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ABSTRACT 
Sorting is among the first of algorithm, than any computer 

science student encounters during college and it is considered 

as a simple and well studied problem. With the advancement 

in parallel processing many parallel sorting algorithms have 

been investigated. These algorithms are designed for a variety 

of parallel computer architectures. In this paper, a 

comparative analysis of performance of three different types 

of sorting algorithms viz. sequential quick sort, parallel quick 

sort and hyperquicksort is presented. Quick sort is a divide-

and-conquer algorithm that sorts a sequence by recursively 

dividing it into smaller subsequences, and has Ө(nlogn) 

complexity for n data values. The comparative analysis is 

based on comparing average sorting times and speedup 

achieved in parallel sorting over sequential quick sort and 

comparing number of comparisons. The time complexity for 

each sorting algorithm will also be mentioned and analyzed. 

Keywords 

Algorithm, quick sort, parallel sorting algorithms, parallel 

quick sort, hyperquicksort, performance analysis. 

1. INTRODUCTION 
Sorting is a fundamental operation that is performed by most 

computers [1].It is a computational building block of basic 

importance and is one of the most widely studied algorithmic 

problems [2]. Sorted data are easier to manipulate than 

randomly-ordered data, so many algorithms require sorted 

data. It is used frequently in a large variety of useful 

applications. All spreadsheet programs contain some kind of 

sorting code. Database applications used by insurance 

companies, banks, and other institutions all contain sorting 

code. Because of the importance of sorting in these 

applications, many sorting algorithms have been developed 

with varying complexity.  

Sorting [3, 4] is defined as the operation of arranging an 

unordered collection of elements into monotonically 

increasing (or decreasing) order. Specifically,                       

S= {a1, a2 ………….an} be a sequence of n elements in 

random order; sorting transforms S into monotonically 

increasing sequence S’= {a1’, a2’…………… an’} such that 

ai’≤ aj’ for 1≤ i ≤ j ≤ n, and S’ is a permutation of S.  

Sorting algorithms are categorized [3, 4] as internal or 

external. In internal sorting, the number of elements to be 

sorted is small enough to fit into the main memory whereas in 

external sorting algorithms auxiliary storage is used for 

sorting as the number of elements to be sorted is too large to 

fit into memory. Sorting algorithms can also be categorized 

[3] as comparison-based and non comparison-based. A 

comparison-based sorting algorithm sorts an unordered 

sequence of elements by repeatedly comparing pairs of 

elements and, if they are out of order, exchanging them. This 

fundamental operation of comparison-based sorting is called 

compare-exchange. The lower bound on the sequential 

complexity of any sorting algorithms that is comparison-based 

is Ω(nlogn), where n is the number of elements to be sorted. 

For example: Merge sort, Quick sort etc. Non comparison-

based algorithms sort by using certain known properties of the 

elements (such as their binary representation or their 

distribution). The lower bound complexity of these algorithms 

is Ω(n). For example: Counting sort, Radix sort and Bucket 

sort. 

Bubble sort, insertion sort, and selection sort are slow sorting 

algorithms and have a theoretical complexity of O(n2). These 

algorithms [1] are very slow for sorting large arrays, but they 

are not useless because they are very simple algorithms. In 

order to speed up the performance of sorting operation, 

parallelism is applied to the execution of the sorting 

algorithms called parallel sorting algorithms.  

In designing parallel sorting algorithms, the fundamental issue 

is to collectively sort data owned by individual processors in 

such a way that it utilizes all processing units doing sorting 

work, while also minimizing the costs of redistribution of 

keys across processors. In parallel sorting algorithms there are 

two places where the input and the sorted sequences can 

reside. They may be stored on only one of the processor, or 

they may be distributed among the processors 

2. SEQUENTIAL QUICKSORT 

ALGORITHM 
Sequential quick sort is an in-place, divide-and-conquer, 

recursive sorting algorithm developed by Tony Hoare [5]. In-

place sorting algorithms plays an important role in many 

fields such as very large database systems, data warehouses, 

data mining, etc [1]. Such algorithms maximize the size of 

data that can be processed in main memory without 

input/output operations. It requires, on average, O(nlogn) 

comparisons to sort n items. In the worst case scenario, it 

makes O(n2) comparisons, even though this is a rare 

occurrence. In reality it is mostly faster than other O(nlogn) 

algorithms [6]. It is also known as a partition-exchange sort 

because that term captures the basic idea of the method. The 

implementation of a simple sequential quick sort algorithm [7] 

follows the following steps: 

