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ABSTRACT 

Chain multiplication of matrices is widely used for scientific 

computing. It becomes more challenging when there is large 

number of floating point dense matrices. Because, floating 

point operations take more time than integer operations. It 

would be interesting to lower the time of such chain 

operations. Now-a-days every multicore processor system has 

built in parallel computational power. This power can only be 

utilized when compatible parallel algorithms were used. So, in 

this work, a shared memory based parallel algorithms has 

been proposed to compute the multiplication of a long 

sequence of dense matrices. The algorithms have been tested 

with long sequence of matrices as input. The approach has 

been with 2×108 flops. The input matrix sequence length was 

typically varied from 2 to 30. Maximum number of processors 

used was eight (Eight core processor). Different parameters 

like speedup, efficiency etc. were also noted. It was concluded 

that the parallel algorithms could achieve approximately 90% 

efficiency at best case. The algorithms also showed improved 

scalability.   
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1. INTRODUCTION 
Chain Multiplication of Matrices or Matrix chain 

multiplication (MCM) is an optimization problem [1]. In this 

problem total number of algebraic operations has to be 

minimized to get to multiplication output of the matrix chain 

sequence. This problem can be solved using dynamic 

programming. Mathematical definition of matrix 

multiplication can be given as, the product C = AB of a x×y 

matrix A and y×z matrix B is a x×z matrix given by,  
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 for 1≤ i ≤ x and 1 ≤ j ≤ y  (1) 

The problem is not actually to perform the multiplications, but 

merely to decide in which order to perform the multiplications 

with minimal number operations (multiplications). As matrix 

multiplication possesses associative property, one can 

multiply the chain of matrices in any order. Again this order 

of multiplication will decide the efficiency of the 

multiplications (number of operations performed). So, 

parenthesization for each multiplication needs to be carried 

out. 

Consider an example; there are five matrices in a sequence A, 

B, C, D and E to be multiplied. Let consider that the matrices 

are having compatible rows and columns for multiplications 

as following.  

Matrices sequence: A(100,50), B(50,200), C(200,70), 

D(70,150) and E(150,300). For a sequence of five matrices, 

there can be more than five ordering sequence and 

corresponding number of multiplications (NoM) to be carried 

out. Different order of multiplications (parenthesization) 

could be, 

Order-1: ((AB)(CD))E 

Order-2: (AB)(C(DE)) 

Order-3: A(((BC)D)E) 

Order-4: ((AB)C)(DE) 

Order-5: (A((BC)D))E and so on.  

For the order-1, NoM can be calculated as,  

NoM=(100×50×200)+(200×70×150)+(100×200×150)+(100×

150×300)=10600000 operations.  

Similarly for orders 2, 3, 4 and 5, NoM will be 14350000, 

4975000, 7650000 and 6475000. So, ordered 

parenthesization-3 requiring lesser multiplications to compute 

the multiplication of given matrix sequence. In this case, it is 

to decide order-3 to be best, because lesser number of 

matrices is considered in sequences and less number of orders. 

But, it will be too difficult for a human brain to propose a 

parenthesization order for a sequence having hundred or 

thousand matrices of larger size. One can go through each 

possible parenthesization (Brute force method). But, this 

method will take O(2n) time, which is too much slow for large 

values of n. Again, if the matrices are dense and contains 

floating point data, then the multiplication puts more overhead 

over the processor. It also takes more CPU cycle to compute 

multiplication of two floating point data than multiplying two 

integer data. So, it will be interesting to develop some time 

efficient algorithm to fasten this task. This research work 

basically focuses on a shared memory based parallel 

algorithm for multiplication of a sequence of large sized dense 

matrices with floating point data elements. Rigorous testing 

has been carried to get into a conclusion for the same. 

The next sections describe the MCM problem in brief and 

revolution in the methods of sequence multiplication. This is 

further followed by the proposed algorithm and analysis of the 

result so obtained. Finally, the work is concluded in further 

section. Different citations in this paper are referred in the 

reference section.  

