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ABSTRACT 

Fuzzy clustering techniques handle the fuzzy relationships 

among the data points and with the cluster centers (may be 

termed as cluster fuzziness). On the other hand, distance 

measures are important to compute the load of such fuzziness. 

These are the two important parameters governing the quality of 

the clusters and the run time. Visualization of multidimensional 

data clusters into lower dimensions is another important research 

area to note the hidden patterns within the clusters. This paper 

investigates the effects of cluster fuzziness and three different 

distance measures, such as Manhattan distance (MH), Euclidean 

distance (ED), and Cosine distance (COS) on Fuzzy c-means 

(FCM) and Fuzzy k-nearest neighborhood (FkNN) clustering 

techniques, implemented on Iris and extended Wine data. The 

quality of the clusters is assessed based on (i) data discrepancy 

factor (i.e., DDF, proposed in this study), (ii) cluster size, (iii) its 

compactness, (iv) distinctiveness, (v) execution time taken, and 

(vi) cluster fuzziness (m) values. The study observes that FCM 

handles the cluster fuzziness better than FkNN. MH distance 

measure yields best clusters with both FCM and FkNN. Finally, 

best clusters are visualized using a Self Organizing Map (SOM). 

General terms:  

Fuzzy clustering algorithms, comparisons, datasets, distance 

measures  

Keywords:  

Fuzzy clusters; FkNN; FCM; Cluster fuzziness; Data 

discrepancy factor (DDF) 

1   INTRODUCTION 

Clusters are defined as the groups of similar data points devoid 

of any predefined class labels. Clustering is a process of 

successfully partitioning a dataset into groups, where one group 

must be different from the other. It is an unsupervised process as 

the algorithms learn from observations rather than examples, 

which is seen in classification. Thus, clustering is useful to (i) 

explore the hidden pattern of any given dataset and (ii) model 

the data. The popularity of clustering techniques in machine 

learning is due to its inherent ability to handle different types of 

(i) attributes in a multidimensional data, (ii) noisy data, and (iii) 

users having no domain knowledge.  

 Clusters are of two types, such as crisp and fuzzy. In crisp 

clusters, the cluster boundaries are well-defined and within the 

boundary a data point is grouped according to the crisp 

similarity it has with respect to the representative data or cluster 

center. Some popular crisp clustering techniques are K-means 

[1], K-medoid [2], Agglomerative and divisive [3] etc. On the 

other hand, in fuzzy clusters, the cluster boundary is ill-defined 

as the data points inside the clusters are chosen according to its 

degrees of belongingness (i.e. fuzzy memberships) with the 

clusters. Hence, fuzzy clusters are popular in partitioning the 

real-world data where the data-data relationships are usually 

subjective and non-linear in nature [4]. There are several fuzzy 

clustering techniques available, e.g. Fuzzy c-means (FCM) [5], 

Fuzzy k-nearest neighbor (FkNN) [6], Entropy-based fuzzy 

clustering (EFC) [7], Fuzzy ISODATA [8] and so forth. This 

paper, however, focuses on FCM and FkNN techniques. 

In both crisp and fuzzy clustering techniques, cluster centers 

play the key roles in grouping the data points, because these 

pose to be the most ideal representative data of the respective 

clusters. Cluster centers also provide information of the pattern 

stored within the cluster. These are also useful to measure 

compactness and distinctiveness of the clusters. Compactness 

denotes how closely the data points are located with respect to 

the cluster centers. Distinctiveness measures how far the clusters 

are lying from each other. A good clustering algorithm must be 

able to produce compact and distinct clusters. 

Similarity measure between the representative cluster center and 

the random data points (to be clustered) is the initial technique to 

iteratively cluster the similar data points into and exclude the 

dissimilar data. Distance measures are the most useful 

techniques to compute such dissimilarity. There are several 

distance measures, such as Euclidean (ED), Manhattan (MH), 

Cosine (COS), Mahalanobis, Hamming, and so on [9]. 

Generally, the distances between two multidimensional data 

points are calculated attribute-by-attribute [10]. Detail discussion 

of all the available techniques is beyond scope of this work. The 

second focus of this study is to investigate how three distance 

measures, such as ED, MH, and COS influence the overall 

clustering performances.  

