
International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

11

Chain Multiplication of Dense Matrices: Proposing a

Shared Memory based Parallel Algorithm

Tirtharaj Dash

Department of Computer Science and Engineering
Veer Surendra Sai University of Technology,

Burla-768018, India

Tanistha Nayak
Department of Information Technology

National Institute of Science and Technology,
Berhampur-761008, India

ABSTRACT

Chain multiplication of matrices is widely used for scientific

computing. It becomes more challenging when there is large

number of floating point dense matrices. Because, floating

point operations take more time than integer operations. It

would be interesting to lower the time of such chain

operations. Now-a-days every multicore processor system has

built in parallel computational power. This power can only be

utilized when compatible parallel algorithms were used. So, in

this work, a shared memory based parallel algorithms has

been proposed to compute the multiplication of a long

sequence of dense matrices. The algorithms have been tested

with long sequence of matrices as input. The approach has

been with 2×108 flops. The input matrix sequence length was

typically varied from 2 to 30. Maximum number of processors

used was eight (Eight core processor). Different parameters

like speedup, efficiency etc. were also noted. It was concluded

that the parallel algorithms could achieve approximately 90%

efficiency at best case. The algorithms also showed improved

scalability.

General Terms

Parallel computing, algorithms

Keywords

Chain multiplication, computing, dense matrix, multicore,

shared memory, flops, efficiency, speedup, scalability.

1. INTRODUCTION
Chain Multiplication of Matrices or Matrix chain

multiplication (MCM) is an optimization problem [1]. In this

problem total number of algebraic operations has to be

minimized to get to multiplication output of the matrix chain

sequence. This problem can be solved using dynamic

programming. Mathematical definition of matrix

multiplication can be given as, the product C = AB of a x×y

matrix A and y×z matrix B is a x×z matrix given by,





y

k

jkBkiAjiC
1

)),(),((),(;

 for 1≤ i ≤ x and 1 ≤ j ≤ y (1)

The problem is not actually to perform the multiplications, but

merely to decide in which order to perform the multiplications

with minimal number operations (multiplications). As matrix

multiplication possesses associative property, one can

multiply the chain of matrices in any order. Again this order

of multiplication will decide the efficiency of the

multiplications (number of operations performed). So,

parenthesization for each multiplication needs to be carried

out.

Consider an example; there are five matrices in a sequence A,

B, C, D and E to be multiplied. Let consider that the matrices

are having compatible rows and columns for multiplications

as following.

Matrices sequence: A(100,50), B(50,200), C(200,70),

D(70,150) and E(150,300). For a sequence of five matrices,

there can be more than five ordering sequence and

corresponding number of multiplications (NoM) to be carried

out. Different order of multiplications (parenthesization)

could be,

Order-1: ((AB)(CD))E

Order-2: (AB)(C(DE))

Order-3: A(((BC)D)E)

Order-4: ((AB)C)(DE)

Order-5: (A((BC)D))E and so on.

For the order-1, NoM can be calculated as,

NoM=(100×50×200)+(200×70×150)+(100×200×150)+(100×

150×300)=10600000 operations.

Similarly for orders 2, 3, 4 and 5, NoM will be 14350000,

4975000, 7650000 and 6475000. So, ordered

parenthesization-3 requiring lesser multiplications to compute

the multiplication of given matrix sequence. In this case, it is

to decide order-3 to be best, because lesser number of

matrices is considered in sequences and less number of orders.

But, it will be too difficult for a human brain to propose a

parenthesization order for a sequence having hundred or

thousand matrices of larger size. One can go through each

possible parenthesization (Brute force method). But, this

method will take O(2n) time, which is too much slow for large

values of n. Again, if the matrices are dense and contains

floating point data, then the multiplication puts more overhead

over the processor. It also takes more CPU cycle to compute

multiplication of two floating point data than multiplying two

integer data. So, it will be interesting to develop some time

efficient algorithm to fasten this task. This research work

basically focuses on a shared memory based parallel

algorithm for multiplication of a sequence of large sized dense

matrices with floating point data elements. Rigorous testing

has been carried to get into a conclusion for the same.