2. MATRIX CHAIN MULTIPLICATION 
One solution to above problem is memorization. In this 

technique, each time a minimum cost is computed, it is saved 

into memory (memorizing the value). If again the 

computation is needed, the saved answer is used without re-

computing it. Since there are about n2/2 different 

subsequences, where n is the number of matrices, the space 
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required to do this is reasonable. It can be observed that this 

method of memorization brings the runtime down to O(n3) 

from O(2n), which is more than efficient enough for real 

world applications. This is algorithmically termed as top-

down dynamic programming [1, 2, 3]. A recursive algorithm 

for this kind of problem can have following steps [3]. 

1. Take the sequence of matrices and separate it into 

two subsequences.  

2. Find the minimum cost of multiplying out each 

subsequence. 

3. Add these costs together, and add in the cost of 

multiplying the two result matrices. 

Do this for each possible position at which the sequence of 

matrices can be split, and take the minimum over all of them. 

3. EMPIRICAL STUDY ON PREVIOUS 

WORKS 
Although the dynamic programming methodology to MCM 

proves itself to be efficient for parenthesization of the 

sequence, many researches are going on to reduce the time 

complexity of this algorithm further from O(n3) down to some 

lower order (≤ n3). An algorithm published by Hu and Shing 

in the year 1984 proved that the MCM problem will take 

O(nlogn) time for parenthesization. In their algorithm, they 

were able to transform the problem into a problem of 

partitioning [2]. The process was like transforming a convex 

polygon into a set of non-interesting triangles. Hu and Shing 

developed the algorithm to find the optimal solution of this 

portioning [2]. 

Matrix multiplication has also faced much revolution in this 

research based world and has been applied in many 

mathematical and scientific problems. Dou et al. with his co-

workers proposed 64-bit floating point FPGA matrix 

multiplication [4]. In this work they introduced a 64-bit 

IEEE/ANSI standard 754-1985 floating point design of a 

hardware matrix multiplier. The multiplier was optimized 

basically for FPGA implementations. A fast scalable universal 

matrix multiplication algorithm was proposed by J. Choi in 

1997 [4, 5]. One approach to fast multiplication of sparse 

matrices was proposed Yuster and Zwick in 2004. They 

presented a new algorithm which could multiply two matrices 

in O(m0.7n1.2+n2+o(1)) time [6]. Matrix multiplication has been 

applied in many applications. Some of the most critical 

applications can be found in [7, 8, 9, 10]. Fast matrix 

multiplication could be applied to find simple and small 

cycles in a graph [11, 12, 13], subgraphs [13, 14], finding 

shortest path in the graph [6, 7, 15], string matching problems 

[10, 16]. 

Matrix chain product and optimal triangulation problem was 

solved using parallel algorithm as proposed by Czumaj. In this 

work, the author tried to reduce the problem to computing 

certain recurrences in a tree [17]. The work concluded that the 

proposed parallel algorithm ran in O(lon3n) time using 

n2/log3n processors on a CREW PRAM. They also showed an 

efficient algorithm for the triangulation problem in a 

monotone polygon which could run in O(n2) time. This value 

was close to the result provided by [18]. 

4. PROPOSED ALGORITHM 
It is already mentioned that, traditional approach (Sequential) 

to MCM problem using dynamic programming [1, 19] faces 

critical stage when a sequence of floating point matrices are 

supplied. There have been many parallel algorithms proposed 

for matrix multiplication. But, it will be nice to introduce 

some parallel algorithms for matrix chain product. There can 

be two approaches to this (i) shared memory based algorithm 

and (ii) distributed memory based algorithm [20]. The former 

type of algorithm can be implemented on shared memory 

architecture and the corresponding performance can be noted. 

The hardware organization of such machine is outlined in the 

architectural diagram in Figure-1 below [21, 22]. 

 
Figure 1 Shared memory architecture 

The designed parallel algorithm and its implementation have 

been discussed below. The parallel algorithm makes the use of 

a middle-wire (will be discussed in next sections) in its 

implementation.  The complete algorithm can be divided into 

two sub-algorithms. 

1. Parallelizing parenthesized sequence (after chain 

ordering & optimal parenthesization algorithm) 

2. Parallelizing matrix multiplication (for 

multiplication of two large dense floating point 

matrices) 

4.1 Parallelization of parenthesized 

sequence 
The developed algorithm to parallelize the parenthesized 

sequence is given in Algorithm-I below. 

