
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

14

Performance Comparison of Sequential Quick Sort and

Parallel Quick Sort Algorithms

Ishwari Singh Rajput
Department of Computer
Science & Engineering

J.P Institute of Engineering &
Technology, Meerut

U.P., India

Bhawnesh Kumar
Department of Computer
Science & Engineering

J.P Institute of Engineering &
Technology, Meerut

U.P., India

Tinku Singh
Department of Computer
Science & Engineering

J.P Institute of Engineering &
Technology, Meerut

U.P., India

ABSTRACT
Sorting is among the first of algorithm, than any computer

science student encounters during college and it is considered

as a simple and well studied problem. With the advancement

in parallel processing many parallel sorting algorithms have

been investigated. These algorithms are designed for a variety

of parallel computer architectures. In this paper, a

comparative analysis of performance of three different types

of sorting algorithms viz. sequential quick sort, parallel quick

sort and hyperquicksort is presented. Quick sort is a divide-

and-conquer algorithm that sorts a sequence by recursively

dividing it into smaller subsequences, and has Ө(nlogn)

complexity for n data values. The comparative analysis is

based on comparing average sorting times and speedup

achieved in parallel sorting over sequential quick sort and

comparing number of comparisons. The time complexity for

each sorting algorithm will also be mentioned and analyzed.

Keywords

Algorithm, quick sort, parallel sorting algorithms, parallel

quick sort, hyperquicksort, performance analysis.

1. INTRODUCTION
Sorting is a fundamental operation that is performed by most

computers [1].It is a computational building block of basic

importance and is one of the most widely studied algorithmic

problems [2]. Sorted data are easier to manipulate than

randomly-ordered data, so many algorithms require sorted

data. It is used frequently in a large variety of useful

applications. All spreadsheet programs contain some kind of

sorting code. Database applications used by insurance

companies, banks, and other institutions all contain sorting

code. Because of the importance of sorting in these

applications, many sorting algorithms have been developed

with varying complexity.

Sorting [3, 4] is defined as the operation of arranging an

unordered collection of elements into monotonically

increasing (or decreasing) order. Specifically,

S= {a1, a2 ………….an} be a sequence of n elements in

random order; sorting transforms S into monotonically

increasing sequence S’= {a1’, a2’…………… an’} such that

ai’≤ aj’ for 1≤ i ≤ j ≤ n, and S’ is a permutation of S.

Sorting algorithms are categorized [3, 4] as internal or

external. In internal sorting, the number of elements to be

sorted is small enough to fit into the main memory whereas in

external sorting algorithms auxiliary storage is used for

sorting as the number of elements to be sorted is too large to

fit into memory. Sorting algorithms can also be categorized

[3] as comparison-based and non comparison-based. A

comparison-based sorting algorithm sorts an unordered

sequence of elements by repeatedly comparing pairs of

elements and, if they are out of order, exchanging them. This

fundamental operation of comparison-based sorting is called

compare-exchange. The lower bound on the sequential

complexity of any sorting algorithms that is comparison-based

is Ω(nlogn), where n is the number of elements to be sorted.

For example: Merge sort, Quick sort etc. Non comparison-

based algorithms sort by using certain known properties of the

elements (such as their binary representation or their

distribution). The lower bound complexity of these algorithms

is Ω(n). For example: Counting sort, Radix sort and Bucket

sort.

Bubble sort, insertion sort, and selection sort are slow sorting

algorithms and have a theoretical complexity of O(n2). These

algorithms [1] are very slow for sorting large arrays, but they

are not useless because they are very simple algorithms. In

order to speed up the performance of sorting operation,

parallelism is applied to the execution of the sorting

algorithms called parallel sorting algorithms.

In designing parallel sorting algorithms, the fundamental issue

is to collectively sort data owned by individual processors in

such a way that it utilizes all processing units doing sorting

work, while also minimizing the costs of redistribution of

keys across processors. In parallel sorting algorithms there are

two places where the input and the sorted sequences can

reside. They may be stored on only one of the processor, or

they may be distributed among the processors

2. SEQUENTIAL QUICKSORT

ALGORITHM
Sequential quick sort is an in-place, divide-and-conquer,

recursive sorting algorithm developed by Tony Hoare [5]. In-

place sorting algorithms plays an important role in many

fields such as very large database systems, data warehouses,

data mining, etc [1]. Such algorithms maximize the size of

data that can be processed in main memory without

input/output operations. It requires, on average, O(nlogn)

comparisons to sort n items. In the worst case scenario, it

makes O(n2) comparisons, even though this is a rare

occurrence. In reality it is mostly faster than other O(nlogn)

algorithms [6]. It is also known as a partition-exchange sort

because that term captures the basic idea of the method. The

implementation of a simple sequential quick sort algorithm [7]

follows the following steps:

 Choose a pivot element

 Place all numbers smaller then the pivot element to

a position on its left, while placing all other

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

15

numbers to a position on its right. This is done by

exchanging elements.

