
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

16

An Application Sandbox Model based on Partial

Virtualization of Hard-Disk and a Possible

Windows Implementation

Jasmeet Singh

Amity School of Engineering &
Technology

Amity University Haryana
Gurgaon, India

Khalid Hussain
Amity School of Engineering &

Technology
Amity University Haryana

Gurgaon, India

Akshat Aggrawal
Amity School of Engineering &

Technology
Amity University Haryana

Gurgaon, India

ABSTRACT

The proposed concept is of an Application Sandbox Model

that restricts any malicious code from making changes to the

actual system hard-disk by using a counterfeit Virtual Hard-

Disk. The applications initiated using this Sandbox are

allowed to read any file from the real hard disk but when they

need to make changes(write) to any file then the Sandbox

copies that file from the real hard disk to a Virtual Hard-Disk

Space and then makes changes to this counterfeit copy of the

file. For every future access request (read or write) of the

same file only this counterfeit copy shall be referred. In this

way it both ensures the normal & complete execution of the

application initiated using the Sandbox and simultaneously

protects the real hard disk file system from any potentially

harmful changes. This paper discusses about the concept,

design and a possible Windows Implementation of such an

Application Sandbox Model.

General Terms

Application Sandbox Model,PartialVirtualization, Virtual

Hard Disk, Windows Application Sandbox.

Keywords

Virtualization, sandboxing, security, system calls

interception,Input/output Request Packet, virtual hard-disk.

1. INTRODUCTION
A Sand box is a secure execution environment that applies

restrictions on an application to run untested code without

harming anything outside the scope of the sandbox

environment. Sandboxes replicate the bare minimums

required to successfully run the whole application. Typical

examples of sandboxes include process virtual machines like

JVM, rule based execution systems, resource limiting jails,

and system virtual machines.

The problems with today’s sandbox models is that firstly, they

are more restrictions oriented and hence don’t allow the

applications to always run successfully & completely and

hence all the effects of the application cannot be always

studied. Secondly they do not provide any provision to log all

the changes that are made to the system by that application.

Thirdly there is no possible way to refer to both the initial and

the final state of the system files and determine which files

and their which parts have been changed by the application.

The proposed sandbox model presented in this paper

overcomes these drawbacks of traditional sandboxes. The

major purpose of such a sandbox model is to study the

changes made by an application to the system environment.

The idea is as simple. The idea is to protect that component of

a system which any virus program actually targets, the hard-

disk.

The proposed sandbox model is based on the concept of a

virtual hard disk integrated with the sandbox software in a

very elegant manner. The sandbox shall instead of emulating

an Operating System environment would rather borrow the

Operating System environment for the executions of

applications under itself. This is because the purpose is to

restrict (or sandbox) the applications from harming operating

system environment and not to create a whole new operating

system environment itself.

2. RELATED WORK
The concept of sandboxing is first introduced by Wahb e et al.

in the context of software fault isolation [1]. What they

achieve is safety for trusted modules running in the same

address space as untrusted modules. Janus [2], to my

knowledge, is the first to propose using these techniques.

Systrace [3] expands on Janus by proposing novel techniques

that efficiently confine multiple applications and support

multiple policies. Recursive Systrace [4] expands on Systrace

by allowing sandboxed processes to further limit their

children processes.

Sandboxing can be used to analyze malicious codes [5], make

sure the data written with no sensitive information [6], etc.

Many studies have improved the traditional sandbox toward

dissimilar emphases: sandbox based on delegating

architecture [7], sandbox executing speculative security

checks [8], sandbox with a dynamic policy [9], etc.

Many sandbox systems [1,2,3,4,5,6,7,8,9] are based on system

call interception. When an application attempts to invoke a

system call, the sandbox system first suspends the application

and checks the security of the invocation. It finally resumes

the application if it judges the invocation as benign [10].