Cluster visualization is an important method to directly display 

the clusters for interpreting the size, shape, compactness, 

distinctiveness etc. It is a challenge in case of clusters having 

multidimensional data points. The third focus of this study is to 

showcase the best clusters, obtained through the FCM and FkNN 

techniques using ED, MH and COS distances on a Self-

organizing Map (SOM) [11]. 

2   RELATED RESEARCH 

Fuzzy clustering techniques are quite popular in various research 

domains, such as engineering, economics and commerce, 

biometry and imaging, medical sciences and so on. This paper 

focuses on FCM and FkNN techniques, applied in various 

domains. Some recent studies on these two techniques are 

described below.  

2.1 Works related to FkNN: 

FkNN has been successfully used in various domains of science, 

such as materials science [12], banking and finance [13] [14], 
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biometry [15], healthcare [16] and so on. Detail discussion of all 

the studies are out of scope, however, some obtained from 

Google scholars, Medline, DBLP, and PubMed are briefly 

described below. 

A comparative study between FkNN and back propagation 

neural network (BPNN) had been conducted to quantify duck 

color [12]. The objective of the study was to inject both speed 

and accuracy for such quantification. The study highlighted that 

FkNN is faster and more accurate than BPNN.  

A bankruptcy prediction model was developed by FkNN 

approach, where, the size of the neighborhood and fuzzy 

strength were adaptively specified by both continuous and 

binary particle swarm optimization techniques [13] [14]. The 

proposed model was then compared with five other existing 

classifiers. It was observed that, the model is a powerful early 

warning system. 

An extension of FkNN, called as Fuzzy few-Nearest Neighbor 

(Ff-NN) had been used to develop a personal authentication 

system for exit/entry authorization [15]. Twenty six different 

types of features had been considered for the study.  The study 

concluded that Ff-NN could recognize a person with 88% 

accuracy, when compared to single-NN (79.2% accuracy). 

FkNN has also been used in healthcare, such as in cardiology 

[16]. An attempt had been made to classify arrhythmias using 

FkNN, Multiplayer perceptron (MLP) with steepest descent and 

momentum back propagation and MLP with scaled conjugate 

gradient back propagation. Output of each classifier was 

combined with a Mamdani’s fuzzy logic controller. The study 

observed 98% accuracy in the classification task. 

2.2 Works related to FCM: 

There are several studies existing on FCM clustering technique 

in heterogeneous domains, such as electrical engineering [17], 

communication engineering [18], image processing [19], 

bioinformatics and genetics [20], comparison with other 

techniques [21], healthcare (especially, in mental health) and so 

forth [4] [10][22] [23]. Below, some recent studies have been 

showcased. 

FCM had been used to cluster multimodal interconnected 

electricity system (e.g., IEEE 39-bus) [17]. In the said study, a 

modified similarity measure was considered the group the nodes. 

The study revealed that the proposed algorithm would be able to 

appropriately classify the interconnected power system.  

A hybrid of Quantum-behaved particle swarm optimization 

(QPSO) and FCM had been used to detect unwanted intrusions 

in the network [18]. Gradient descent of FCM had been used to 

import stronger global search capacity and preventing local 

minimum issues with FCM. The study confirmed the robustness 

of the said technique.  

FCM had been used in image study to segment MRI images as 

manual segmentations are highly time-taking processes. It had 

been seen that to segment the images of multiple sclerosis, 

FCM-based segmentation worked faster and accurately [19]. 

FCM had also been tested to segment cDNA microarray image, 

which consists of thousands of gene sequences and some 

inherent artifacts when printed on glass slides [20]. The 

objective of the study was to remove the influence of artifacts 

and it was successfully accomplished with FCM technique. 

A comparative study between FCM and EFC (and its 

extensions) had been performed [21]. It had been seen that FCM 

performed best while tested on three standard data sets, such as 

Iris, Wine and Olitos.  

FCM had also been used to screen psychotic disorders based on 

the Brief Psychiatric Rating Scale (BPRS)-F2. The studies 

observed that it would be able to cluster such disorders quite 

effectively, i.e., without outliers and begetting desired number of 

clusters. The cluster center information of the best clusters 

obtained by FCM and EFC and its extensions were then 

extended to develop two Sugeno-Takagi type fuzzy logic 

controllers. The inference (i.e., diagnoses) thus obtained, were 

optimized using a binary-coded GA with encouraging results 

[22] [23]. 