The next sections describe the MCM problem in brief and

revolution in the methods of sequence multiplication. This is

further followed by the proposed algorithm and analysis of the

result so obtained. Finally, the work is concluded in further

section. Different citations in this paper are referred in the

reference section.

2. MATRIX CHAIN MULTIPLICATION
One solution to above problem is memorization. In this

technique, each time a minimum cost is computed, it is saved

into memory (memorizing the value). If again the

computation is needed, the saved answer is used without re-

computing it. Since there are about n2/2 different

subsequences, where n is the number of matrices, the space

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

12

required to do this is reasonable. It can be observed that this

method of memorization brings the runtime down to O(n3)

from O(2n), which is more than efficient enough for real

world applications. This is algorithmically termed as top-

down dynamic programming [1, 2, 3]. A recursive algorithm

for this kind of problem can have following steps [3].

1. Take the sequence of matrices and separate it into

two subsequences.

2. Find the minimum cost of multiplying out each

subsequence.

3. Add these costs together, and add in the cost of

multiplying the two result matrices.

Do this for each possible position at which the sequence of

matrices can be split, and take the minimum over all of them.

3. EMPIRICAL STUDY ON PREVIOUS

WORKS
Although the dynamic programming methodology to MCM

proves itself to be efficient for parenthesization of the

sequence, many researches are going on to reduce the time

complexity of this algorithm further from O(n3) down to some

lower order (≤ n3). An algorithm published by Hu and Shing

in the year 1984 proved that the MCM problem will take

O(nlogn) time for parenthesization. In their algorithm, they

were able to transform the problem into a problem of

partitioning [2]. The process was like transforming a convex

polygon into a set of non-interesting triangles. Hu and Shing

developed the algorithm to find the optimal solution of this

portioning [2].

Matrix multiplication has also faced much revolution in this

research based world and has been applied in many

mathematical and scientific problems. Dou et al. with his co-

workers proposed 64-bit floating point FPGA matrix

multiplication [4]. In this work they introduced a 64-bit

IEEE/ANSI standard 754-1985 floating point design of a

hardware matrix multiplier. The multiplier was optimized

basically for FPGA implementations. A fast scalable universal

matrix multiplication algorithm was proposed by J. Choi in

1997 [4, 5]. One approach to fast multiplication of sparse

matrices was proposed Yuster and Zwick in 2004. They

presented a new algorithm which could multiply two matrices

in O(m0.7n1.2+n2+o(1)) time [6]. Matrix multiplication has been

applied in many applications. Some of the most critical

applications can be found in [7, 8, 9, 10]. Fast matrix

multiplication could be applied to find simple and small

cycles in a graph [11, 12, 13], subgraphs [13, 14], finding

shortest path in the graph [6, 7, 15], string matching problems

[10, 16].

Matrix chain product and optimal triangulation problem was

solved using parallel algorithm as proposed by Czumaj. In this

work, the author tried to reduce the problem to computing

certain recurrences in a tree [17]. The work concluded that the

proposed parallel algorithm ran in O(lon3n) time using

n2/log3n processors on a CREW PRAM. They also showed an

efficient algorithm for the triangulation problem in a

monotone polygon which could run in O(n2) time. This value

was close to the result provided by [18].

4. PROPOSED ALGORITHM
It is already mentioned that, traditional approach (Sequential)

to MCM problem using dynamic programming [1, 19] faces

critical stage when a sequence of floating point matrices are

supplied. There have been many parallel algorithms proposed

for matrix multiplication. But, it will be nice to introduce

some parallel algorithms for matrix chain product. There can

be two approaches to this (i) shared memory based algorithm

and (ii) distributed memory based algorithm [20]. The former

type of algorithm can be implemented on shared memory

architecture and the corresponding performance can be noted.

The hardware organization of such machine is outlined in the

architectural diagram in Figure-1 below [21, 22].