 The pivot is now in its sorted position and divide

and conquer strategy is continued, applying the

same algorithm on the left and the right part of the

pivot recursively.

When the series of exchanges is done, the original sequence

has been partitioned into three subsequences [1]:

 All elements less than the pivot element

 The pivot element in its final place

 All elements greater than the pivot element

This way, the whole, original dataset is sorted recursively

using the same algorithm on smaller and smaller parts. This is

done sequentially. However, once the partitioning is done [7],

the sorting of the new sorting subsequences can be performed

in parallel as there is no collision.

Fig 1: Simple graphical representation of the Sequential

quick sort algorithm

2.1 Complexity Analysis
Sequential quick sort is now analyzed by considering all the

three cases i.e. best case, average and worst case one by one.

2.1.1 Best Case
The best case for divide and conquer algorithms comes when

input is divided as evenly as possible, i.e. each sub problem is

of size n/2. The recurrence relation for best case is:

D(n) : cost of dividing the problem into sub-problems.

C(n) : cost of combining sub-solutions into original solution.

The partition step on each sub problem is linear in its size as

the partitioning step consists of at most n swaps. Thus the

total effort in partitioning the 2k problems of size n/2k is

D(n) = (n). It is in-place sorting techniques because it uses

only a small auxiliary stack so, cost of combining the

solutions is zero i.e. C(n) = 0. The recurrence relation reduces

to:

 …………………… (i)

Equation (i) can also be written as

 for

some constant c.

The recursion tree for the best case looks like this.

 cn cn

 cn

 log2n

 cn

 cn

 …

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 cn

T(n) = (cnlog2n)

Fig 2: Recursion tree for best case of Sequential quick sort

algorithm

Therefore, the running time for the best case of quick sort is:

 i.e. .

2.1.2 Worst Case

Let the pivot element splits the array as unequally as possible.

Thus instead of n/2 elements in the smaller half we get zero

i.e. the pivot element is the biggest or smallest element in the

array. This unbalanced partitioning arises in each recursive

call. The recurrence relation for best case is:

The cost of partition is and again C(n) = 0. The

recurrence relation reduces to:

 ………………. .(ii)

Equation (ii) can also be written as
 for some constant c.

The recursion tree for the worst case looks like this.

 cn cn

 c(n-1)

 n

 T(0) c(n-2)

 T(0) c(n-3)

 …

 T(0) c(1) 1

T(n) = (n2)

Fig 3: Recursion tree for worst case of Sequential quick sort

algorithm

Therefore, the running time is : T(n) = (n2).

2.1.3 Average Case
The average-case running time [8] of quick sort is much

closer to the best case than to the worst case. Let the

partitioning algorithm always produces a 9-to-1 proportional

split, which seems quite unbalanced. The recurrence relation

seems to be:

Values< Pivot

Pivot Values> pivot

Initial Step

Pivot Values>Pivot

Recursive Step

Values< New

Pivot

New

Pivot

Values> New

Pivot

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

16

 Ө ………………. (iii)

Equation (iii) can also be written as

 for some constant c

The recursion tree for this recurrence looks like this.

 cn cn

 log10n

 n cn

log10/9n

 cn

 cn

 ≤cn

 1 ≤cn

T(n) = O(cnlog2n)

Fig 4: Recursion tree for Average case of Sequential quick

sort algorithm

Each level of the tree has cost cn, until a boundary condition

is reached at depth log10 n, and each level have cost at most

cn. The recursion terminates at depth log10/9 n =log2n/log210=

 (log n). The total cost is therefore (nlogn). Thus, with a

9-to-1 proportional split at every level of recursion, which is

quite unbalanced, quick sort runs in (nlogn) time,

asymptotically the same as the splitting in best case. Even a

99-to-1 split yields an (nlogn) running time.

2.1.4 Total number of comparisons in parallel

quick sort

3. PARALLEL SORTING

ALGORITHMS
With the advent of parallel processing, parallel sorting has

become an important area for algorithm research. A large

number of parallel sorting algorithms have been proposed [4].

Most parallel sorting algorithms can be placed into one of two

rough categories: merge based sorts and partition-based sorts.

Merge-based sorts consist of multiple merge stages across

processors, and perform well only with a small number of

processors. When the number of processors utilized gets large,

the overhead of scheduling and synchronization also

increased, which reduces the speedup. Partition-based sorts

consist of two phases: partitioning the data set into smaller

subsets such that all elements in one subset are no greater than

any element in another, and sorting each subset in parallel.

The performance of partition-based sorts primarily depends

on how well the data can be evenly partitioned into smaller

ordered subsets. It appears to be a difficult problem to find

pivots that partition the data to be sorted into ordered subsets

of equal size without sorting the data first. The basic result

[14] is that initial data splitting limits the speedup to a

maximum, i.e. about 5 or 6, regardless of how many

processors are used. The ability to partition the data evenly

into ordered subsets is essential for partition-based sorts.

