000000010100000 1 0110010001110000 5

0000000010000000 0000000101000000 1 1100100011100000 5

0000000100000000 0000001010000000 1 1001000111000001 5

0000001000000000 0000010100000000 1 1010001110000010 5

0000010000000000 0000101000000000 1 1000011100000100 4

0000100000000000 0001010000000000 1 1010111000001000 5

0001000000000000 0010100000000000 1 1010110000010000 4

0010000000000000 0101000000000000 1 1010000000100000 2

0100000000000000 1010000000000000 1 1011110001000000 5

1000000000000000 0100000000000000 0 1010101010000000 4

TABLE I. Comparison of the Proposed Approach with the Previous Approach

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

45

Length Present State
Rule 18 Rule 30

Next State #conflicts Max 1’s Next State #conflicts Max 1’s

32

0000000000000000
0000000000000001

0000000000000000
0000000000000010 0

2

00000000000000001
1001000111001100 7

15

0000000000000000
0000000000000010

0000000000000000
0000000000000101 1 0000000000000011

0010000101111000 7

0000000000000000
0000000000000100

0000000000000000
0000000000001010 1 0000000000000110

0100001011100011 7

0000000000000000
0000000000001000

0000000000000000
0000000000010100 1 0000000000001100

1000010111001000 7

0000000000000000
0000000000010000

0000000000000000
0000000000101000 1 0000000000011001

0001110011110101 11

0000000000000000
0000000000100000

0000000000000000
0000000001010000 1 0000000000110010

0011100111100010 10

0000000000000000
0000000001000000

0000000000000000
0000000010100000 1 00000000001100100

0111001111001011 12

0000000000000000
0000000010000000

0000000000000000
0000000101000000 1 0000000011001000

1110011110010000 10

0000000000000000
0000000100000000

0000000000000000
000000101000000 1 0000000110010001

1100111101000010 11

0000000000000000
0000001000000000

0000000000000000
0000010100000000 1 0000001100100011

1001111010000100 11

0100000000000000
0000010000000000

0000000000000000
0000101000000000 1 0000011001000111

0011110100001011 12

0000000000000000
0000100000000000

0000000000000000
0001010000000000 1 0000110010001110

0111101000010110 13

0000000000000000
0001000000000000

0000000000000000
0010100000000000 1 0001100100011100

1111010000111000 13

0000000000000000
0010000000000000

0000000000000000
0101000000000000 1 0011001000111001

1110100001110001 14

0000000000000000
010000000000000

0000000000000000
1010000000000000 1 0110010001110011

1101000011100000 13

0000000000000000
1000000000000000

0000000000000001
0100000000000000 1 1100100011100111

1010000110000000 12

0000000000000001
0000000000000000

0000000000000010
1000000000000000 1 1001000111001111

0100001110000001 13

0000000000000010
0000000000000000

0000000000000101
0000000000000000 1 1010001110011110

1000011100000010 13

0000000000000100
0000000000000000

0000000000001010
0000000000000000 1 1000011100111101

0000111000000100 12

0000000000001000
0000000000000000

0000000000010100
0000000000000000 1 1010111001111010

0001110000001000 13

0000000000010000
0000000000000000

0000000000101000
0000000000000000 1 1010110011110100

0011100000010000 12

0000000000010000
0000000000000000

0000000001010000
0000000000000000 1 1010000111101000

0111000000100000 10

0000000001000000
0000000000000000

0000000010100000
0000000000000000 1 1011011111010000

1110000001000000 12

0000000010000000
0000000000000000

0000000101000000
0000000000000000 1 1010110110100001

1100000010000000 10

0000000100000000
0000000000000000

0000001010000000
0000000000000000 1 1010101001000011

1000000100000000 8

0000001000000000
0000000000000000

0000010100000000
0000000000000000 1 1010111100000111

0000001000000000 9

0000010000000000
0000000000000000

0000101000000000
0000000000000000 1 1011000011001110

0000010000000000 8

0000100000000000
0000000000000000

0001010000000000
0000000000000000 1 1010101010111100

0000100000000000 9

0001000000000000
0000000000000000

0010100000000000
0000000000000000 1 1010101010001000

0001000000000000 6

0010000000000000
0000000000000000

0101000000000000
0000000000000000 1 1010101000011000

0010000000000000 6

0100000000000000
0000000000000000

1010000000000000
0000000000000000 1 1010111101001100

0100000000000000 9

1000000000000000
0000000000000000

0100000000000000
0000000000000000 0 1010101010101010

1000000000000000 8

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.10, November 2012

46

9. REFERENCES
[1] P.K. Sinha, Distributed Operating Systems Concepts and

Design, Prentice-Hall of India Private Ltd., March 2002

[2] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed

Systems Concepts and Design, Pearson Education, 2003

[3] Ernest Chang and Rosemary Roberts, “An improved

algorithm for decentralized extrema-finding in circular

configurations of processes,” Commun. ACM, vol. 22,

pp.281-283, May 1979.

[4] Kalyan Mahata, Meghnath Saha, and Sukanta Das,

“Cellular Automata Based Coordinator Selection Scheme

in Distributed System,” in Proceedings of CSC, 2009, pp.

304-310, 2009