Figure 1 Shared memory architecture

The designed parallel algorithm and its implementation have

been discussed below. The parallel algorithm makes the use of

a middle-wire (will be discussed in next sections) in its

implementation. The complete algorithm can be divided into

two sub-algorithms.

1. Parallelizing parenthesized sequence (after chain

ordering & optimal parenthesization algorithm)

2. Parallelizing matrix multiplication (for

multiplication of two large dense floating point

matrices)

4.1 Parallelization of parenthesized

sequence
The developed algorithm to parallelize the parenthesized

sequence is given in Algorithm-I below.

Algorithm-I Parallelize_Parenthesized_Sequence(input)

Input: Parenthesized sequence

Output: Calls to parallel matrix multiplication algorithm,

reduced parenthesized sequence

Algorithmic Steps:

1. Take the input parenthesized sequence and find out the

length of it (len)

2. Set the current processor as Master (theoretically

processor-0/P0)

3. In Master, search the parenthesized matrices to be

multiplied (with in open-close parenthesis). Eg. (A1A2)

or (A5A6)

4. Send the found set to slave processors for further

computation.

Eg. (A1A2) to Processor-1 (Slave-0) or (A5A6) to

Processor-2 (Slave-1)

5. In Slave-0: Calls to Parallel matrix multiplication

algorithm (Algorithm-II) setting the slave processor to

master for Algorithm-II.

6. Repeat step-5 for other slaves also.

7. Continue steps 3 to 6 until the input sequence is ended

with the pattern (X); where X is the single matrix

(output).

Example:

Let’s consider an parenthesized sequence (((A1 A2) A3) ((

A4 (A5 A6)) A7)).

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

13

If this sequence is served as input to the Algorithm-I, the

corresponding parallel intermediate steps will be as

demonstrated in figure (Figure -2) below.

Figure 2 Figure demonstrating algorithmic steps in

Algorithm-I showing master and slaves

As demonstrated in Fig-2, the input sequence will reduce to a

single matrix (X) in the master processor (processor-0). The

slaves getting the input matrices (two matrices) will multiply

the input matrices using parallel matrix multiplication

algorithm as proposed in Algorithm-II. However, these

parallel algorithms are developed using OpenMP middleware

package. This package performs to its best in shared memory

architecture based on program developed by the programmer.

Other specifications are given in a separate section later on.

4.2 Parallelization of Matrix Multiplication
It is already mentioned that parallel implementation is

completely based on shared memory architecture using an

API package OpenMP [23]. The library works based on the

instruction (directive) written by the programmer. The

programmer exclusively specifies which loop has to be

parallelized and the corresponding parallel instructions. But,

user/programmer does not perform the duty of sending and

receiving instructions to and from the processor respectively.

The library itself does the task reducing overhead of the

programmer. The main advantage of this library is that it can

be easily used to parallelize a sequential program in shared

memory architecture, as currently most of the multicore

systems are developed with such architecture. The

implementation has been carried out in ‘C’ programming

language [23, 24, 25]. Dynamic memory allocation has been

used to avoid memory failure during matrix initialization for

testing purpose as well as for efficiency of the code. In this

algorithm, each processor will be considered as a thread.

Thread is the smallest executable unit of a program [25, 26].

Each processor is assigned a single independent task at a time.

Input to the algorithm, output and algorithmic steps are

discussed below.

Algorithm-II Parallelize_Matrix_Multiplication(input)

Input: Two compatible floating point matrices (A, B)

Output: Matrix C (=A×B)

Algorithmic Steps:

1. Set number of threads by using following command in

Linux terminal.

$ export OMP_NUM_THREADS = 4

2. Set the current processor as Master (theoretically

processor-0/P0)

3. Create a parallel region and declared the used variables

as private or shared based on requirement and scope.

#pragma omp parallel shared(var_1, var_2, chunk)

private(thread_id,iteratiors)

4. In Master, initialize the matrices A, B and C in parallel

fashion as given below.