3. THE PROPOSED SANDBOX MODEL
The Sandbox Model is composed of the Sandbox Software

and Virtual Hard Disk Space that the sandbox uses. The

concept of sandboxing is implemented in a very elegant

manner by using this Virtual Hard Disk Space to act as the

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

17

real hard disk only when a write request is made by the

application for some particular file. Two other external actors

in the Model are the Operating System and the Applications

that are to be run using the sandbox.

Fig 1: The Virtual Hard Disk based Sandbox Model

All file access requests made by the application run in the

Sandbox are intercepted by the sandbox. The sandbox then

checks if it is a read request or a write (or modification)

request. The applications run normally until there are only file

read requests made by the application. But when a write

request is encountered by the sandbox something different

happens. The file that is to be modified by the sandbox is

copied by the sandbox from the actual Hard Disk’s File

System to the same tree of directories in a Similar File System

of the Virtual Hard Disk unless or until it does not already

exist in the Virtual Hard Disk. And after copying the changes

are made only to this copied or counterfeit file rather than the

actual one. For every future access of the same file whether

read or write, only the file in the Virtual Hard Disk is used.

The idea is based on the obvious fact that any malicious

program ultimately only harms the system’s secondary

storage of a system. And that too only when it is writing to

this storage and not when it reads from it. Hence if the writing

of the files in the secondary storage can be handled with by

using decoy files then the problem is solved and the malicious

program cannot possibly harm the system at all.

3.1 Copying From Real Hard Disk to VHD
There can be total 4 main cases for every intercepted file

access request:

3.1.1 Read request of a file not residing on the

VHD:
In this case the sandbox just forwards the request to the

Operating Systems which responds to it.

3.1.2 Read request of a file already residing on

the VHD:
In this case this counterfeit copy of the file in the Virtual Hard

Disk is read by the application instead of the actual file

residing in the real File System.

3.1.3 Write request of a file not residing on the

VHD:
In this case the file is copied from the file system to the virtual

hard disk. And then the modification is done to this

counterfeit copy of the file. This copy shall be created in the

same directory tree that has been made in the sandbox

according to the location of the file in the real Hard Disk File

System.

3.1.4 Write request of a file already residing on

the VHD:
In this case there is no need to copy the file from the hard disk

to the Virtual Hard Disk again. And only the counterfeit copy

in the Virtual Hard Disk is written to or modified by the

sandbox. The VHD shall contain the file in exactly the same

directory branch as referred to by the applications request.

3.2 File Deletion Dilemma
There can obviously also be a case that some file had been

previously copied to the VHD for some application and then

the same application or another one may have made a deleted

request for the same file and the sandbox may have deleted it.

In this case the file might still be present in the real file

system but may have been deleted from the VHD. This will

seem to the sandbox as if the file has not yet been copied from

the Real File System to the VHD and the sandbox will

wrongly forward the request to the Operating System to read

it from the File System. This is the File Deletion Dilemma

since neither can the sandbox delete a file from the real hard-

disk nor is there a permanent way to delete it from the virtual

hard disk. The sandbox cannot be allowed to delete from the

real hard disk for security purpose. But there can be a way to

delete a file from the virtual hard disk and simultaneously

record this process of deletion as well.

3.3 Solution to the Dilemma
For such a case the Sandbox will have to maintain historical

records of all the files that had been copied with the

information that do they still exist in the virtual hard disk or

had been deleted by some application from the directory.

These records will be stored in a table which will be referred

as the VHD-Table (Virtual Hard Disk-Table) in this paper.

File Access Request

File Access Request

File Access Request

File Access Request

Requests Forwarded to

the OS

Read

Write Read

Applications

Initiated by the

Sandbox

Application

II

Application

III

Application

IV

Application I

Virtual Hard

Disk

Sandbox

Operating System

Real

Hard - Disk

Write

Real File

System

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

18

The table shall not only store the files parameters but also the

directory location in which the files exist. And the sandbox

shall now look for the file information in the VHD table

instead of the virtual file system directories.

3.4 Algorithm for Processing File Access

Requests
As shown in the flowchart below (see Figure 2), 2 new cases

for file access requests are included:-

i. Read request of a file deleted from the VHD.

ii. Write request of a file deleted from the VHD.