 Choose a pivot element 

 Place all numbers smaller then the pivot element to 

a position on its left, while placing all other 
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numbers to a position on its right. This is done by 

exchanging elements. 

 The pivot is now in its sorted position and divide 

and conquer strategy is continued, applying the 

same algorithm on the left and the right part of the 

pivot recursively. 

When the series of exchanges is done, the original sequence 

has been partitioned into three subsequences [1]: 

 All elements less than the pivot element 

 The pivot element in its final place 

 All elements greater than the pivot element 

This way, the whole, original dataset is sorted recursively 

using the same algorithm on smaller and smaller parts. This is 

done sequentially. However, once the partitioning is done [7], 

the sorting of the new sorting subsequences can be performed 

in parallel as there is no collision. 

       

 

 

 

 

 

Fig 1: Simple graphical representation of the Sequential 

quick sort algorithm 

2.1 Complexity Analysis 
Sequential quick sort is now analyzed by considering all the 

three cases i.e. best case, average and worst case one by one. 

2.1.1 Best Case 
The best case for divide and conquer algorithms comes when 

input is divided as evenly as possible, i.e. each sub problem is 

of size n/2. The recurrence relation for best case is: 

       
 

 
    

 

 
        

                     

D(n) :  cost of dividing the problem into sub-problems. 

C(n) : cost of combining sub-solutions into original solution. 

The partition step on each sub problem is linear in its size as 

the partitioning step consists of at most n swaps. Thus the 

total effort in partitioning the 2k problems of size n/2k is              

D(n) = (n). It is in-place sorting techniques because it uses 

only a small auxiliary stack so, cost of combining the 

solutions is zero i.e. C(n) = 0. The recurrence relation reduces 

to: 

       
 

 
    

 

 
       

        
 

 
      …………………… (i) 

Equation (i) can also be written as         
 

 
      for 

some constant c.   

The recursion tree for the best case looks like this. 
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Fig 2: Recursion tree for best case of Sequential quick sort 

algorithm 

Therefore, the running time for the best case of quick sort is: 

            i.e.              . 

2.1.2 Worst Case 

Let the pivot element splits the array as unequally as possible. 

Thus instead of n/2 elements in the smaller half we get zero 

i.e. the pivot element is the biggest or smallest element in the 

array. This unbalanced partitioning arises in each recursive 

call.  The recurrence relation for best case is: 

                       
                     
The cost of partition is           and again C(n) = 0. The 

recurrence relation reduces to: 

                     ………………. .(ii) 

Equation (ii) can also be written as              
        for some constant c.   

The recursion tree for the worst case looks like this. 

   cn                 cn 

 

                                         c(n-1) 

                     n  

                                T(0)                           c(n-2) 

 

                     T(0)                  c(n-3) 

 

                   … 

                  T(0)     c(1)            1 

T(n) =   (n2) 

 

Fig 3: Recursion tree for worst case of Sequential quick sort 

algorithm 

Therefore, the running time is : T(n) =   (n2). 