#pragma omp for schedule (static, chunk)

for(i=0;i<ROW; i++)

{

for(j=0;j<COLUMN; j++)

{

A[i][j] = 0.80*i + 3.451*j;

}

}

5. Multiply the matrices in parallel. (Master will call to

slaves)

#pragma omp for schedule (static, chunk)

for(i=0;i<A_ROW; i++)

{

Print “Thread (tid)”

Print “ computing row(i)”

for(j=0;j<A_COLUMN; j++)

{

for(k=0;k<B_COLUMN; k++)

{

C[i,j]=C[i,j] + (A[i,k]*B[k,j]);

}

}

}

6. Ouput time in Master:

$ time ./output_file

 The output will come like the following.

 real 1m20.067s

 user 1m30.453s

 sys 0m0.098s

The time in parallel algorithm can also be calculated using

omp.h library function omp_get_wtime(). This returns the

total number wall clock ticks used for the execution of the

section [23, 24, 25]. The next section explains our device

specification in which the developed algorithms were tested.

5. DEVICE SPECIFICATION
For the execution of the algorithms (Sequential and Parallel

programs) we used a system which had a processor of 2GHz

speed. The processor had eight (8) cores and the system had

4GB of main memory storage. As mentioned, the proposed

approach has been tested with up to 2×108 flops (floating

point operations). The input matrix sequence length was also

varied from 2 to 30. This sequence length also affects the

number of flops to be carried out. Performance of our

algorithms is also evaluated with many parameters. The next

section describes the results, time complexities, speed up,

scalability [20, 27, 28, 29] and other crucial issues [30].

6. PERFORMANCE EVALUATION
It is very much crucial and mandatory process to test any

algorithm based on time and space complexities. The analysis

will be basically worst case analysis, so that the considered

algorithm will prove itself to be efficient with any worst case

inputs. In addition to this, for a parallel algorithm the major

parameters to be considered in this section are (i)

Experimental serial fraction (e) (ii) Speed up (iii) Efficiency

and (iv) Scalability. The first parameter, e determines how

much part of the sequential code could be successfully

parallelized and its effect on the output. These parameters will

be considered for the whole program which consisted of

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

14

Algorithm-I and Algorithm-II both. These terms are defined

in following equations (Equations 2-4).

essorsNo_of_proc

essorsNo_of_procSpeedup
efractionserialalExperiment

11

11

)(__






1__

__1














processorsofNo

SpeedupprocessorsofNo

Speedup
e (2)

imexecution_tParallel_e

_time_executionSequential
Speedup  (3)

TimeExePar

TimeExeSeq

usedproessorsofNo
Efficiency

__

__

1
)( 










Speedup
usedprocessorofNo











1
 (4)

The sequential as well as the parallel programs were tested

with matrix sequence of varying length and varying matrix

dimensions (multiplication compatible). Tables 1 & 2 show

performance of the algorithms with ten test cases. It is not

possible to incorporate all the test cases in this paper due to

space constraints. It should be noted that the execution time

showed in the tables are average of ten executions.

Table 1 Table showing input matrix dimension sequence and

output optimal parenthesized sequence (Each sequence is

given a ID for future reference purpose)

Sequence ID
Sequence

length

Dimension

array

Optimal

Parenthesiz

ed sequence

(Output)

1 5
[50 100 200 70

80]
(((A1A2)A3)A4)

2 6
[100 80

90 220 70 80]

(A1((A2(A3A4))

A5))

3 7

[100 200 50

85

90 100 80]

((A1A2)(((A3A4

)A5)A6))

4 8
[60 80 100 300

90 100 120 130]

(((((A1A2)(A3A

4))A5)A6)A7)

5 9

[200 50

60 100 60

80

90 250 100]

(A1(((((A2(A3A

4))A5)A6)A7)A

8))

6 10

[50 100 50

80 100 200 300

100 50 80]

(((A1A2)(A3(A4

(A5(A6(A7A8)))

)))A9)

7 10

[50 60 100 200

300 90 100 120

250 110]

((((((((A1A2)A3

)A4)A5)A6)A7)

A8)A9)

8 12

[100 80 100 120

50

70

90 120 35

70

90 100]