Based on the available literature, the identified research scopes 

are as follows. 

1) To measure the performance of a clustering algorithm 

based on the discrepancies of data points lying within 

and outside the clusters. In this study, Data discrepancy 

factor (DDF) has been proposed (see equation 8). 

2) To study how various distance measures influence the 

overall clustering performance, especially deciding the 

size of the cluster, DDF, cluster compactness, cluster-to-

cluster distances, and the algorithm run time. In this 

study, three popular distance measures have been 

chosen, such as Manhattan (MH), Euclidean (ED), and 

Cosine (COS). 

3) To experiment how the parameter called ‘cluster 

fuzziness’ used in both FCM and FkNN influences the 

cluster patterns, and finally 

4) To visualize best clusters obtained from various 

‘clustering technique-distance measure-cluster 

fuzziness’ combinations using a SOM. 

Rest of the paper is organized as follows.  

 Section 3 describes the detail methodology of the study.  

 Results are shown and discussed in section 4.  

 Finally, the paper is concluded in section 5. 

3   MATERIALS AND METHOD 

In this study two standard datasets, such as ‘Iris’ and ‘Extended 

Wine’ data have been used to test and compare the performances 

of FCM and FkNN.  

3.1 Data sets: overview 

Iris is a set of total 150 data, each having four attributes, such as 

‘septal’ length and breadth and ‘pedal’ length and breadth [24]. 

The dataset is divided into three class labels (e.g., iris setosa; 

iris versicolor; and iris verginica) each having equal data 

distributions, i.e., first 50 belongs to iris setosa, next 50 goes to 

iris versicolor, and the remaining 50 data belongs to iris 

verginica).  

Wine (extended), on the other hand, is comparatively a larger 

dataset [25]. It is composed of total 204 data with three class 

labels (according to the classes of Wine) and thirteen attributes, 

such as Alcohol, Malic acid, Ash, Alkalinity of ash, Magnesium, 

Total phenols, Flavonoids, Nonflavonoid phenols, 

Proanthocyanins, Color intensity, Hue, OD280/OD315 of dilutes 

wines and Proline. The original data distribution is as first 85, 

next 71, and final 48 data points inside the first, second, and the 

third clusters, respectively.  

The methodology adopted is as follows. 

1) Developing FkNN and FCM algorithms on Matlab 9 

taking ED, MH and COS distances,  
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2) Testing the algorithms with various values of the 

‘cluster fuzziness’ parameter to note the clustering 

outcome, and finally 

3) Best sets of clusters, obtained through various 

combinations FkNN, FCM, three distance measures, and 

cluster-fuzziness values are then visualized by a SOM. 

3.2 FkNN algorithm: 

It works by assigning class membership to the multidimensional 

data points by measuring the distance to its k-nearest neighbor 

(kNN). It is worth noting that, here, kNN has been extended into 

FkNN by computing the ‘fuzzy’ distances among the data points 

that define the cluster fuzziness (i.e. ‘m’ in equation 1 and 2). 

The implementation algorithm is as follows, 

Step-1: computing distances from data points to labeled samples 

Step-2: If kNN have not yet found then to 

include data point 

else, if a labeled sample is closer to the data point than 

any other kNN then go to 

Step-3: replacing the farthest with the new one 

Step-4: to compute the fuzzy membership and 

     to repeat steps 1-4 for the next labeled sample. 
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In equation 1, ‘uij’ denotes the membership of the input ‘xil’ for 

the j-th cluster (j varies from 1 to K) based on the fuzzy distance 

to its kNN. ‘k’ denotes the data dimension which let’s assume is 

varying from 1 to M. The notation ‘m’ denotes the fuzzy weight 

of the distance or fuzzy relationship when calculating each of the 

kNN’s contribution to the membership value. In case the value 

of ‘m’ increases, the neighbors are more evenly weighted and 

their relative distances from the data point that is to be classified 

will have less effect on each other and vice versa. It is important 

to note that, ‘m’ has been varied carefully and the performances 

of the algorithms are then noted to obtain the optimum ‘m’ 

values for FkNN and FCM and the distance combinations.  

