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ABSTRACT 

In this paper, we obtain a fixed point theorem for weakly 

compatible mappings by altering distances between the points 

via  - contractive condition in D-metric spaces. Our work 

include the results of Bansal, Chugh and Kumar [1], 

Veerapandi and Chandersekher Rao [14], and Dhage [4].  An 

example is given at the end to prove the validity of the 

theorem.   
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1. INTRODUCTION 

In the theory of fixed points, the idea of obtaining fixed point 

theorems for self maps for a metric space by altering the 

distances between the points with the use of certain 

continuous control function is an interesting aspect.  Number 

of fixed point theorems for self map in metric spaces by 

altering distances have been improved by Khan, Swaleh and 

Sessa [10], Sastry and Babu [12], and Pant, Jha and Pande  

[11].  

The presence of control function creates certain difficulties in 

proving the existence of fixed point under contractive 

conditions.  In view of these difficulties, known fixed point 

theorems either employ a stronger contractive condition like 

the Banach contractive condition e.g. in Sastry et.al [12] or 

assume the existence of a convergent sequence of iterates e.g., 

in Khan et al. [10]  and Sastry and Babu  [12].  

Motivated by the measure of nearness, between two or more 

objects with respect to a specific property or characteristic, 

called the parameter of the nearness, Dhage [2] in 1984 in his 

Ph.D. thesis introduced the concept of a D-metric space by 

which it has been possible to determine the geometrical 

nearness i.e., the distance between two or more points of the 

set under consideration.  Geometrically, a D-metric D(x, y, z) 

represent the parameter of the triangle with vertices x, y and z. 

A few details, along with specific examples of a D-metric 

space, appear in [4].   In paper [5], Dhage proved some fixed 

point theorems of self maps of a D-metric space satisfying 

certain contractive conditions.  

A number of fixed point theorems have been proved for 2-

metric spaces.  However, Hsiao [6] showed that all such 

theorems are trivial in the sense that the iterations of f are all 

collinear.  The situation for D-metric spaces is quite different.  

Jungck [7] and Sessa [13] introduced the concept of 

commuting and weakly commuting mappings respectively. In 

1986, Jungck [8] introduced the concept of compatible 

mappings. In 1998, Jungck et.al [9] introduced the concept of 

weakly compatible mappings, without appeal to continuity 

and proved some fixed point theorems for these mappings. 

Commuting map  weakly commuting maps  weakly 

compatible, but the converse may not be true.  

The general procedure for proving fixed point theorems in a 

D-metric space consists of the following three steps:  

(1)    Construction of a sequence xn+1 = fxn, x   0 , which is 

shown to be D-Cauchy.  

(2)    By applying certain completeness conditions, {xn} is 

shown to be convergent, and  

(3)    The limit point of {xn} is shown to be a fixed point of 

the map f under certain conditions prescribed on f.  

In this paper we hypothesize the above procedure and prove 

common fixed point theorem for weakly compatible mappings 

in D-metric space by altering distances between the point 

under a  -contractive condition which includes the fixed 

point theorems of Bansal, Chugh and Kumar [1],  Veerapandi 

and Chandersekhar [14] and Dhage [4].  

2. PRELIMINARIES  

Dhage [4] introduced the following D-metric space.  

Definition 2.1.  Let X  be any set.  A D-metric for X is a 

function D: X  X  X  R such that  

(i) D(x, y, z)  0  for all x, y, z  X, and equality holds if and only 

if x = y = z.  

(ii) D(x, y, z) = D(x, z, y) =  D(y, x, z) =  D(y, z, x) =  D(z, x, y) = 

D(z, y, x) for all x, y, z   X.  

(iii) D(x, y, z)  D(x, y, a) + D(x, a, z) + D(a, y, z) for all x, y, z, a 

 X .  

If D is a D-metric for X, then the ordered pair (X, D) is called 

a D-metric space or the set X together with D-metric is called 

a D-metric space.  