In either of the 2 cases the sandbox responds to the request

with a “File does not exist” message.

Fig 2: Flow-chart Depicting the Algorithm for Processing File Access Requests

3.5 Copying the Critical Components of

Operating Systems tothe Virtual Hard Disk
Critical components of the Operating System can be copied to

the Virtual Hard Disk in advance even before running the

application. These are the components that need changes very

frequently or are too critical to the Operating System that they

are more likely to be attacked by any malicious software. The

sandbox will not check for these files or directories in the

VHD table it will directly allow the application to access them

from the VHD which will also save valuable execution time.

Examples of such components would be:-

 Windows Registry.

 Internet Browser Cache folders & files.

 Temporary files.

 Frequently needed DLL libraries.

 Data from removable drives or pen drives right

when they are inserted to the system to avoid

viruses.

There are 2 advantage of copying such components to the

VHD:-

No

Yes

Yes

No

No

Yes

No Yes

Write Read

Start

Stop

Intercept all the hard disk

access requests made by the

applications

Is it a read

or write

request?

Is the file

information

found in the

VHD table?

Has the file

been deleted

from the

VHD yet?

Is the file

information

found in the

VHD table?

Forward the request

to the Operating

System

Read the counterfeit

copy of the file in the

VHD

Respond to the

intercepted request

with a “File does not

exist” message

Has the file

been deleted

from the

VHD yet?

Write to this

counterfeit copy of

the file in the VHD

Copy the file from

the real File System

to the VHD in a

similar directory

Respond to the

intercepted request

with a “File does not

exist” message

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

19

1. Time will not be wastes in copying the files of such

components which are the most probable target for

frequent modification.

2. Security will increase since the some critical

components are most likely to be attacked by the

malicious applications.

3.6 Manually Copying Files to the VHD
A provision can be made for manually copying all those files

to the VHD that might be modified by the application. The

sandbox cannot possibly guess that what all files might need

modification or access by the application. The user can copy

files that are most probable to be needed by the application.

Copying the files in between the execution of the application

can be done by blocking the application execution which

should be avoided.

There will be 3 main advantages of copying the most probable

files that may need to be modified by the application:-

1. It will save a lot of valuable time that would have

been wasted in the transfer of files from the Hard

Disk File System to the VHD in the middle of the

execution of the application.

2. The performance of the application will increase

since the Sandbox will not need to check again and

again if the files are on the VHD or not.

3. Copying a large directory or a large number of files

to the VHD at once would take lesser time than

copying each file separately after many intervals.

4. Modules
The model has 7 main modules which are as follows:-

4.1.1 Application Initiator:-
It first creates a new application controller instance and

initializes that instance and waits for a “START” message

from the application controller. And then starts the execution

of the application.

4.1.2 Application Controller:-
It first creates and initializes new file access filter, restrictions

module & logging module and sends the “START” message

to the application initiator. And then intercepts all the file

access requests.

4.1.3 File Access Request Filter:-
It uses the algorithm represented in Figure 2 to filter the

requests made by the applications. For this purpose it sends a

“Check_VHD_Table” request to the VHD controller along

with the file name and location. Then it either sends

READ/WRITE message to the VHD controller (with the file

parameters), sends a Copy_HDD_to_VHD request to the

VHD controller (with the file parameters) or directly forwards

the request to the Operating System accordingly.

4.1.4 VHD (Virtual Hard Disk) Controller:-
It is responsible for controlling the virtual hard disk & its file

system and maintaining and controlling the VHD-Table.

4.1.5 Logging Module:-
It logs all and changes made by the application in an

organized log file.

4.1.6 Restrictions Module:-
It creates, removes and maintains the restrictions that are put

upon the application.

4.1.7 Automated Tool Creator:-
It is an optional module which can create an automated

reversal tool for all the changes made to the system by an

application. For this purpose it uses only the logging module.

The reversal tool shall only be used on an already effected

system to revert all the similar harmful changes that may have

been made by the same application.