2.1.3 Average Case 
The average-case running time [8] of quick sort is much 

closer to the best case than to the worst case. Let the 

partitioning algorithm always produces a 9-to-1 proportional 

split, which seems quite unbalanced. The recurrence relation 

seems to be: 
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Equation (iii) can also be written as  

       
  

  
    

 

  
     for some constant c   

The recursion tree for this recurrence looks like this. 
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T(n) = O(cnlog2n) 

 

Fig 4: Recursion tree for Average case of Sequential quick 

sort algorithm 

Each level of the tree has cost cn, until a boundary condition 

is reached at depth log10 n, and each level have cost at most 

cn. The recursion terminates at depth log10/9 n =log2n/log210= 

  (log n). The total cost is therefore   (nlogn). Thus, with a 

9-to-1 proportional split at every level of recursion, which is 

quite unbalanced, quick sort runs in   (nlogn) time, 

asymptotically the same as the splitting in best case. Even a 

99-to-1 split yields an   (nlogn) running time.  

2.1.4 Total number of comparisons in parallel 

quick sort 
                 

    

3. PARALLEL SORTING    

ALGORITHMS 
With the advent of parallel processing, parallel sorting has 

become an important area for algorithm research.  A large 

number of parallel sorting algorithms have been proposed [4].  

Most parallel sorting algorithms can be placed into one of two 

rough categories: merge based sorts and partition-based sorts. 

Merge-based sorts consist of multiple merge stages across 

processors, and perform well only with a small number of 

processors. When the number of processors utilized gets large, 

the overhead of scheduling and synchronization also 

increased, which reduces the speedup. Partition-based sorts 

consist of two phases: partitioning the data set into smaller 

subsets such that all elements in one subset are no greater than 

any element in another, and sorting each subset in parallel.  

The performance of partition-based sorts primarily depends 

on how well the data can be evenly partitioned into smaller 

ordered subsets.  It appears to be a difficult problem to find 

pivots that partition the data to be sorted into ordered subsets 

of equal size without sorting the data first. The basic result 

[14] is that initial data splitting limits the speedup to a 

maximum, i.e. about 5 or 6, regardless of how many 

processors are used. The ability to partition the data evenly 

into ordered subsets is essential for partition-based sorts. 

Parallel sorting algorithms are required in order to speed up 

the data processing. The parallel implementation of the quick 

sort algorithm based on divide and conquer approach 

increases its speed, but fastest sorting is not always 

guaranteed in cases of poor load balancing of the concurrent 

tasks. Several optimization techniques are suggested in order 

to increase the efficiency of the parallel implementation of the 

quick sort algorithm based on ideas used for parallel 

implementation of a variety of sorting algorithms [11, 12]. 

The current trends of hardware development and innovations 

are oriented towards extensive usage of high-performance 

computations based on multicomputer and multiprocessor 

computer systems. Grid and cloud computing also pose the 

requirement for distributed data processing [2]. 

Here two parallel sorting algorithms are considered for 

analysis i.e. Parallel quick sort and Hyperquicksort. 

3.1 Parallel quick sort 
Not only quick sort is considered to be a better performing 

sorting algorithm but it is also considered to be one of reliable 

algorithm which can be parallelized. The key feature of 

Parallel Quicksort is parallel partitioning of the data [13].   

The parallel generalization of the quick sort algorithm [4] may 

be obtained in the simplest way for a network of processing 

elements. The topology adapted by network is a D-

dimensional hypercube (i.e. number of processing elements 

p=2D). Let the initial data is distributed among the processors 

in blocks of the same size of n/p data values. The resulting 

location of blocks must correspond to each of the hypercube 

processors. A possible method to execute the first iteration of 

the parallel method is as follows [3]:  

• Select the pivot element from the subsequence and broadcast 

it to all the processors  

• Subdivide the data block available on each processor into 

two parts using the pivot element;  

• Pairs of processors are formed, for which the bit 

representation of the numbers differs only in D position. After 

pairing, the exchange of the data among these processors 

takes place. As a result of these data transmissions, the parts 

of the blocks with the data values smaller than pivot element 

must appear on the processors having bit position D equal to 

0. The processors with the bit position D is equal to 1 must 

collect correspondingly all the data values exceeding the 

value of the pivot element.  