Definition 2.2. A sequence {xn} of points of a D-metric space 

X converges to a point x  X if for an arbitrary  > 0, there 

exists a positive integer n0 such that for all n > m > n0 .          

D (xm, xn, x) < .  

Definition 2.3. A sequence {xn} of points of a D-metric space 

X is Cauchy sequence if for an arbitrary  > 0 there exists a 

positive integer n0 such that for all  > n > m  n0.            

D(xm, xn, xp) <  . 

Definition 2.4.   A D-metric space X is a complete D-metric 

space if every Cauchy sequence {xn} in X converges in X.  

Definition 2.5. Let x0  X and  > 0 be given. Then we define 

the open ball B(x0, ) in X centered at x0 of radius of  by  

B(x0, ) = { y  X|D (x0,y,y) <  if y = x0 and 
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Xz

sup


 D(x0, y, z) <  if  y   x0} .  

The collection of all open balls {B(x, ): x  X,  >0 } define 

the topology on X denoted by .  

Definition 2.6. Let (X, D) be a D-metric space. A pair of 

maps f and g is called weakly compatible pair if they 

commute at coincidence points i.e.,  fx = gx if and only if fgx 

= gfx .   

Definition 2.7. A control function  is defined as  : R+  

R+ which is continuous at zero, monotonically increasing, 

(2t)  2(t) and (t) = 0  if and only if t = 0.  

Notation 2.8. If A, B, S and T are four self mappings of      

(X, d) and  is a control function on R+, we write 

M(x, y, z) =  max {(D(Sx, Ty, Sz)), (D(Ax, Sx, 

Sz)), (D(By,Ty,Az)),(D(Ty, Ax, Ax))}  

3. MAIN RESULTS  

Theorem 3.1.  Let (A, S) and (B, T) be weakly compatible 

pairs of self mappings of a complete D-metric space (X, D) 

and  be as in definition (2.7) satisfying A(X)  S(X),     

B(X)  T(X) and (D(Ax, By, Az))  (M(x, y, z)), for all 

x, y, z in X. Whenever M(x, y, z) > 0 and  : R+  R+ be an 

upper semi-continuous   function such that (t) < t for each t > 

0 and  is control function. Then A, B, S and T have a unique 

common fixed point.  

Proof.  Let x0 be any point in X.  Define sequence {xn} and 

{yn} in X such that  

y2n = Ax2n = Sx2n+1;  y2n+1 =  Bx2n+1 =  Tx2n+2              (3.3) 

We claim that {yn} is a Cauchy sequence.  We write             

n = (D(yn, yn+1, yn+2)).  Then, using condition (ii), it follows 

that 2n = (D(y2n,y2n+1,y2n+2)) = (D(Ax2n,Bx2n+1,Ax2n+2)) 

              (M(x2n, x2n+1, x2n+2)) 

             = (max{(D(Sx2n, Tx2n+1, Sx2n+2)), (D(Ax2n, Sx2n,    

                Sx2n+2)), (D(Bx2n+1, Tx2n+1, Ax2n+2)), (D(Tx2n+1,    

                Ax2n, x2n))}) 

            =(max{(D(y2n1, y2n, y2n+1)),(D(y2n, y2n1,   

               y2n+1)),(D(y2n+1,y2n,y2n+2)),  (D(y2n, y2n, y2n))}) 

           =((D(y2n1, y2n, y2n+1)))  

            ≤ ((D(y2n1, y2n, y2n+1))) =  (2n1)  

That is,  2n   (2n1) < 2n1             (3.4) 