((A1(A2(A3(A4(

A5(A6(A7A8))))

)))((A9A10)A11

))

9 12

[120 120 80 100

300 210 56

22

10

20

30 100]

((A1(A2(A3(A4(

A5(A6(A7(A8)))

))))((A9A10)A1

1))

10 15

[100 100 50

90

80

10 120 120 11

90

80

70 120 45 56]

((A1(A2(A3(A4

A5))))((((((((A6

A7)A8)A9)A10)

A11)A12)A13)A

14))

Table 2 Table showing total number of flops needed for

multiplications and corresponding performance of program

with different number of used processors

Seq

uen

ce

ID

Number of

flops

needed to

multiply

the

parenthesiz

ed matrices

(flops)

Execution time (millisecond)

Sequen

tial

Progra

m

Parallelized Program

2

process

ors

4

proces

sors

8

proces

sors

1 1980000 670000 553700 310185 109299

2 2978000 810000 637000 288260 131089

3 2895750 890000 671000 303754 143317

4 5916000 1500000 987866 480769 233281

5 4515000 1200000 815400 352941 179453

6 12800000 1900000 1353100 590062 279371

7 9575000 1300000 817000 401235 205404

8 2796500 950000 972463 31772 135695

9 3177040 1200000 1015006 364741 189573

10 718600 1305000 1089766 427868 188584

It should be mentioned that speedup is a major concern when

parallel algorithm is considered. Scalability of any parallel

algorithm is directly dependently on speedup of the algorithm.

So, it will be much crucial to analyze speedup [20, 23]

achieved with different number of processors used for the

implantation. Figure-3 shows scalability curves for two, four

and eight number of processors. Figure 4 & 5 show analysis

result for other important parameters as mentioned earlier in

this section.

Figure 3 Figure showing number of speedup achieved with

different number of processors

Figure 4 Plot showing experimental fraction with different

number used processors

0.5 1 1.5 2 2.5 3

x 10
7

0

1

2

3

4

5

6

7

8

Number of flops --->

S
p

e
e

d
u
p

 -
--

>

2 processors

4 processors

8 processors

0.5 1 1.5 2 2.5 3

x 10
7

0

1

2

3

4

5

6

7

8

Number of flops --->

E
x
p
e
ri
m

e
n
ta

l
s
e
ri
a
l
fr

a
c
ti
o
n
 (

e
)

--
->

2 proc.

4 proc.

8 proc.

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

15

Figure 5 Efficiency achieved by parallel program for different

processor system configurations

The performance characteristics showed in figures 3-5 helps

us to analyze the developed parallel algorithms. The main

focus will be on efficiency characteristics (see Figure 5). This

characteristic is dependent on time and space complexities as

discussed in next subsection.

6.1 Time and Space Complexity analysis
The matrix chain ordering algorithm performs with running

time of O(n3) due to three nested loop structure and each loop

will iterate for atleast n-1 times, where n is the length of the

input matrix sequence [1, 19]. And this algorithm uses Ɵ(s2)

to store the value matrices, where s is the row or column size

of a matrix. To call the matrix multiplication algorithm, the

optimal sequence function takes a running time complexity of

O(n2). So, for each call the sequential matrix multiplication

yields O(m3), where m is the size of the row or column of the

argument matrices. So, the total time to perform the

multiplication is O(n2m3). So, the total time complexity of the

sequential algorithm can be written as,

Ts(n,m) = O(n2) + O(n2m3)

 Ts(n,m) = O(n2[1+m3])

 Ts(n,m) = O(n2m3) (5)

For a sequence of length ‘n’, total space required to store the

matrices is Ɵ(nm2). The shared memory algorithms worked

with different number of processors used (p). So, depending

on this parameter and memory storage capacity of the system

the time complexity will vary in a parallel environment [20,

24]. If p processors were used during execution of the parallel

program, then the total time complexity will be reduced

approximately by the term p2. This is because, one processor

works with n/p rows/column of the matrices. So,

multiplication of two matrices will be completed in (Total

time required)/p2. So, time complexity of parallel program can

be expressed as,

)(),,(
2

32

p

mn
OpmnTp  (6)

Equation-6 will be much significant when p=n which makes

the time complexity to be equal to O(m3). However, it is not

guaranteed that this will happen always with the parallel

algorithms. Depending on the communication between

processors [20, 21, 23], it will vary significantly. If there is

more inter-processor communications and less computations

then execution time will be more. So, this is also the

parameter which indirectly affects efficiency of the parallel

algorithms.