After executing this iteration [3, 4], the initial data is 

subdivided into two parts. One of them (values smaller than 

the pivot value) is located on the processors, whose numbers 

hold 0 in the Dth bit. There is only p/2 such processors. Thus, 

the initial D-dimensional hypercube also is subdivided into 

two sub-hypercubes of D-1 dimension. The above procedure 

is also applied to these sub-hypercubes. After executing D 

such iterations, it is sufficient to sort the data blocks which 

have been formed on each separate processor to terminate the 

method. 



International Journal of Computer Applications (0975 – 8887)  

Volume 57– No.9, November 2012 

17 

3.1.1 Basic implementation steps [4]  

 
                   (a)                               (b)                            (c) 

 
                           (d)                                          (e) 

 

Fig 5: 5(a) specifies that one processor broadcast initial 

pivot to all processors. 5(b) each processor in the upper 

half swaps with a partner in the lower half. 5(c) specifies 

recursion on each half. 5(d) shows the swapping among 

partners in each half. In 5(e) each process uses quick sort 

to sort elements locally. 

 

3.1.2 Pseudo code of Parallel quick sort algorithm 
1. Divide the n data values into p equal parts,       data 

values per processor. 

2. Select the pivot element randomly on first processor P0 and 

broadcast it to each processor. 

3. Perform global sort 

3.1 Locally in each processor, divide the data into two sets 

according to the pivot (smaller or larger) 

3.2 Split the processors into two groups and exchange data 

pair wise between them so that all processors in one group get 

data less than the pivot and the others get data larger than the 

pivot. 

4. Repeat 3.1 - 3.2 recursively for each half. 

5. Each processor sorts the items it has, using quick sort. 

 

3.1.3 Complexity Analysis 

Let the size of input is ’n’ and the number of processing 

elements taken to be ‘p’. 
Total running time of parallel quick sort: 

                   
 

 
       

  
                        

 
   

Total number of comparisons in parallel quick sort: 

                                        

Speedup achieved over sequential quick sort: 

  
                                     

                                  
 

       
        

                                                        

  

3.2 Hyperquicksort 
Start where parallel quick sort ends. As the speedup achieved 

by the parallel quick sort algorithm [11] is constrained by the 

time taken to perform the initial partitioning. During initial 

partitioning all the processors are not active. 

Hyperquicksort is the quick sort algorithm developed for 

hypercube interconnection networks, but it can be used on any 

message-passing system having number of processing 

elements in power of 2. 

The main difference between hyperquicksort and parallel 

quick sort consists in the method of choosing the pivot 

element. The average element of some block is chosen as the 

pivot element (generally, on the first processor of the 

computer system). The pivot element is selected in such a way 

that it appears to be closer to the real mean value of the sorted 

sub sequence than any other arbitrarily chosen value. 

In hyperquicksort each process sorts its sub list by using the 

most efficient sequential algorithm i.e. sequential quick sort. 

It helps in meeting the first requirement of sorting. To meet 

the second requirement, processes must exchange values by 

using a communication-efficient parallel algorithm to generate 

the final solution from the partial solutions. To keep ordering 

the values in the course of computations, the processors carry 

out the operation of merging the parts of blocks obtained after 

splitting. 

The effect of splitting and merging operation [12] is to divide 

a hypercube of sorted list of values into two hypercubes so 

that each processor has a sorted list of values, and the largest 

value in the lower hypercube is less than the smallest value in 

the upper hypercube. 

 

3.2.1 Basic implementation steps 

 
                 (a)                           (b)                                 (c) 

 
                  (c)                                 (d)                          (e) 

 
                  (f) 

Fig 6: 6(a) specifies that complete sequence is distributed 

evenly among the processors (which are in power of 2). 

6(b) shows that each processor sorts its subsequence by 

using sequential quick sort. 6(c) Processor P0 broadcasts 
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its median value. 6(d) Processors will exchange “low”, 

“high” lists. In 6(e) Processors P0 and P2 broadcast its 

median values. In 6(f) each sub half processors exchange 

“low”, “high” lists. 6(g) show sorted subsequences   after 

exchange and merge steps. 