Similarly, 2n1 < 2n2; 2n2 < 2n3 and so on. Thus {n} = 

{(D(yn, yn+1, yn+2))} is a strictly decreasing sequence of 

positive numbers and hence converges, say to   0.  Suppose 

 > 0.  Then the inequality (3.2) on making n and in view 

of upper semi continuity of  yields   () < , a 

contradiction.  Hence  = 
n

lim (D(yn, yn+1, yn+2) = 0. This, 

by monotonically increasing property of  implies  

  
n

lim D(yn, yn+1, yn+2) = 0             (3.5)  

and also {D(yn, yn+1, yn+2)} is a strictly decreasing sequence of 

positive numbers. We now show that {yn} is a Cauchy 

sequence. But by virtue of (3.5), it is sufficient to show that 

{y2n} is a Cauchy sequence.   Now, for each positive integer p, 

we get  

(D(y2n, y2n+1, y2(n+p)+1)) = (D(Ax2n, Bx2n+1, Ax2(n+p)+1)) 

           (M(x2n, x2n+1, x2(n+p)+1)) 

 

=(max{(D(Sx2n,Tx2n+1,Sx2(n+p)+1)),(D(Ax2n,Sx2n,Sx2(n+p)+1)

), (D(Bx2n+1, Tx2n+1, Ax2(n+p)+1)), (D(Tx2n+1, Ax2n, Ax2n))})  

            = (max{(D(y2n1, y2n, y2(n+p))), 

(D(y2n, y2n1, y2(n+p))) 

        (D(y2n+1, y2n, y2(n+p)+1)), 

(D(y2n, y2n, y2n))}) 

    = ((D(y2n1, y2n, y2(n+p)))) 

    <  (D(y2n1, y2n, y2(n+p)))  

   (3.6) 

Also,  

(D(y2n1, y2n, y2(n+p))) = (D(Ax2n1, Bx2n, 

Ax2(n+p))) 

   (M (x2n1, x2n, x2(n+p)))   

  = (max{(D(Sx2n1, Tx2n, Tx2(n+p))), 

(D(Ax2n1, Sx2n1, Sx2(n+p))),  

                    (D(Bx2n, Tx2n, Ax2(n+p))), (D(Tx2n, Ax2n1, 

Ax2n1))} ) 

  = (max{(D(y2n2, y2n1, y2(n+p)1)), 

(D(y2n1, y2n2, y2(n+p)1)), 

                    (D(y2n, y2n1, y2(n+p))), (D(y2n1, y2n1, 

y2n1))} ) 

  = ((D(y2n2, y2n1, y2(n+p)1))) 

  < (D(y2n2, y2n1, y2(n+p)1)).  

This shows that {(D(y2n, y2n+1, y2(n+p)+1))} is a decreasing 

sequence in R and hence converges, say, to r  0 .  Suppose 

that r > 0. Then the inequality (3.6) on making n  and in 

view of upper semi-continuity of  yields r   (r) < r, which 

is a contradiction.  Hence r = 0.  Hence {yn} is a Cauchy 

sequence.  Since X is complete, there is a point z in X such 

that yn  z as n .  Hence from (3.1), we have  

y2n =  Ax2n = Sx2n+1  z  and y2n+1 = Bx2n+1 = Tx2n+2   z 

.   

Since A(X)  S(X), there exists a point u  X such that Su = z.   

Then, using (3.2), we have  

(D(Au, Bx2n+1, Au)  (M(u, x2n+1, u))  

                                          = (max{(D(Su, Tx2n+1, Su)) , 

(D(Au, Su, Su)),  

                                              (D(Bx2n+1, Tx2n+1, Au)), 

(D(Tx2n+1, Au, Au))})  

In the limiting case, we have  

(D(Au, z, Au) =  (max{(D(z, z, z), (D(Au, z, 

z)), (D(z, z, Au)),  

                              (D(z, Au, Au))})  

                  = ((D(Au, Au, z))) 



International Journal of Computer Applications (0975 – 8887)  

Volume 57– No.9, November 2012 

13 

which is a contradiction.   Hence Au = z and thus Au = Su = z.  