Parallel sorting algorithms are required in order to speed up

the data processing. The parallel implementation of the quick

sort algorithm based on divide and conquer approach

increases its speed, but fastest sorting is not always

guaranteed in cases of poor load balancing of the concurrent

tasks. Several optimization techniques are suggested in order

to increase the efficiency of the parallel implementation of the

quick sort algorithm based on ideas used for parallel

implementation of a variety of sorting algorithms [11, 12].

The current trends of hardware development and innovations

are oriented towards extensive usage of high-performance

computations based on multicomputer and multiprocessor

computer systems. Grid and cloud computing also pose the

requirement for distributed data processing [2].

Here two parallel sorting algorithms are considered for

analysis i.e. Parallel quick sort and Hyperquicksort.

3.1 Parallel quick sort
Not only quick sort is considered to be a better performing

sorting algorithm but it is also considered to be one of reliable

algorithm which can be parallelized. The key feature of

Parallel Quicksort is parallel partitioning of the data [13].

The parallel generalization of the quick sort algorithm [4] may

be obtained in the simplest way for a network of processing

elements. The topology adapted by network is a D-

dimensional hypercube (i.e. number of processing elements

p=2D). Let the initial data is distributed among the processors

in blocks of the same size of n/p data values. The resulting

location of blocks must correspond to each of the hypercube

processors. A possible method to execute the first iteration of

the parallel method is as follows [3]:

• Select the pivot element from the subsequence and broadcast

it to all the processors

• Subdivide the data block available on each processor into

two parts using the pivot element;

• Pairs of processors are formed, for which the bit

representation of the numbers differs only in D position. After

pairing, the exchange of the data among these processors

takes place. As a result of these data transmissions, the parts

of the blocks with the data values smaller than pivot element

must appear on the processors having bit position D equal to

0. The processors with the bit position D is equal to 1 must

collect correspondingly all the data values exceeding the

value of the pivot element.

After executing this iteration [3, 4], the initial data is

subdivided into two parts. One of them (values smaller than

the pivot value) is located on the processors, whose numbers

hold 0 in the Dth bit. There is only p/2 such processors. Thus,

the initial D-dimensional hypercube also is subdivided into

two sub-hypercubes of D-1 dimension. The above procedure

is also applied to these sub-hypercubes. After executing D

such iterations, it is sufficient to sort the data blocks which

have been formed on each separate processor to terminate the

method.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

17

3.1.1 Basic implementation steps [4]

 (a) (b) (c)

 (d) (e)

Fig 5: 5(a) specifies that one processor broadcast initial

pivot to all processors. 5(b) each processor in the upper

half swaps with a partner in the lower half. 5(c) specifies

recursion on each half. 5(d) shows the swapping among

partners in each half. In 5(e) each process uses quick sort

to sort elements locally.

3.1.2 Pseudo code of Parallel quick sort algorithm
1. Divide the n data values into p equal parts, data

values per processor.

2. Select the pivot element randomly on first processor P0 and

broadcast it to each processor.

3. Perform global sort

3.1 Locally in each processor, divide the data into two sets

according to the pivot (smaller or larger)

3.2 Split the processors into two groups and exchange data

pair wise between them so that all processors in one group get

data less than the pivot and the others get data larger than the

pivot.

4. Repeat 3.1 - 3.2 recursively for each half.

5. Each processor sorts the items it has, using quick sort.

3.1.3 Complexity Analysis

Let the size of input is ’n’ and the number of processing

elements taken to be ‘p’.
Total running time of parallel quick sort:

Total number of comparisons in parallel quick sort:

Speedup achieved over sequential quick sort:

3.2 Hyperquicksort
Start where parallel quick sort ends. As the speedup achieved

by the parallel quick sort algorithm [11] is constrained by the

time taken to perform the initial partitioning. During initial

partitioning all the processors are not active.

Hyperquicksort is the quick sort algorithm developed for

hypercube interconnection networks, but it can be used on any

message-passing system having number of processing

elements in power of 2.

The main difference between hyperquicksort and parallel

quick sort consists in the method of choosing the pivot

element. The average element of some block is chosen as the

pivot element (generally, on the first processor of the

computer system). The pivot element is selected in such a way

that it appears to be closer to the real mean value of the sorted

sub sequence than any other arbitrarily chosen value.

In hyperquicksort each process sorts its sub list by using the

most efficient sequential algorithm i.e. sequential quick sort.

It helps in meeting the first requirement of sorting. To meet

the second requirement, processes must exchange values by

using a communication-efficient parallel algorithm to generate

the final solution from the partial solutions. To keep ordering

the values in the course of computations, the processors carry

out the operation of merging the parts of blocks obtained after

splitting.