Algorithm-I Parallelize_Parenthesized_Sequence(input) 

Input: Parenthesized sequence 

Output: Calls to parallel matrix multiplication algorithm, 

reduced parenthesized sequence 

Algorithmic Steps: 

1. Take the input parenthesized sequence and find out the 

length of it (len) 

2. Set the current processor as Master (theoretically 

processor-0/P0)  

3. In Master, search the parenthesized matrices to be 

multiplied (with in open-close parenthesis). Eg. (A1A2) 

or (A5A6) 

4. Send the found set to slave processors for further 

computation. 

Eg. (A1A2) to Processor-1 (Slave-0) or (A5A6) to 

Processor-2 (Slave-1) 

5. In Slave-0: Calls to Parallel matrix multiplication 

algorithm (Algorithm-II) setting the slave processor to 

master for Algorithm-II. 

6. Repeat step-5 for other slaves also. 

7. Continue steps 3 to 6 until the input sequence is ended 

with the pattern (X); where X is the single matrix 

(output). 

 

Example:  

Let’s consider an parenthesized sequence ( ( ( A1 A2 ) A3 ) ( ( 

A4 ( A5 A6 ) ) A7 ) ).  
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If this sequence is served as input to the Algorithm-I, the 

corresponding parallel intermediate steps will be as 

demonstrated in figure (Figure -2) below. 

 

 
Figure 2 Figure demonstrating algorithmic steps in 

Algorithm-I showing master and slaves 

As demonstrated in Fig-2, the input sequence will reduce to a 

single matrix (X) in the master processor (processor-0). The 

slaves getting the input matrices (two matrices) will multiply 

the input matrices using parallel matrix multiplication 

algorithm as proposed in Algorithm-II. However, these 

parallel algorithms are developed using OpenMP middleware 

package. This package performs to its best in shared memory 

architecture based on program developed by the programmer. 

Other specifications are given in a separate section later on. 

4.2 Parallelization of Matrix Multiplication 
It is already mentioned that parallel implementation is 

completely based on shared memory architecture using an 

API package OpenMP [23]. The library works based on the 

instruction (directive) written by the programmer. The 

programmer exclusively specifies which loop has to be 

parallelized and the corresponding parallel instructions. But, 

user/programmer does not perform the duty of sending and 

receiving instructions to and from the processor respectively. 

The library itself does the task reducing overhead of the 

programmer. The main advantage of this library is that it can 

be easily used to parallelize a sequential program in shared 

memory architecture, as currently most of the multicore 

systems are developed with such architecture. The 

implementation has been carried out in ‘C’ programming 

language [23, 24, 25]. Dynamic memory allocation has been 

used to avoid memory failure during matrix initialization for 

testing purpose as well as for efficiency of the code. In this 

algorithm, each processor will be considered as a thread. 

Thread is the smallest executable unit of a program [25, 26]. 

Each processor is assigned a single independent task at a time. 

Input to the algorithm, output and algorithmic steps are 

discussed below. 

 

Algorithm-II Parallelize_Matrix_Multiplication(input) 

Input: Two compatible floating point matrices (A, B) 

Output: Matrix C (=A×B) 

Algorithmic Steps: 

1. Set number of threads by using following command in 

Linux terminal. 

$ export OMP_NUM_THREADS = 4 

2. Set the current processor as Master (theoretically 

processor-0/P0) 

3. Create a parallel region and declared the used variables 

as private or shared based on requirement and scope. 

#pragma omp parallel shared(var_1, var_2, chunk) 

private(thread_id,iteratiors)  

4. In Master, initialize the matrices A, B and C in parallel 

fashion as given below. 

#pragma omp for schedule (static, chunk)  

for(i=0;i<ROW; i++) 

{ 

for(j=0;j<COLUMN; j++) 

{ 

A[i][j] = 0.80*i + 3.451*j; 

} 

} 

5. Multiply the matrices in parallel. (Master will call to 

slaves) 

#pragma omp for schedule (static, chunk) 

for(i=0;i<A_ROW; i++) 

{ 

Print “Thread (tid)” 

Print “ computing row(i)” 

for(j=0;j<A_COLUMN; j++) 

{ 

for(k=0;k<B_COLUMN; k++)  

{ 

C[i,j]=C[i,j] + (A[i,k]*B[k,j]); 

} 

} 

} 

6. Ouput time in Master: 

$ time ./output_file 

 The output will come like the following. 

  real 1m20.067s 

  user 1m30.453s 

  sys 0m0.098s 

 

The time in parallel algorithm can also be calculated using 

omp.h library function omp_get_wtime(). This returns the 

total number wall clock ticks used for the execution of the 

section [23, 24, 25]. The next section explains our device 

specification in which the developed algorithms were tested. 