3.3 FCM algorithm:  

The steps of this algorithm implementation are as follows, 

Step-1: to assume ‘K’ number of clusters of ‘N’ multiple 

dimensional data points, where, 2≤ K≤ N 

Step-2: data normalization to avoid biasing factors 

Step-3: to choose ‘cluster fuzziness’ m>1 

Step-4: initialize membership matrix ‘uijk’ such that Sum(uijk = 

1.0) 

Step-5: computing cluster center for the j-th cluster (see equation 

6) 

Step-6: computing distance between ‘x’ (data point to be 

clustered) and the j-th cluster center 

Step-7: update fuzzy membership matrix according to the 

distance (D) measure (refer to equation 7) 

to repeat steps 5-7 until the membership matrix becomes  stable. 
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In this study, FkNN and FCM algorithms are developed in 

Matlab 9 by taking three different distance measures, such as 

Euclidean (ED), Manhattan (MH) and Cosine (COS). The 

objective is to check how these measures influence the overall 

clustering task. Equations 4-7 show the ED, MH, COS and ED-

norm, respectively.  
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In the above equations, ‘N’ and ‘M’ denote total number of data 

points and the data-dimension. The notations ‘xik’ and ‘xki’ refer 

to M-dimensional data points (where, i ≠ k). The superscript‘t’ 

seen in equation 6 denotes the transpose. In equation 6, the 

denominator is the product of ED norm of vector ‘xik’ and ‘xki’. 

The ED norm of say ‘xik’ is expressed as, 
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It is worth noting that ED norm represents the length of the 

vector. 

3.4 Proposed parameters to measure 

clustering performances: 

Clustering performance of FCM and FkNN with three different 

distance measures (i.e. MH, ED and COS) and several values of 

cluster fuzziness (the ‘m’ parameter shown in equations 1,2 and 

3) are compared based on the following parameters. 

a) Size of the clusters (CL_SIZE): The size is determined 

by the total number of data points lying within each 

cluster. It is important to note that while developing the 

algorithms, the movement of each data point has been 

tracked to see any positional discrepancy among the data 

points within the clusters.  
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b) Data discrepancy factor (DDF): Data discrepancy is 

measured by noting the positional discrepancies among 

the data points during clustering. It is computed by 

adding the number of (i) ‘wrong’ data points grouped 

inside (WI), (ii) the ‘correct’ data points lying outside 

(WO) of any kth cluster and (iii) number of data points, 

which could not be clustered i.e. the outliers (OL) when 

matched with the representative data (Ck). Finally, it is 

expressed as a percentage of the total number of data 

points (N). Ideally the DDF must be 0%, i.e. all the data 

points are clustered as it should be and there is nil 

outlier. Its significance is to evaluate the ‘under’ and 

‘over’ fitting of the data. An example of DDF 

computation is displayed in table 1 in the following 

section. 
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In this paper it is further examined how different values 

of cluster fuzziness (i.e., ‘m’) influence the cluster size 

and thereby the DDF (refer to section 4.1.2.1 for detail).  

c) Cluster compactness (CL_COMP): it is measured by 

calculating the average Euclidean distance of all data 

points with respect to the cluster centers (see equation 

9). In this equation, ‘x0’ denotes the cluster center and 

‘xi’ are the data points (where ‘i’ varies from 1 to N) 

present in the neighborhood. Good clusters should be 

compact in nature. 
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d) Cluster distinctiveness (CL_DIST): it measures the 

pair wise Euclidean distance between the cluster centers 

(see equation 10). Less distance determines the extent of 

overlapping, which is not desirable i.e. good clusters 

must not overlap each other. 

 2*

00),( xxCCD ji    where, i ≠ j            (10) 

In this equation, x0 and x0
* are the cluster centers of the 

clusters Ci and Cj.  

e) Run time (ALGO_RUN): it is the execution time 

measured for the complete running of each algorithm in 

a P4 computer with 1GB RAM and 3.0 GHz processor. 

It is worth noting that in this paper the effects of various 

‘m’ values are studied on run time for several distance-

algorithm combinations (see section 4.1.2.2 for detail). 