5. Execution Sequence

The stages of execution can better be illustrated by the state

chart diagram of the proposed Sandbox Model (see Figure 3):-

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

20

Fig 3: Statechart for Execution Sequence of the Sandbox

6. A POSSIBLE WINDOWS

IMPLEMENTATION

6.1 Placing Restrictions
Since there is no strict parent-child relationship in between the

processes in Windows hence Sandboxing in windows is

difficult than it is in Linux. But there is a way around to

implement a sandbox in windows. Microsoft Windows offers

a “job” kernel object that lets you group processes together

and create a "sandbox" that restricts what the processes can

do. It is best to think of a job object as a container of

processes. However, it is also useful to create jobs that contain

a single process because you can place restrictions on that

process that you normally cannot. A job object allows groups

of processes to be managed as a unit. Job objects are namable,

securable, sharable objects that control attributes of the

processes associated with them. Operations performed on the

job object affect all processes associated with the job object

[11].

6.2 Intercepting File Access Requests
In Windows “File System Filter Drivers” are used to intercept

file access requests. File System Filter Drivers are

input/output filter drivers layered over file system drivers.

When a windows process needs to access a file for input or

output it creates an Input/output Request Packet (IRP). File

System Filter Drivers can intercept these IRP’s.

The sandbox software would include a file system filter driver

that intercepts IRPs that deliver IRP_MJ_CREATE

commands that issue whenever an application opens a file.

Before propagating the IRP to the file system driver to which

the command is directed, the sandbox would forward the IRP

type and parameters to its File Access Filter Module which

would further interact with VHD controller to check whether

to forward the request to the File System Driver of the Real

Hard Disk File System, forward the request to the File System

Driver of the Virtual Hard Disk File System or to fail the IRP

(typically with an access-denied error) [12].

6.3 Implementing Virtual Hard Disk
To implement a Virtual Hard Disk any Open Virtual Hard

Disk Image Specification can be used for both Windows and

Linux. The specification is not the implementation but the

specification of the image or file that will act as the Virtual

Hard Disk. So a software that manages the VHD would have

to be developed that can create and manage a VHD according

to the specifications. This software is the VHD-Controller

Module of this sandbox model.

Some of the open Virtual Hard Disk Specifications are:-

[Interception Started]

[Objects Created]

[Read/Write Request] [Application Sandboxed]

[VHD Controller Initialized] [VHD Initialized] [Start] Initialize Virtual

Hard Disk Space

Initiate VHD

Controller

Create Application

Controller, File

Access Filter &

Logging Module

Apply

Restrictions

Start Execution of

Application

Intercept Hard Disk

Access Requests

Check VHD

Table

Forward to OS Copy from HDD to VHD Forward to VHD

Controller

Read/Write to Virtual

Hard Disk

Read From Real Hard

Disk

Execute Tool

Create Automated

Reversal Tool

Execution Completed

[File Not Found to Read]

[File Found to Read/Write]

[File not found to Write]

[Changes Reversal

Command]

[Log Information Analyzed]

[Changes

Completed]

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

21

 Microsoft’s Virtual Hard Disk Image Format

Specification

 VMware’s Virtual Machine Disk Format (VMDK)

The VHD Controller Module will perform the input/output to

the Virtual Hard Disk and hence would require an engine that

controls the Virtual Hard Disk at the hard disk level and not at

the file system level. A separate File System Driver would be

required to control the Virtual Hard Disk at the file system

level. This File System Driver would also further be

controlled and used by the VHD-Controller.

6.4 Disk Encryption
In this Sandbox Model it is possible to implement both the

disk encryption and the file system level encryption. The

advantage of File system level encryption would be that a

separate file key for each file could be created at run-time and

stored in the memory until the execution of the application

referring to that file does not end hence it would provide more

security. But the advantage of disk encryption would be that

only one key will be needed to be maintained hence there will

be less overhead because the Sandbox will not need to search

for a new file key after every File Access Request. Another

advantage would be that also even the metadata could be

encrypted using disk encryption.