5. DEVICE SPECIFICATION 
For the execution of the algorithms (Sequential and Parallel 

programs) we used a system which had a processor of 2GHz 

speed. The processor had eight (8) cores and the system had 

4GB of main memory storage. As mentioned, the proposed 

approach has been tested with up to 2×108 flops (floating 

point operations). The input matrix sequence length was also 

varied from 2 to 30. This sequence length also affects the 

number of flops to be carried out. Performance of our 

algorithms is also evaluated with many parameters. The next 

section describes the results, time complexities, speed up, 

scalability [20, 27, 28, 29] and other crucial issues [30]. 

6. PERFORMANCE EVALUATION 
It is very much crucial and mandatory process to test any 

algorithm based on time and space complexities. The analysis 

will be basically worst case analysis, so that the considered 

algorithm will prove itself to be efficient with any worst case 

inputs. In addition to this, for a parallel algorithm the major 

parameters to be considered in this section are (i) 

Experimental serial fraction (e) (ii) Speed up (iii) Efficiency 

and (iv) Scalability. The first parameter, e determines how 

much part of the sequential code could be successfully 

parallelized and its effect on the output. These parameters will 

be considered for the whole program which consisted of 
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Algorithm-I and Algorithm-II both. These terms are defined 

in following equations (Equations 2-4). 
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The sequential as well as the parallel programs were tested 

with matrix sequence of varying length and varying matrix 

dimensions (multiplication compatible). Tables 1 & 2 show 

performance of the algorithms with ten test cases. It is not 

possible to incorporate all the test cases in this paper due to 

space constraints. It should be noted that the execution time 

showed in the tables are average of ten executions. 

Table 1 Table showing input matrix dimension sequence and 

output optimal parenthesized sequence (Each sequence is 

given a ID for future reference purpose) 

Sequence ID 
Sequence 

length 

Dimension 

array 

Optimal 

Parenthesiz

ed sequence 

(Output) 

1 5 
[50 100 200 70 

80] 
(((A1A2)A3)A4) 

2 6 
[100 80  

90 220 70 80] 

(A1((A2(A3A4))

A5)) 

3 7 

[100 200 50  

85  

90 100 80] 

((A1A2)(((A3A4

)A5)A6)) 

4 8 
[60 80 100 300 

90 100 120 130] 

(((((A1A2)(A3A

4))A5)A6)A7) 

5 9 

[200 50  

60 100 60  

80  

90 250 100] 

(A1(((((A2(A3A

4))A5)A6)A7)A

8)) 

6 10 

[50 100 50  

80 100 200 300 

100 50 80] 

(((A1A2)(A3(A4

(A5(A6(A7A8)))

)))A9) 

7 10 

[50 60 100 200 

300 90 100 120 

250 110] 

((((((((A1A2)A3

)A4)A5)A6)A7)

A8)A9) 

8 12 

[100 80 100 120 

50  

70  

90 120 35  

70  

90 100] 

((A1(A2(A3(A4(

A5(A6(A7A8))))

)))((A9A10)A11

)) 

9 12 

[120 120 80 100 

300 210 56  

22  

10  

20  

30 100] 

((A1(A2(A3(A4(

A5(A6(A7(A8)))

))))((A9A10)A1

1)) 

10 15 

[100 100 50  

90  

80  

10 120 120 11  

90  

80  

70 120 45 56] 

((A1(A2(A3(A4

A5))))((((((((A6

A7)A8)A9)A10)

A11)A12)A13)A

14)) 

 

Table 2 Table showing total number of flops needed for 

multiplications and corresponding performance of program 

with different number of used processors 

Seq

uen

ce 

ID 

Number of 

flops 

needed to 

multiply 

the 

parenthesiz

ed matrices 

(flops) 

Execution time (millisecond) 