7. CONCLUSION
In this paper, a shared memory based parallel algorithm to

multiply a chain of large floating point dense matrices has

been proposed. Two algorithms were proposed to (i)

parallelize the parenthesized sequence and to (ii) parallelize

the matrix multiplication. From analysis it was shown that, the

parallel algorithms perform to their best when there is less

communication among processors. Time complexity was

found out to be O(m3) in best case (n=p) and)
2

32
(

p

mn
 in

worst case. It was also shown that efficiency of parallel

program touched approximately 90% with four and eight

processors. But, with two processors, the algorithm performed

with 80% efficiency only when number of flops is limited. So,

a user with only 2 processors may not be able to get chain

multiplication output with maximum efficiency. However, the

algorithms can be used for shared memory systems with more

than eight cores very efficiently.

8. ACKNOWLEDGMENTS
The authors would like to thank all the persons who were

directly or indirectly associated with this work. They would

also thank those who helped to improve this work. The

authors also express their sincere thanks to anonymous

reviewer of IJCA for reviewing this work and providing

necessary comments.

9. REFERENCES
[1] Cormen, Thomas H.; Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein (2009). "15.2: Matrix-chain

multiplication". Introduction to Algorithms. Second

Edition. PHI Learning Private Limited. pp. 331-338.

ISBN 978-81-203-2141-0.

[2] Hu, T C.; M T. Shing (1984). Computation of matrix

chain products. Part II. SIAM Journal on Computing

(Univ. of California at San Diego: Springer-Verlag) 13

(2): 228–251. doi:10.1137/0213017. ISSN 0097-5397.

[3] Kreyszig, E; Advanced Engineering Mathematics.

Wiley-India Edition. 8th edition. ISBN: 978-81-265-

0827-3.

[4] Dou, Y.; Vassiliadis, S.; Kuzmanov, G. K.; Gaydadjiev,

G. N.; 64-bit Floating-Point FPGA Matrix

Multiplication. FPGA’05, February 20–22, 2005,

Monterey, California, USA, pages 86-95.

[5] Choi, J.; A Fast Scalable Universal Matrix Multiplication

Algorithm on Distributed-Memory Concurrent

Computers. In11th IEEE International Parallel

Processing Symposium (IPPS ’97), pages 310–314, April

1997.

[6] Yuster, R.; Zwick, U.; Fast sparse matrix multiplication.

In the proceedings of the 12th Annual European

Symposium on Algorithms (ESA’04).

[7] Demetrescu, C.; Italiano, G.F.; Fully dynamic transitive

closure: Breaking through the O(n2) barrier. In Proc. of

41st FOCS, pages 381–389, 2000.

[8] Roditty, L; Zwick, U; Improved dynamic reachability

algorithms for directed graphs. In Proc. of 43rd FOCS,

pages 679–688, 2002.

0.5 1 1.5 2 2.5 3

x 10
7

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of flops --->

E
ff

ic
ie

n
c
y
 o

f
p
a
ra

ll
e
l
c
o
d
e
 (

u
)

--
->

2 proc.

4 proc.

8 proc.

http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.1137%2F0213017

International Journal of Computer Applications (0975 – 8887)

Volume 58– No.1, November 2012

16

[9] Mulmuley, K; Vazirani, U. V.; Vazirani, V. V.; Matching

is as easy as matrix inversion. Com-binatorica, 7:105–

113, 1987.

[10] Rabin, M.O; Vazirani, V.V.; Maximum matchings in

general graphs through randomization. Journal of

Algorithms, 10:557–567, 1989.