The effect of splitting and merging operation [12] is to divide

a hypercube of sorted list of values into two hypercubes so

that each processor has a sorted list of values, and the largest

value in the lower hypercube is less than the smallest value in

the upper hypercube.

3.2.1 Basic implementation steps

 (a) (b) (c)

 (c) (d) (e)

 (f)

Fig 6: 6(a) specifies that complete sequence is distributed

evenly among the processors (which are in power of 2).

6(b) shows that each processor sorts its subsequence by

using sequential quick sort. 6(c) Processor P0 broadcasts

P0

P1

P2

P3

Sorted

Sorted

Sorted

Sorted

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P2

P1

P0

P3

Sorted1stquarter

Sorted2ndquarter

Sorted3rd quarter

Sorted4th quarter

P0

P1

P2

P3

1st quarter

2ndquarter

3rd quarter

4th quarter

P0

P1

P2

P3

Processor P0

broadcasts its

median value

 < >

 < >

 < > P2

P1

P0

P3

P2

P1

P0

P3

1st quarter

2ndquarter

3rd quarter

4th quarter < >

Unsorted List

 < >

 < >

 < >

 < >

P2

P1

P0

P3

P2

P1

P0

P3

P1

P2

P0

P3

Lower

Half

Upper

Half

http://en.wikipedia.org/wiki/Quicksort

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

18

its median value. 6(d) Processors will exchange “low”,

“high” lists. In 6(e) Processors P0 and P2 broadcast its

median values. In 6(f) each sub half processors exchange

“low”, “high” lists. 6(g) show sorted subsequences after

exchange and merge steps.

3.2.2 Pseudo code for hyperquicksort
1. Divide the n data values into p equal parts, n/p data values

per processor.

2. Each processor sorts the items it has using sequential quick

sort.

3. First processor P0 broadcasts its median key K (pivot) to the

rest of the processors in hypercube.

4. Each node separates its data items into two groups:

 Keys <= K and Keys > K

5. Break up the hypercube into two sub-cubes:

The lower sub-cube consists (node 0 through (2^ (D-1) - 1))

and the upper sub-cube consists (nodes 2^ (D-1) through

(2^D - 1)).

5.1 Each node in the lower sub-cube sends its items whose

keys are greater than K to its adjacent node in the upper

sub-cube.

5.2 Each node in the upper sub-cube sends its items whose

keys are less than or equal to K to its adjacent node in the

lower sub-cube.

When this step is completed, all items whose keys are less

than or equal to K are in the lower sub-cube while all those

whose keys are greater than K are in the upper sub-cube.

6. Each node now merges together the group it just received

with the one it kept so that its items are one again sorted.

7. Repeat step 3 through 6 on each of the two sub-cubes. This

time first processor P0 will correspond to the lowest-number

node in the sub-cube, and the value of D will be one less.

8. Keep repeating steps 3 through 7 until the sub-cubes consist

of a single one.

3.2.3 Complexity Analysis
Let the size of input is ’n’ and the number of processing

elements taken to be ‘p’.
 Initial quick sort step has time complexity ((n/p)

log (n/p))

 Total communication time for log p exchange steps:

 ((n/p) log p)

 Total communication time for broadcasting the

pivot value: (log p)

 Total running time of hyperquicksort:

Total number of comparisons in parallel quick sort:

Speedup achieved over sequential quick sort:

4. CASE STUDY
Consider a set S, consisting of 32 unordered data elements

given as:

S= {75, 91, 15, 64, 21, 8, 88, 54, 50, 12, 47, 72, 65, 54, 66,

22, 83, 66, 67, 0, 70, 98, 99, 82, 20, 40, 89, 47, 19, 61, 86, 85}

This data set is sorted by all the three, above mentioned

sorting algorithms viz. sequential quick sort, Parallel quick

sort and Hyperquicksort.

4.1 Sorting by Sequential quick sort
Firstly, a pivot element is chosen which divides the data set in

two data sets upon which same procedure is performed

recursively until we get a sorted sequence. The steps are as

follows:

Fig. 7 Recursive sorting by using sequential quick sort

4.2 Sorting by Parallel Quick sort
Perform the steps as mentioned in the pseudo code for parallel

quick sort to sort the data set as follows:

(a) (b)

P0

83 66 67 0 70 98 99 82

20 40 89 47 19 61 86 85

50 12 47 72 65 54 66 22

75 91 15 64 21 8 88 54

75 15 64 21 54 66 67 0

70

 50 12 47 72 65 54 66 22

20 40 47 19 61

83 98 99 82 91 88

89 86 85

P1

P2

P3

P0

P1

P2

P3

Lower

Half

Upper

Half

P0

83 66 67 0 70 98 99 82

20 40 89 47 19 61 86 85

50 12 47 72 65 54 66 22

75 91 15 64 21 8 88 54

75 91 15 64 21 8 88 54

50 12 47 72 65 54 66 22

83 66 67 0 70 98 99 82

20 40 89 47 19 61 86 85

P1

P2

P3

P0

P1

P2

P3

75 91 15 64 21 8 88 54 50 12 47 72 65 54 66 22 83 66 67 0 70 98 99 82 20 40 89 47 19 61 86 85