3.2.2 Pseudo code for hyperquicksort 
1. Divide the n data values into p equal parts,  n/p  data values 

per processor. 

2. Each processor sorts the items it has using sequential quick 

sort. 

3. First processor P0 broadcasts its median key K (pivot) to the 

rest of the processors in hypercube. 

4. Each node separates its data items into two groups:  

        Keys <= K and Keys > K 

5. Break up the hypercube into two sub-cubes: 

The lower sub-cube consists (node 0 through (2^ (D-1) - 1)) 

and the upper sub-cube consists (nodes 2^ (D-1) through 

(2^D - 1)). 

5.1 Each node in the lower sub-cube sends its items whose 

keys are greater than K to its adjacent node in the upper 

sub-cube. 

5.2 Each node in the upper sub-cube sends its items whose 

keys are less than or equal to K to its adjacent node in the 

lower sub-cube. 

When this step is completed, all items whose keys are less 

than or equal to K are in the lower sub-cube while all those 

whose keys are greater than K are in the upper sub-cube. 

6. Each node now merges together the group it just received 

with the one it kept so that its items are one again sorted. 

7. Repeat step 3 through 6 on each of the two sub-cubes. This 

time first processor P0 will correspond to the lowest-number 

node in the sub-cube, and the value of D will be one less.  

8. Keep repeating steps 3 through 7 until the sub-cubes consist 

of a single one. 

 

3.2.3 Complexity Analysis 
Let the size of input is ’n’ and the number of processing 

elements taken to be ‘p’. 
 Initial quick sort step has time complexity  ((n/p) 

log (n/p)) 

 Total communication time for log p exchange steps: 

 ((n/p) log p) 

 Total communication time for broadcasting the 

pivot value:  (log p) 

 

 Total running time of hyperquicksort: 

          
 

 
     

 

 
      

 

 
               

          
 

 
                 

Total number of comparisons in parallel quick sort: 

          
 

 
                

Speedup achieved over sequential quick sort: 

  
                                     

                              
 

  
        

   
 
 
                

 

 

4. CASE STUDY  
Consider a set S, consisting of 32 unordered data elements 

given as:  

S= {75, 91, 15, 64, 21, 8, 88, 54, 50, 12, 47, 72, 65, 54, 66, 

22, 83, 66, 67, 0, 70, 98, 99, 82, 20, 40, 89, 47, 19, 61, 86, 85} 

This data set is sorted by all the three, above mentioned 

sorting algorithms viz. sequential quick sort, Parallel quick 

sort and Hyperquicksort. 

4.1 Sorting by Sequential quick sort 
Firstly, a pivot element is chosen which divides the data set in 

two data sets upon which same procedure is performed 

recursively until we get a sorted sequence. The steps are as 

follows: 

 

Fig. 7 Recursive sorting by using sequential quick sort 

 

4.2 Sorting by Parallel Quick sort 
Perform the steps as mentioned in the pseudo code for parallel 

quick sort to sort the data set as follows:  
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    (c)                                                   (d)        

 
        (e)                                                   (f) 

 
      (g)                                                (h) 

Fig. 8 Recursive sorting by using Parallel quick sort 8(a) 

specifies that complete sequence distributed evenly among 

the processors (which is in power of 2).  8(b) Process P0 

chooses and broadcasts randomly chosen pivot value 8(c) 

specifies exchanging of  “lower half” and “upper half” 

values” 8(d) shows after the  exchange step In 8(e) 

Processors P0 and P2 choose and broadcast randomly 

chosen pivots. In 8(f) exchange of values takes place 8(g) 

Subsequences after the exchange steps. In 8(h) each 

processor sorts its subsequences by using sequential quick 

sort. 