Finally, best clusters obtained using the technique-distance 

combinations are visualized using a Self-organizing map (SOM).  

3.5 Cluster visualization with SOM: 

SOM works in three phases – (i) Competition, (ii) Cooperation 

and (iii) Updating. It follows the principle of unsupervised 

learning, i.e., learning by observations. ‘Competition’ layer is 

consisted of a number of neurons equal to the number of input 

vectors (Xi) having random connection strengths (W [0, 1]). 

Euclidean distance is calculated between each neuron and the 

input vector with the help of connection weights or ‘W’, 

iteratively. The notation‘t’ is the number of iterations that varies 

from 1 to τ. The minimum ED is considered in selecting the 

winner neuron (n). In the ‘cooperation’ phase, the neighborhood 

of ‘n’ is decided by computing the lateral Euclidean distances 

among the remaining neurons. Gaussian function is considered 

as the neighborhood function for making the neighborhood 

search (see equation 11). Finally, the weights of the winner 

neurons with the neurons of its neighborhood are ‘updated’ 

iteratively with a learning parameter, ‘η’ [0, 1] (see equation 12) 

till the network becomes stable, i.e., no further updating of 

weights is required (i.e. the weights are converged) or the 

maximum number of iterations (τ) has been reached. It is 

important to mention that, with iterations, the required learning 

and its effects on the load of weight updating diminishes. In 

other words, the neighborhood shrinks with iterations (see 

equation 13 and figures 3, 4 and 5). 
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At the end, in order to map higher dimensional data (i.e., the 

input) into 2-dimension (i.e., the output), the ED of each ‘n’ is 

measured from the origin of the higher dimensional space. This 

information is used to draw a number of circular arcs, which is 

now equal to the number of ‘n’ in a 2-D space, keeping the 

center of origin (0,0) (26). All ‘n’ are now located in 2-D space 

and the ‘n’to‘n’ distances are kept same as it was in the higher 

dimensional space. It preserves the topological information of 

the original data points. The SOM algorithm has been developed 

in Matlab 9. 

4. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 

In this section, experimental results are shown and discussed as 

per the objectives of the study. The first objective is to define the 

cluster size in terms of DDF computation. The second objective 

is to explore how various distance measures (i.e. MH, ED, and 

COS) could influence the performance of FkNN and FCM 

algorithms. This paper has proposed six parameters, such as (i) 

Cluster size (CL_SIZE), (ii) Data discrepancy factor (DDF), (iii) 

Cluster compactness (CL_COMP), (iv) Cluster distinctiveness 

(CL_DIST), (v) the execution/run time of the algorithm 

(ALGO_RUN) and (vi) the cluster fuzziness ‘m’ to test and 

compare the performances of the algorithms. The third objective 

of the study is to test the effects of cluster fuzziness (i.e., the 

parameter ‘m’) on clustering performance and the amount of 

time taken for execution. The fourth objective is to visualize the 

best clusters obtained with various technique-distance-cluster 

fuzziness combinations using a SOM.  

4.1 Performance measure: 

The performance of FCM and FkNN with various distance 

measures, such as MH, ED, and COS and chosen cluster 

fuzziness (m) are examined and compared. It is important to note 

that DDF and cluster fuzziness (m) are the major emphasis of 

this paper. Hence, these two concepts have been discussed 

separately in detail. 
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4.1.1 According to DDF computation: 

One of the cluster quality measures is the DDF computation. It 

is calculated using equation 8. The paper argues that it is the 

most important measure among all other measures to judge the 

performance of any clustering technique. Conventionally, good 

clustering is assessed by counting total number of data points 

within a cluster [27]. If the number equals to the number of 

desired data points, the cluster is said to be perfect [27]. This 

paper proposes that the goodness of the clustering techniques 

must not be judged based on only the data count inside a cluster, 

rather the goodness of a cluster must be tested by summing up 

the data points which are (i) present within a cluster where it 

should not be and vice versa and (ii) not clustered i.e. outliers 

(OL). While clustering, the iterative entry and exit of the data 

points has been carefully monitored. Table 1 shows an example 

of the proposed vs. conventional way of DDF calculation. 

 

Table 1.  A sample of DDF calculation on Iris data, FCM algorithm with MH measure. 