75

99 98 89 83 88 91 86 85

66 65 66 67 72 70 64

20 19 15 0 21 8 47 54 50 12 47 40 22 54

61 75 82

85 98 89 83 88 91 86

66 72 70 67

75 82 64 65 66 61 47 54 50 21 47 40 42 54

20

15 19 12 20 22 40 21

47 50 54 54

47 61 64 65 66 66 67 70

72 75 82 83 89 98 88 91 86

85

19 8 12 15 20 21 22 40 47 47 50 54 54

61 64 65 66 66 67 70 72 75 82 83 85 86 88 91 98 89

8 12 15 19 20 21 22 40 47 47 50 54 54

61 64 65 66 66 67 70 72 75 82 83 85 86 88 89 91 83

8 12 15 19 20 21 22 40 47 47 50 54 54 61 64 65 66 66 67 70 72 75 82 83 85 86 88 89 91 83 99

99

99

99

99

 0 8 12 15 19 20 21 22 40 46 47 50 54 54 61 64 65 66 66 67 70 72 75 82 83 85 86 88 89 91 98 99

61 19 15 64 21 8 47 54 50 12 47 72 65 54 66 22 40 66, 67 0 70 20

82 99 98 89 83 88 91 86 85

12 19 15 0 8

67

0 8

0

0

0

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

19

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 8 Recursive sorting by using Parallel quick sort 8(a)

specifies that complete sequence distributed evenly among

the processors (which is in power of 2). 8(b) Process P0

chooses and broadcasts randomly chosen pivot value 8(c)

specifies exchanging of “lower half” and “upper half”

values” 8(d) shows after the exchange step In 8(e)

Processors P0 and P2 choose and broadcast randomly

chosen pivots. In 8(f) exchange of values takes place 8(g)

Subsequences after the exchange steps. In 8(h) each

processor sorts its subsequences by using sequential quick

sort.

4.3 Sorting by Hyperquicksort
Perform the steps as mentioned in the pseudo code for

Hyperquicksort to sort the data set as follows:

(a) (b)

 (c) (d)

 (e) (f)

 (g) (h)

Fig. 9 Recursive sorting by using Hyperquicksort 9(a)

specifies that complete sequence distributed evenly among

the processors (which are in power of 2). 9(b) each

processor sorts its subsequences by using sequential quick

sort. 9(c) Processor P0 broadcasts its median value 9(d)

shows that processors will exchange “low”, “high” lists. In

9(e) exchange of values takes place. In 9(f) processors P0

and P2 broadcast median values. 9(g) shows the

communication pattern for second exchange. In 9(h)

specifies the sorted subsequences at each processor.

5. COMPARISON OF RESULTS AND

DISCUSSION
The performance of three algorithms can be analyzed by

considering the number of comparisons, average running time

and speed up (achieved by parallel sorting algorithms). Table1

shows the number of comparisons performed in all three

algorithms and can be implemented in MATLAB 7.0. It

shows that the parallel quick sort and hyperquicksort perform

better over sequential quick sort, due to the use of parallelism.

Between the two parallel sorting algorithms, hyperquicksort

perform better and sort the data in less number of

comparisons.

Table1. Number of comparisons

In
p

u
t S

ize (n
)