[11] N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal

of the ACM, 42:844–856, 1995.

[12] N. Alon, R. Yuster, and U. Zwick. Finding and counting

given length cycles. Algorithmica, 17:209–223, 1997.

[13] R. Yuster and U. Zwick. Detecting short directed cycles

using rectangular matrix multiplication and dynamic

programming. In Proc. of 15th SODA, pages 247–253,

2004.

[14] J. Neˇsetˇril and S. Poljak. On the complexity of the

subgraph problem. Commentationes Mathe-maticae

Universitatis Carolinae, 26(2):415–419, 1985.

[15] L. Roditty and U. Zwick. Improved dynamic reachability

algorithms for directed graphs. In Proc. of 43rd FOCS,

pages 679–688, 2002.

[16] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani.

Matching is as easy as matrix inversion. Combinatorica,

7:105–113, 1987.

[17] Czumaj, A; Parallel Algorithm for Matrix Chain Product

and the Optimal Triangulation Problems (Extended

abstract). STACS’93 version. Supported in part by the EC

Cooperative Action IC 1000 Algorithms for Future

Technologies “ALTEC” and by the grant KBN 2-1190-

91-01, Pages 1-12.

[18] T.C. Hu, M.T. Shing; Some theorems about matrix

multiplications, FOCS 1980, pp. 28-35.

[19] E. Horowitz, S. Sahani, S. Rajasekaran; Fundamental of

Computer Algorithms, 2nd edition. Universities Press

(India) Private Limited (2008), ISBN: 81-7371-612-9.

[20] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J.

McDonald, R. Menon, Parallel programming in

OpenMP, Morgan Kaufmann Publisher (2001). ISBN 1-

55860-671-8.

[21] D. A. Patterson, J. L. Hennessy; Computer Organization

and Design: The Hardware/Software Interface ARM

edition. 4th edition. Morgan Kaufmann Publisher (2009),

ISBN: 978-81-312-2274-4.

[22] C. Hamacher, Z. Vranesic, S. Zaky; Computer

Organization. International Edition 2002. McGraw-Hill

Higher Education, ISBM: 007-120411-3.

[23] M.J. Quinn; Parallel Programming in C with MPI and

OpenMP. International Edition 2003. McGraw-Hill

Higher Education, ISBM: 007-282256-2.

[24] T. Dash, T. Nayak, S. Chattopadhyay; Offline

Handwritten Signature Verification using Associative

Memory Net. International Journal of Advanced

Research in Computer Engineering & Technology,

Volume 1, Issue 4, pp. 370-374, 2012.

[25] T. Dash, S. Chattopadhyay, T. Nayak; Handwritten

Signature Verifications Using Adaptive Resonance

Theory Type-2 (ART-2) Net. Journal of Global

Research in Computer Science, Volume 3, No. 8, pp. 21-

25, 2012.

[26] A. Silberschatz, P.B. Galvin, G. Gagne; Operating

System Concepts. International student version, 8th

edition. John Wiley & Sons Inc., U.K., ISBN: 978-81-

265-2051-0.

[27] M.A. Ismail, S.H. Mirza, T. Altaf; Concurrent Matrix

Multiplication on Multi-Core Processors. International

Journal of Computer Science and Security (IJCSS),

Volume (5): Issue (2): 2011, pp. 208-220.

[28] T. Dash, T. Nayak, S. Chattopadhyay; Handwritten

Signature Verification (Offline) using Neural Network

Approaches: A Comparative Study. International

Journal of Computer Applications. ISSN: 0975-8887,

November’12. (accepted, in press)

[29] T. Dash; Time Efficient Approach to Offline Hand

Written Character Recognition using Associative

Memory Net. International Journal of Computing and

Business Research. ISSN: 2229–6166, Vol. 3, Issue-3,

2012.

[30] T. Dash, T. Nayak, S. Chattopadhyay; Offline

Verification of Hand Written Signature Using

Adaptive Resonance Theory Net (Type-1). In Proc. of

ICECT-2012, Vol-2, pp.205-210.