4.3 Sorting by Hyperquicksort 
Perform the steps as mentioned in the pseudo code for 

Hyperquicksort to sort the data set as follows: 

 
(a)                                                (b)  

 
      (c)                                                (d) 

 

        (e)                                                (f) 

 
      (g)                                                 (h) 

Fig. 9 Recursive sorting by using Hyperquicksort 9(a) 

specifies that complete sequence distributed evenly among 

the processors (which are in power of 2).  9(b) each 

processor sorts its subsequences by using sequential quick 

sort. 9(c) Processor P0 broadcasts its median value 9(d) 

shows that processors will exchange “low”, “high” lists. In 

9(e) exchange of values takes place. In 9(f) processors P0 

and P2 broadcast median values.  9(g) shows the 

communication pattern for second exchange. In 9(h) 

specifies the sorted subsequences at each processor. 

 

5. COMPARISON OF RESULTS AND 

DISCUSSION 
The performance of three algorithms can be analyzed by 

considering the number of comparisons, average running time 

and speed up (achieved by parallel sorting algorithms). Table1 

shows the number of comparisons performed in all three 

algorithms and can be implemented in MATLAB 7.0. It 

shows that the parallel quick sort and hyperquicksort perform 

better over sequential quick sort, due to the use of parallelism. 

Between the two parallel sorting algorithms, hyperquicksort 

perform better and sort the data in less number of 

comparisons. 
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Figure 10 shows that among the three sorting algorithms 

hyperquicksort performs better. Between parallel quick sort 

and hyperquicksort, rate of reduction in number of 

comparisons is more in hyperquicksort in comparison to 

parallel quick sort, which results in improved performance. 

 

Fig. 10 Chart for number of comparisons 

Table 2 shows the average running time of all three 

algorithms with respect to the increasing number of inputs. 

Between parallel quick sort and hyperquicksort, the running 

time of hyperquicksort is less due to better load balancing and 

selection of pivot element. Also for the same number of 

processors hyperquicksort has less average running time in 

comparison to parallel quick sort. 
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Fig. 11 shows the better performance of hyperquicksort over 

parallel quick sort. Sequential quick sort has higher average 

running time than both parallel quick sort and hyperquicksort 

due to the absence of parallelism. 
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Fig. 11 Comparison chart for average running time 

Table 3 specifies the speedup achieved by parallel quick sort 

over sequential quick sort, which is very poor due to improper 

load balancing of data values as it is seen in the case study.   
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Figure 12 shows the speedup of parallel quick sort with 

increasing number of inputs i.e. n and processing elements. 

 

Fig. 12 Chart for speedup achieved by parallel quick sort 

over Sequential quick sort 

Table 4 specifies the speedup achieved by hyperquicksort 

over sequential quick sort, that improves in comparison to 

parallel quick sort due to the good choice of pivot element and 

even load balancing. All the processing elements are having 

nearly same number of data values to balance the work 

performed by all the processors.  

Table4. Speedup achieved over sequential quick sort 
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Figure 13 shows the speedup with increasing number of input 

size i.e. n. It gradually moves towards the ideal speedup i.e. 

‘n’ that is having linear in nature. 
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Fig. 13 Chart for speedup achieved by hyperquicksort 

over Sequential quick sort 

6. CONCLUSION 
In this paper, three sorting algorithms are compared 

successfully. The basis of comparison is the average running 

time, number of comparisons and speedup achieved by 

parallel sorting algorithms over sequential quick sort. It is 

observed that parallel sorting algorithms i.e. parallel quick 

sort and hyperquicksort performs well in all respects in 

comparison to sequential quick sort. The better performance is 

obvious because parallel sorting algorithms take the 

advantage of parallelism to reduce the waiting time. Between 

hyperquicksort and parallel quick sort, parallel quick sort does 

not perform well due to improper load balancing as it selects a 

random data value as a pivot from one of the subsequence, 

which results in uneven load distribution. Hyperquicksort 

selects the median value of subsequence as a pivot for better 

load distribution. In future, same analysis can be performed 

with parallel sorting algorithms (parallel quick sort and 

hyperquicksort) and parallel sorting by regular sampling 

algorithm (PSRS) for wide variety of MIMD architectures.   
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