S
eq

u
en

tia
l

Q
u

ick
 so

rt

Number of

comparisons in

Parallel Quick sort

Number of

comparisons in

Hyperquicksort

P
=

2

P
=

4

P
=

8

P
=

1
6

P
=

2

P
=

4

P
=

8

P
=

1
6

25

2
2

2
.4

1
2

9

1
0

0

7
5

5
8

9
6

5
6

3
2

1
8

27

1
2

4
5

.4
4

7
6

9

6
4

4

5
2

3

4
1

0

5
1

2

2
8

8

1
6

0

8
8

29

6
4

0
5

.1
2

4
0

9
7

3
5

8
8

3
0

8
3

2
5

8
6

2
5

6
0

1
4

0
8

7
6

8

4
1

6

211

3
1

3
1

3
.9

2

2
0

4
8

1

1
8

4
3

6

1
6

3
9

5

1
4

3
6

2

1
2

2
2

8

6
6

5
6

3
5

8
4

1
9

2
0

P0

 12 19 20 22 40 47 47 50

54

0 8 15 21 54

61 65 66 72 85 86 89

P1

P2

P3

P0

P2

P3

64 66 67 70 75 82 83 88

91 98 99

P1
19 20 21 22 40 47 47 50

54 54

83 85 86 88 89 91 98 99

0 8 12 15

61 64 65 66 66 67 70 72

75 82

P0

12 19 20 22 40 47 47 50

54

0 8 15 21 54

61 65 66 72 85 86 89

P1

P2

P3

P0

P2

P3

64 66 67 70 75 82 83 88

91 98 99

P1

0 8 15 21 54

 12 19 20 22 40 47 47 50

54

64 66 67 70 75 82 83

88 91 98 99

 61 65 66 72 85 86 89

P0

0 66 67 70 82 83 98 99

19 20 40 47 61 85 86 89

12 22 47 50 54 65 66 72

8 15 21 54 64 75 88 91

 8 15 21 54 64 75 88 91

 12 22 47 50 54 65 66 72

0 66 67 70 82 83 98 99

19 20 40 47 61 85 86 89

P1

P2

P3

P0

P1

P2

P3

P0

83 66 67 0 70 98 99 82

20 40 89 47 19 61 86 85

50 12 47 72 65 54 66 22

75 91 15 64 21 8 88 54

8 15 21 54 64 75 88 91

12 22 47 50 54 65 66 72

0 66 67 70 82 83 98 99

19 20 40 47 61 85 86 89

P1

P2

P3

P0

P1

P2

P3

P0

50 47 72 65 54 66 22 40

47 61 75 64 54 66 67 70

15 21 8 0 12 20 19

98 99

P1

P2

P3

P0

P2

P3

83 82 91 88 89 86 85

P1

0 8 12 15 19 20 21

22 40 47 47 50 54 54 61

64 65 66 66 67 70 72 75

82 83 85 86 88 89 91

98 99

P0

50 12 47 72 65 54 66 22

20 40 47 19 61

75 15 64 21 8 54 66 67

0 70

75 15 64 21 54 66 67 0

70

 50 12 47 72 65 54 66 22

20 40 47 19 61

83 98 99 82 91 88

89 86 85

P1

P2

P3

P0

P2

P3

Lower

Half

Upper

Half

83 98 99 82 91 88

P1

89 86 85

Lower

Half

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

20

213

1
4

8
0

2
9

.4
4

9
8

3
0

5

9
0

1
1

6

8
1

9
3

1

7
3

7
5

4

5
7

3
4

4

3
0

7
2

0

1
6

3
8

4

8
7

0
4

215

6
8

3
2

1
2

.8
0

4
5

8
7

5
3

4
2

5
9

8
8

3
9

3
2

2
7

3
6

0
4

7
4

2
6

2
1

4
4

1
3

9
2

6
4

7
3

7
2

8

3
8

9
2

217

3
0

9
7

2
3

1
.

4

2
0

9
7

1
5

3

1
9

6
6

0
8

4

1
8

3
5

0
1

9

1
7

0
3

9
6

2

1
1

7
9

6
4

8

6
2

2
5

9
2

3
2

7
6

8
0

1
7

2
0

3
2

219

1
3

8
4

6
4

4
6

.0

9
4

3
7

1
8

5

8
9

1
2

9
0

0

8
3

8
8

6
1

9

7
8

6
4

3
4

6

5
2

4
2

8
8

0

2
7

5
2

5
1

2

1
4

4
1

7
9

2

7
5

3
6

6
4

P : Number of Processing Elements

Figure 10 shows that among the three sorting algorithms

hyperquicksort performs better. Between parallel quick sort

and hyperquicksort, rate of reduction in number of

comparisons is more in hyperquicksort in comparison to

parallel quick sort, which results in improved performance.

Fig. 10 Chart for number of comparisons

Table 2 shows the average running time of all three

algorithms with respect to the increasing number of inputs.

Between parallel quick sort and hyperquicksort, the running

time of hyperquicksort is less due to better load balancing and

selection of pivot element. Also for the same number of

processors hyperquicksort has less average running time in

comparison to parallel quick sort.

Table2. Average running time

In
p

u
t S

ize (n
)

S
eq

u
en

tia
l

Q
u

ick
 so

rt[m
s]

Average Running

time of Parallel

quick sort[ms]

Average Running

time of

Hyperquicksort[ms]