# 

Cluster 

Data 

points 

Target Observed # Wrong data points OL Proposed 

DDF (%) 

Conventional 

DDF (%) 

1 1- 50 50 50 00 00 {(0+4+6+0)/

150}x100= 

6.66% 

{(0+1+1+0)/1

50}x100=1.3

% 
2 51 – 100 50 49 04(107,120,134,135) 00 

3 101 - 150 50 51 06(51,53,57,71,78,87) 00 

 

In this example, in cluster 1 first 50 data points are present. But, 

cluster 2 and 3 has one less and one more data, respectively. So 

based on the data count inside the clusters i.e. by the conventional 

way, the data discrepancy is only 2 and accordingly the DDF is 

1.3%. However, by monitoring the individual data label it is seen 

that four data points, such as 107, 120, 134, and 135 have entered 

cluster 2, but these must be inside cluster 3 as per the Iris 

classification. Similarly, 51, 53, 57, 71, 78, and 87 these six data 

points are lying inside cluster 3, while they must be inside cluster 

2. According to the proposed DDF it is now enhanced to 6.66% 

from 1.3% and reflects the clustering performance in a much 

holistic way. In this paper, DDF for all combinations (algorithm 

used, distance measures chosen, and the values of ‘m’ parameter) 

are computed to critically assess the performance of the clustering 

techniques. 

4.1.2 According to cluster fuzziness (‘m’): 

One objective of this paper is to check how the cluster fuzziness 

parameter (i.e. ‘m’) influences the clustering performance in 

terms of DDF and the run time. Figures 1 to 4 shows the 

influence of ‘m’ parameter on DDF. Figures 5 to 8 shows the 

effect of ‘m’ on the run time.  

4.1.2.1. Effect of ‘m’ on DDF: 

The objective is to test how a fuzzy clustering algorithm might 

handle the fuzziness among the data points which is true for real-

life data. The paper proposes that the algorithm that is able to 

handle maximum fuzziness is robust. With this concept, from 

figures 1(a) to (d), it may be noted that FCM with MH distance 

is able to handle maximum fuzziness (m = 12) to get the best 

clusters with least DDF (6.66%) in Iris data. On the other hand, 

FkNN performs better in the extended Wine data (m = 7.5; DDF 

= 6.66%) with MH distance. 

 

 

 

 

 

 

 

 

Fig.1(a). DDF vs. ‘m’ (FCM in Iris with MH distance). 

 

 

Fig.1(b). DDF vs. ‘m’ (FkNN in Iris with MH 

distance). 
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Fig.1(c). DDF vs. ‘m’ (FCM in extended Wine with 

ED). 

 

 

Fig.1(d). DDF vs. ‘m’ (FkNN in extended Wine with 

MH distance) 

4.1.2.2. Effect of ‘m’ on run or execution time: 

The impact of cluster fuzziness (m) on run time has also been 

tested and displayed in figure 5 to 8. It may be noted that run 

time increases with increment of fuzziness, but interestingly 

such increment is not monotonous. There are also some 

decrements as seen in figure 2(a) to (d). The plausible reason 

could be that initially the algorithm is able to take care of the 

higher fuzziness, but later it is unable to do so. So, the paper 

argues that FCM manages the fuzziness best in extended Wine 

data with ED measure. 

 

Fig.2(a). Run time vs. ‘m’ (FCM on Iris data with MH 

distance). 

 

Fig.2(b). Run time vs. ‘m’ (FkNN on Iris data with 

MH distance). 

 

 

Fig.2(c). Run time vs. ‘m’ (FCM on extended Wine data with 

ED). 

 

Fig.2(d). Run time vs. ‘m’ (FkNN on Extended Wine 

data with MH distance). 

Summarily, FCM handles the cluster fuzziness better than FkNN 

algorithm on both Iris and extended Wine datasets with MH and 

ED measures. 

4.1.3 According to other parameters: 

Now, the quality of FkNN and FCM clustering techniques based 

on four other parameters, such as (i) cluster size (CL_SIZE), (ii) 

cluster compactness (CL_CMP), (iii) inter cluster distance 

(CL_DST), and (iv) Execution/run time (ALGO_RUN). Table 2 

and 3 show the results obtained by the FkNN and FCM 

algorithms, respectively on Iris and the extended Wine dataset. 
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Table 2.  Performance of FkNN with various distance measures according to the clusters. 