Since B(X)  T(X), there exists a point v  X such that z = 

Tv.  Then again from (3.2) 

(D(Ax2n, Bv, Ax2n))  (M(x2n, v, x2n))  

   = (max{(D(Sx2n, Tv, Sx2n)), (D(Ax2n, 

Sx2n, Sx2n)),  

                       (D(Bv, Tv, Ax2n)), (D(Tv, Ax2n, Ax2n))})  

In the limiting case, we have  

(D(z,Bv,z)) =(max{(D(z,Tv,z)), (D(z,z,z)),(D(Bv,Tv, 

z)),(D(Tv,z,z))})  

        = ((D(Bv, z, z))) 

which is a contradiction.  Hence Bv = z and thus Bv = Tv = z.  

Since pair of maps A and S are weakly compatible then Au = 

Su  implies ASu = SAu i.e. Az = Sz.   Now, we show that z is 

a fixed point of A.  Then, using (3.2)  

(D(Az, Bx2n+1, Az))  (M(z, x2n+1, z)) 

                = (max{(D(Sz, Tx2n+1, Sz)), 

(D(Az, Sz, Sz)),  

   (D(Bx2n+1, Tx2n+1,Az)), (D(Tx2n+1, Az, Az))})  

In the limiting case, we have  

(D(Az, z, Az))  (max{(D(Sz, z, Sz)), (D(Az, 

Sz, Sz)),  

  (D(z,z,Az)),(D(z,Az, Az))}) 

  ((D(Az, Az, z))   [  Az = Sz] 

which is a contradiction.  Hence Az = z. Thus, Az = Sz = z.  

Similarly, pair of maps B and T are weakly compatible, we 

have Bz = Tz .  Now, we show that z is a fixed point of B.  

Then, using (3.2), we have  

(D(Ax2n, Bz, Ax2n))  (M(x2n, z, x2n))  

 =(max{((D(Sx2n, Tz, Sx2n)),   (D(Ax2n, Sx2n, Sx2n)),  

(D(Bz, Tz, Ax2n)), (D(Tz, Ax2n, Ax2n))}) 

In the limiting case, we have  

(D(z, Bz, z))  ((D(Bz, z, z))  

which is a contradiction.  Hence, Bz = z.  Therefore, Bz = Tz 

=  z and Az = Bz = Tz = Sz = z.  

Let z is a common fixed point for A, B, S and T.  

For uniqueness, let w (w  z) be another common fixed point 

of A, B, S and T.  Then, using (3.2), we have   

(D(Az, Bw, Az))  (M(z, w, z))  

=(max{(D(Sz, Tw, Sz)), (D(Az, Sz, Sz)), (D(Bw, Tw, 

Az)), (D(Tw, Az, Az))}) 

It follows that  

(D(z, w, z)  (max{(D(z, w, z)), (D(z, z, z)), 

(D(w,w,z)), (D(w,z,z))}) 

            = ((D(z, w, z)), which is a contradiction.  

Hence w = z.  

This completes the proof of the theorem.  

Now we give the following example to prove the 

validity of our theorem.  

Example 3.2:  Let X = [0, 1] and A, B, S, T : X  X such 

that  

 A(x) = 
9

x
, S(x) = 

9

x8
 ,  B(x) = 0 ,  T(x) = x  for 

all x  X. Let us define D : X  X  X  R  

By  D(x, y, z) = d(x, y) + d(y, z) + d(z, x).  

Then A(X) = [0, 1/9]  [0, 8/9] = S(X) and B(X) = {0}      

[0, 1] =  T(X)  

Since  A(0) = S(0) = 0   and AS(0) = SA(0). 

So {A, S) is weakly compatible.  Similarly, the pair {B, T} is 

weakly compatible.  Now Condition 3.2 becomes  

(D( x/9, 0, z/9))  (max{(D (8x/9, y, 8z/9)), (D(x/9,   

                      8x/9, 8z/9)), (D(0, y, z/9)), (D(y, x/9, x/9))})  

we see that condition (3.2) is satisfied and clearly 0 is the 

unique fixed point A, B, S and T.  
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