P
=

2

P
=

4

P
=

8

P
=

1
6

P
=

2

P
=

4

P
=

8

P
=

1
6

25

1
6

0

9
6

.5

7
2

.5

6
4

.1
2
5

6
1

.5

8
1

4
2

2
3

1
4

27

8
9

6

5
1

2
.5

3
5

2
.5

2
8

8
.1

2
5

2
6

3
.5

4
4

9

2
2

6

1
1

5

6
0

29

4
6

0
8

2
5

6
0

.5

1
6

6
4

.5

1
2

8
0

.1
2
5

1
1

1
9

.5

2
3

0
5

1
1

5
4

5
7

9

2
9

2

211

2
2

5
2

8

1
2

2
8

8
.5

7
6

8
0

.5

5
6

3
2

.1
2
5

4
7

3
5

.5

1
1

2
6

5

5
6

3
4

2
8

1
9

1
4

1
2

213

1
0

6
4

9
6

5
7

3
4

4
.5

3
4

8
1

6
.5

2
4

5
7

6
.1

2
5

1
9

9
6

7
.5

5
3

2
4

9

2
6

6
2

6

1
3

3
1

5

6
6

6
0

215

4
9

1
5

2
0

2
6

2
1

4
4

.5

1
5

5
6

4
8

.5

1
0

6
4

9
6

.1
2

8
3

9
6

7
.5

2
4

5
7

6
1

1
2

2
8

8
2

6
1

4
4

3

3
0

7
2

4

217

2
2

2
8

2
2

4

1
1

7
9

6
4

8
.5

6
8

8
1

2
8

.5

4
5

8
7

5
2

.1
2

3
5

2
2

5
5

.5

1
1

1
4

1
1

3

5
5

7
0

5
8

2
7

8
5

3
1

1
3

9
2

6
8

219

9
9

6
1

4
7

2

5
2

4
2

8
8

0
.5

3
0

1
4

6
5

6
.5

1
9

6
6

0
8

0
.1

0

1
4

7
4

5
5

9
.5

4
9

8
0

7
3

7

2
4

9
0

3
7

0

1
2

4
5

1
8

7

6
2

2
5

9
6

P : Number of Processing Elements

Fig. 11 shows the better performance of hyperquicksort over

parallel quick sort. Sequential quick sort has higher average

running time than both parallel quick sort and hyperquicksort

due to the absence of parallelism.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

21

Fig. 11 Comparison chart for average running time

Table 3 specifies the speedup achieved by parallel quick sort

over sequential quick sort, which is very poor due to improper

load balancing of data values as it is seen in the case study.

Table3. Speedup achieved over sequential quick sort

N
u

m
b

er o
f

P
ro

cessin
g

E
lem

en
ts (p

)

Speedup achieved in Parallel quick sort

n
=

 5
1
2

n
=

 2
0

4
8

n
=

 8
1

9
2

n
=

 3
2

7
6

8

n
=

 1
3

1
0

7
2

n
=

 5
2

4
2

8
8

2

1
.7

9
9

6
4

8
5

1
.8

3
3

2
5

8
7

1
.8

5
7

1
2

6
7

1
.8

7
4

9
9

6
4

1
.8

8
8

8
8

8
1

1
.8

9
9

9
9

9
8

4

2
.7

6
8

3
9

8
9

2
.9

3
3

1
4

2
4

3
.0

5
8

7
7

9
6

3
.1

5
7

8
8

4
6

3
.2

3
8

0
9

2
9

3
.3

0
4

3
4

7
3

8

3
.5

9
9

6
4

8
5

3
.9

9
9

9
1

1
2

4
.3

3
3

3
1

1
3

4
.6

1
5

3
7

9
2

4
.8

5
7

1
4

1
5

5
.0

6
6

6
6

6
3

16

4
.1

1
6

1
2

3
3

4
.7

5
7

2
5

9
0

5
.3

3
3

4
6

6
9

5
.8

5
3

6
9

3
4

6
.3

2
5

5
9

0
4

6
.7

5
5

5
5

7
8

32

4
.3

6
8

9
3

7
2

5
.1

7
7

9
9

5
0

5
.9

4
3

2
8

2
1

6
.6

6
6

7
8

2
5

7
.3

5
1

3
8

2
4

8
.0

0
0

0
0

8
2

64

4
.4

7
4

4
6

5
2

5
.3

7
6

8
1

1
5

6
.2

5
6

4
3

1
5

7
.1

1
1

3
3

3
0

7
.9

4
1

6
6

6
9

8
.7

4
8

2
1

8
0

n : Input size

Figure 12 shows the speedup of parallel quick sort with

increasing number of inputs i.e. n and processing elements.

Fig. 12 Chart for speedup achieved by parallel quick sort

over Sequential quick sort

Table 4 specifies the speedup achieved by hyperquicksort

over sequential quick sort, that improves in comparison to

parallel quick sort due to the good choice of pivot element and

even load balancing. All the processing elements are having

nearly same number of data values to balance the work

performed by all the processors.