Sequen

tial 

Progra

m 

Parallelized Program 

2 

process

ors 

4 

proces

sors 

8 

proces

sors 

1 1980000 670000 553700 310185 109299 

2 2978000 810000 637000 288260 131089 

3 2895750 890000 671000 303754 143317 

4 5916000 1500000 987866 480769 233281 

5 4515000 1200000 815400 352941 179453 

6 12800000 1900000 1353100 590062 279371 

7 9575000 1300000 817000 401235 205404 

8 2796500 950000 972463 31772 135695 

9 3177040 1200000 1015006 364741 189573 

10 718600 1305000 1089766 427868 188584 

 

It should be mentioned that speedup is a major concern when 

parallel algorithm is considered. Scalability of any parallel 

algorithm is directly dependently on speedup of the algorithm. 

So, it will be much crucial to analyze speedup [20, 23] 

achieved with different number of processors used for the 

implantation. Figure-3 shows scalability curves for two, four 

and eight number of processors. Figure 4 & 5 show analysis 

result for other important parameters as mentioned earlier in 

this section. 

 
Figure 3 Figure showing number of speedup achieved with 

different number of processors 

 
Figure 4 Plot showing experimental fraction with different 

number used processors 
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Figure 5 Efficiency achieved by parallel program for different 

processor system configurations 

The performance characteristics showed in figures 3-5 helps 

us to analyze the developed parallel algorithms. The main 

focus will be on efficiency characteristics (see Figure 5). This 

characteristic is dependent on time and space complexities as 

discussed in next subsection. 

6.1 Time and Space Complexity analysis 
The matrix chain ordering algorithm performs with running 

time of O(n3) due to three nested loop structure and each loop 

will iterate for atleast n-1 times, where n is the length of the 

input matrix sequence [1, 19]. And this algorithm uses Ɵ(s2) 

to store the value matrices, where s is the row or column size 

of a matrix. To call the matrix multiplication algorithm, the 

optimal sequence function takes a running time complexity of 

O(n2). So, for each call the sequential matrix multiplication 

yields O(m3), where m is the size of the row or column of the 

argument matrices. So, the total time to perform the 

multiplication is O(n2m3). So, the total time complexity of the 

sequential algorithm can be written as, 

Ts(n,m) =  O(n2) + O(n2m3) 

  Ts(n,m) = O(n2[1+m3]) 

  Ts(n,m) = O(n2m3)            (5) 

For a sequence of length ‘n’, total space required to store the 

matrices is Ɵ(nm2). The shared memory algorithms worked 

with different number of processors used (p). So, depending 

on this parameter and memory storage capacity of the system 

the time complexity will vary in a parallel environment [20, 

24]. If p processors were used during execution of the parallel 

program, then the total time complexity will be reduced 

approximately by the term p2. This is because, one processor 

works with n/p rows/column of the matrices. So, 

multiplication of two matrices will be completed in (Total 

time required)/p2. So, time complexity of parallel program can 

be expressed as, 

)(),,(
2

32

p

mn
OpmnTp    (6) 

Equation-6 will be much significant when p=n which makes 

the time complexity to be equal to O(m3). However, it is not 

guaranteed that this will happen always with the parallel 

algorithms. Depending on the communication between 

processors [20, 21, 23], it will vary significantly. If there is 

more inter-processor communications and less computations 

then execution time will be more. So, this is also the 

parameter which indirectly affects efficiency of the parallel 

algorithms. 

7. CONCLUSION 
In this paper, a shared memory based parallel algorithm to 

multiply a chain of large floating point dense matrices has 

been proposed. Two algorithms were proposed to (i) 

parallelize the parenthesized sequence and to (ii) parallelize 

the matrix multiplication. From analysis it was shown that, the 

parallel algorithms perform to their best when there is less 

communication among processors. Time complexity was 

found out to be O(m3) in best case (n=p) and )
2

32
(

p

mn
 in 

worst case. It was also shown that efficiency of parallel 

program touched approximately 90% with four and eight 

processors. But, with two processors, the algorithm performed 

with 80% efficiency only when number of flops is limited. So, 

a user with only 2 processors may not be able to get chain 

multiplication output with maximum efficiency. However, the 

algorithms can be used for shared memory systems with more 

than eight cores very efficiently. 
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