Data Distance CL_SIZE DDF CL_CMP CL_DIST ALGO_RUN ‘m’ 

Iris 

 

MH 50,64,36 0+2+16+0 0.486,0.588,1.25 3.455,4.746,1.421 2.30e+09 4.5 

ED 50,64,36 0+2+16+0 0.486,0.588,1.25 3.455,4.746,1.421 1.07e+10 4.5 

COS 52,61,37 2+7+17+0 0.767,0.617,1.149 3.226, 3.483, 1.417 8.75e+09 2 

Wine 

MH 90,64,50 0+7+0+0 180.866, 139.042, 92.088 550.493,410.175,140.653 7.86e+10 7.5 

ED 63,89,52 24+6+0+0 380.11,177.098,88.546 258.023,321.124,64.562 7.35e+10 9.5 

COS 97,57,50 0+14+0+0 223.865,228.093,136.835 575.069,170.086,405.091 6.77e+10 9.5 

 

Table 3.  Performance of FCM with various distance measures according to the clusters. 

Data Distance CL_SIZE DDF CL_CMP CL_DIST ALGO_RUN ‘m’ 

Iris 

 

MH 50,49,51 0+3+4+0 0.486,0.768,0.847 3.455,4.397,1.0 4.08e+10 12 

ED 50,52,48 0+6+4+0 0.486,0.724,0.90 3.455,4.397,1.0 3.26e+10 8 

COS 50,36,64 0+25+11 0.504,1.499,0.670 3.911,4.840,1.162 1.34e+10 8 

Wine 

MH 86,53,65 1+7+0+0 189.278,167.900,70.837 550.493,410.175,140.453 5.40e+10 1.1 

ED 86,52,66 1+6+0+0 189.278,171.129,69.764 550.493,410.175,140.653 5.95e+10 1.5 

COS 65,86,53 1+7+0+0 250.429,103.896,129.090 597.034,310.051,287.054 9.370e+10 1.1 

 

From tables 2 and 3, it may be noted that,  

 On Iris data: 

a) FCM generates best sized clusters, i.e. CL_SIZE 

(50,49,51) using MH distance and the 

corresponding DDF is 6.66%.  

b) Most compact (CL_CMP) are seen with MH 

distance in both FkNN and FCM. 

c) Most distinct clusters are produced with MH and 

ED by FCM and FkNN, respectively. 

d) Least run time is noted in FkNN with MH 

distance for obvious reasons. 

e) The highest levels of cluster fuzziness (i.e. ‘m’) 

have been handled by FCM algorithm with MH 

and ED compared to FkNN. 

 On extended Wine data,  

a) FCM with ED produces best sized clusters 

(86,52,66), DDF is 6.66%.  

b) FkNN produces the best clusters which are also 

most compact and distinct with MH distance. 

c) Least run time is noted in FCM with MH for 

obvious reasons. 

d) Most cluster fuzziness has been handled by 

FkNN algorithm with MH, ED, and COS 

compared to FCM. 

 

 

 

 

Summarily, from this experiment, the following technique-

distance combinations have most efficiently handled the Iris and 

extended Wine datasets. 

 On Iris data: (i) FkNN with MH distance with ‘m’ = 

4.5 and (ii) FCM with MH distance with ‘m’ = 12. 

FCM is better in terms of lowest DDF value (6.66%) 

and handling the highest level of cluster fuzziness (i.e. 

‘m’ = 12). 

 On extended Wine data: (i) FkNN with MH distance 

with ‘m’ = 7.5 and (ii) FCM with ED with ‘m’ = 1.5. 

FkNN and FCM are found equally efficient in terms of 

DDF values computed (3.43%), but FkNN can handle 

the higher level of cluster fuzziness. 

4.3. Visualization of best clusters using a 

SOM: 

Finally, the best clusters of Iris and extended Wine data obtained 

by the FkNN and FCM and the best distance combinations have 

been plotted as Convergence vs. Weight change using SOM. 