Table4. Speedup achieved over sequential quick sort

N
u

m
b

er o
f

P
ro

cessin
g

E
lem

en
ts (p

)

Speedup achieved in Hyperquicksort

n
=

 5
1
2

n
=

 2
0

4
8

n
=

 8
1

9
2

n
=

 3
2

7
6

8

n
=

 1
3

1
0

7
2

n
=

 5
2

4
2

8
8

2

1
.9

9
9
1

3
2

3

1
.9

9
9
8

2
2

5

1
.9

9
9
9

6
2

4

1
.9

9
9
9

9
1

9

1
.9

9
9
9

9
8

2

1
.9

9
9
9

9
9

6

4

3
.9

9
3

0
6

7
6

3
.9

9
8

5
8

0
0

3
.9

9
9

6
9

9
5

3
.9

9
9

9
3

4
9

3
.9

9
9

9
8

5
6

3
.9

9
9

9
9

6
8

8

7
.9

5
8

5
4

9
2

7
.9

5
8

5
4

9
2

7
.9

9
8

1
9

7
5

7
.9

9
9

6
0

9
4

7
.9

9
9

9
1

3
8

7
.9

9
9

9
8

0
7

16

1
5

.7
8

0
8

2
2

0

1
5

.9
5

4
6

7
4

0

1
5

.9
9

0
3

9
0

0

1
5

.9
9

7
9

1
7

0

1
5

.9
9

9
5

4
0

0

1
5

.9
9

9
8

9
7

0

32

3
0

.9
2

6
1

7
4

0

3
1

.7
7

4
3

3
0

0

3
1

.9
5

1
9

9
5

0

3
1

.9
8

9
5

8
7

0

3
1

.9
9

7
7

0
2

0

3
1

.9
9

9
4

8
6

0

64

5
9

.0
7

6
9

2
3

0

6
2

.9
2

7
3

7
4

0

6
3

.7
7

0
0

6
0

0

6
3

.9
5

0
0

3
9

0

6
3

.9
8

8
9

7
2

0

6
3

.9
9

7
5

3
3

0

n : Input size

Figure 13 shows the speedup with increasing number of input

size i.e. n. It gradually moves towards the ideal speedup i.e.

‘n’ that is having linear in nature.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.9, November 2012

22

Fig. 13 Chart for speedup achieved by hyperquicksort

over Sequential quick sort

6. CONCLUSION
In this paper, three sorting algorithms are compared

successfully. The basis of comparison is the average running

time, number of comparisons and speedup achieved by

parallel sorting algorithms over sequential quick sort. It is

observed that parallel sorting algorithms i.e. parallel quick

sort and hyperquicksort performs well in all respects in

comparison to sequential quick sort. The better performance is

obvious because parallel sorting algorithms take the

advantage of parallelism to reduce the waiting time. Between

hyperquicksort and parallel quick sort, parallel quick sort does

not perform well due to improper load balancing as it selects a

random data value as a pivot from one of the subsequence,

which results in uneven load distribution. Hyperquicksort

selects the median value of subsequence as a pivot for better

load distribution. In future, same analysis can be performed

with parallel sorting algorithms (parallel quick sort and

hyperquicksort) and parallel sorting by regular sampling

algorithm (PSRS) for wide variety of MIMD architectures.

7. REFERENCES
[1] Madhavi Desai, Viral Kapadiya, Performance Study of

Efficient Quick Sort and Other Sorting Algorithms for

Repeated Data, National Conference on Recent Trends in

Engineering & Technology, 13-14 May 2011.

[2] D. E. Knuth, The Art of Computer Programming,

Volume 3: Sorting and Searching, Second ed. Boston,

MA: Addison-Wesley, 1998.

[3] Grama A., A. Gupta, G. Karypis, V. Kumar, Introduction

to Parallel Computing, Addison Wesley, 2003.

[4] M. J. Quinn, Parallel Programming in C with MPI and

OpenMP, Tata McGraw Hill Publications, 2003, p. 338.

[5] C.A.R. Hoare, Quick sort, Computer Journal, Vol. 5, 1,

10-15 (1962).

[6] S. S. Skiena, The Algorithm Design Manual, Second

Edition, Springer, 2008, p. 129.

[7] Abdulrahman Hamed Almutairi & Abdulrahman Helal

Alruwaili, Improving of Quick sort Algorithm

performance by Sequential Thread or Parallel

Algorithms, Global Journal of Computer Science and

Technology Hardware & Computation Volume 12 Issue

10 Version 1.0, 2012.

[8] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction

to algorithms, MIT Press 1990.

[9] Akl, S.G., Parallel Sorting Algorithms, Academic Press,

Orlando, Florida, 1985.

[10] Borovska P., Synthesis and Analysis of Parallel

Algorithms, Technical University of Sofia, 2008, ISBN:

978-954-438-764-4.

[11] Quinn, M.J., Parallel Computing Theory and Practice,

Tata Mcgraw Hill Publications (2002), p. 277.

[12] Akl, S.G., Design and Analysis of Parallel Algorithms,

Academic Press, Orlando, Florida, (1985).

[13] P. Heidelberger, A. Norton, and J. T. Robinson. Parallel

quicksort using Fetch-and-Add. IEEE Transactions on

Computers, 39(1):133–137, January 1990.

[14] Evans, D.J. and Yousif, N.Y., The Parallel Neighbor Sort

and Two-way Merge Algorithm, Parallel Computing 3,

(1986), 85-90.