7. Possible Applications and Future

Prospects
Such a sandbox model can have numerous possible

applications. Such software can help the IT-security industry

in creating tools that don’t need any virus definition updates

to reverse any changes made by a virus. This software does

not just rely on restricting any application like the traditional

firewalls and anti-virus software solutions. Instead it relies on

studying the changes made by those malicious applications.

This gives this sandbox an unprecedented advantage over

general antivirus and firewall products. The sandbox shall

allow an application to run without any interruption unlike the

traditional firewall programs.

In future anti-virus and firewall programs cannot just rely

upon updating virus definitions even as frequent as every day.

The numbers and types of viruses would increase to such an

extent that it shall become impossible to create an antivirus

that would contain generic virus definitions for each and

every kind of malicious code. Even the current scenario of the

antivirus industry has started showing such trends.

In future anti-virus and firewall programs will have to be

smart enough to themselves understand what harm any kind

of malicious code can do to a system. And this is only

possible by studying the effects of the code on a system. If

accepted then this idea can revolutionize the IT-security

industry and shall give a way to a completely new generation

of advanced security software solutions.

8. Conclusion
The idea of a perfect sandbox is merely hypothetical. A virus

can always be made ready to bypass any kind of restrictions

and break out of a sandbox. And hence continuous

development of these restriction mechanisms against

malicious applications is also required.

But this idea would still be very useful in at least analyzing

the malicious applications that are not ready for such a

Sandbox yet. Such a sandbox shall lay a basis for the

development of anti-virus software that use the analysis of

changes made by a virus to create a healing or reversal tool

instead of creating virus-definitions every day that need

frequent updates by the user.

9. REFERENCES
[1] R. Wahbe, S. Lucco, T. E. Anderson, and S.L. Graham,

“Efficient software-based fault isolation,” in Proceedings

of the Symposium on Operating System Principles, 1993.

[2] I.Goldberg, D.Wagner, R.Thomas, and E.A.Brewer, “A

secure environment for untrusted helper applications:

confining the wily 34505 hacker,” in Proceedings of the

1996 USENIX Security Symposium, 1996.

[3] N. Provos, “Improving host security with system call

policies,” in Proceedings of the 12th USENIX Security

Symposium, pp. 257-273, August 2003.

[4] A. Kurchuk and A. D. Keromytis, “Recursive sandboxes:

extending systrace to empower applications,” in SEC, pp.

473-488, August 2004.

[5] S. Miwa, T. Miyachi, and M. Eto, “Design and

implementation of an isolated sandbox with mimetic

internet used to analyze malwares,” in Proceedings of the

DETER Community Workshop on Cyber-Security and

Test, 2007.

[6] T. Khatiwala, R. Swaminathan, and V.N.

Venkatakrishnan, “Data sandboxing: a technique for

enforcing confidentiality policies,” in Proceedings of the

22nd Annual Computer Security Applications

Conference, pp. 223-234, 2006.

[7] T. Garfinkel, B. Pfaff, and M. Rosenblum, “Ostia: a

delegating architecture for secure system call

interposition,” in Proceedings of the 11th Annual

Symposium on Network and Distributed System

Security, February 2004.

[8] Y. Oyama, K. Onoue, and A. Yonezawa, “Speculative

security checks in sandboxing systems,” in Proceedings

of the 19th IEEE International Parallel and Distributed

Processing Symposium, April 2005.

[9] T. Shioya, Y. Oyama, and H. Iwasaki, “A sandbox with a

dynamic policy based on execution contexts of

applications,” ASIAN’ 2007, pp. 297-311, 2007.

[10] Zhen Li, Jun-Feng Tian, Feng-Xian Wang, “Sandbox

System Based on Role and Virtualization”, 2009

International Symposium on Information Engineering

and Electronic Commerce, pp. 342-246.

[11] Jeffrey Richter, Christophe Nasarre, “Windows via

C/C++”, Microsoft Press, WB Publisher, India, 2008.

[12] Mark E. Russinovich, David A. Solomon, Alex Lonescu,

“Windows Internals 5th Edition”, Microsoft Press, WB

Publisher, India, 2009.