Figure 3(a) through (c) shows the three best clusters, iris setosa, 

iris versicolor and iris verginica, respectively obtained by FCM 

with MH distance. Similarly, figure 4(a) through (c) shows the 

best iris clusters obtained by FkNN with MH. Likewise, best 

clusters obtained by FCM and FkNN on extended Wine data are 

displayed in figure 5(a) to (c) and figure 6(a) to (c), respectively. 

The figures show the iterative convergence of the weights 

attribute wise based on the learning and gradual neighborhood 

compression. In these figures, the arrays of data pints converging 

at ‘0’ denote the attributes of the datasets.  
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Fig.3.(a) iris setosa (FCM with MH and ‘m’ = 12, DDF 

= 6.66%). 

 

Fig.3.(b) iris versicolor (FCM with MH and ‘m’ = 12, 

DDF = 6.66%). 

 

Fig.3.(c) iris verginica (FCM with MH and ‘m’ = 12, DDF = 

6.66%). 

 

Fig.4.(a) iris setosa (FkNN with MH and ‘m’ = 4.5). 

 

Fig.4.(b) iris versicolor (FkNN with MH and ‘m’ = 4.5). 

 

Fig.4.(c) iris verginica (FkNN with MH and ‘m’ = 4.5). 



International Journal of Computer Applications (0975 – 8887)  

Volume 57– No.7, November 2012 

30 

 

Fig.5.(a) Wine cluster-1 (FCM with ED and ‘m’ = 1.5). 

 

Fig.5.(b) Wine cluster-2 (FCM with ED and ‘m’ = 1.5). 

 

Fig.5.(c) Wine cluster-3 (FCM with ED and ‘m’ = 1.5). 

 

Fig.6. (a) Wine cluster-1 (FkNN with MH and ‘m’ = 7.5). 

 

Fig.6. (b) Wine cluster-2 (FkNN with MH and ‘m’ = 7.5). 

 

Fig.6. (c) Wine cluster-3 (FkNN with MH and ‘m’ = 7.5). 
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5. CONCLUSIONS AND FUTURE WORK 

The paper at first investigates how different distance measures 

and the cluster fuzziness influence clustering performances of 

FCM and FkNN algorithms on Iris and extended Wine datasets. 

It then compares the performance based on (i) cluster size 

(CL_SIZE), (ii) DDF, (iii) cluster compactness (CL_CMP), (iv) 

inter cluster distance (CL_DST), and (v) Execution/run time 

(ALGO_RUN). Based on the experimental outcomes, the study 

concludes that, 

 FCM produces best sized clusters on Iris and extended 

Wine data with MH and ED, respectively. Respective 

DDF values are 6.66% and 3.43%. 

 Both FkNN and FCM produce compact clusters with 

MH and ED on Iris data. FkNN with MH produces 

most compact extended Wine clusters. 

 On Iris data, FCM produces most distinct clusters with 

MH and ED. On extended Wine data, FCM with MH 

distance produces most distinct clusters. 

 The fastest of all combinations is the FCM with MH 

(2.30e+09). 

 FCM is able to handle maximum cluster fuzziness (m 

= 12) with MH distance measure on Iris data. On the 

other hand, on extended Wine FkNN can maximally 

handle the cluster fuzziness (m = 9.5) with ED and 

COS. 

 Hence, FCM is found as a better fuzzy clustering 

approach, compared to FkNN. 

 Finally, using SOM, best clusters could be 

successfully visualized. 

The contribution of this study is the in-depth analysis of the 

clustering steps and visualization of the best clusters, obtained. 

The role of cluster fuzziness (the ‘m’ parameter) has been 

examined thoroughly on the clustering performance in terms of 

cluster size and DDF as well as the run time taken. It is seen that 

the relationship between ‘m’ and the DDF is much non-linear as 

the algorithm tries to accommodate the fuzzy relationships while 

clustering with intermittent successes and failures (see figure 

1(c)). From this example it may be inferred that fuzzy clustering 

algorithms can handle the said fuzziness up to a certain extent 

until it learns how to handle it further. Such information might 

be helpful to the researchers those use fuzzy clustering 

techniques on real-life complex data. 

The limitation of the work is that the said algorithms might be 

tested further on real-life complex data, e.g. medical or business 

data. This constitutes author’s future work. 
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