
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

1

A New Models Transformation Approach for
Embedded Systems

Mohamed AIT ALI

Lab. SIR - Mohammadia
School of Engineers

Rabat, Morocco

Noureddine ZHAR
Lab. SIR - Mohammadia

School of Engineers
Rabat, Morocco

Mohsine ELEULDJ
National School of Applied

Sciences
Oujda, Morocco

ABSTRACT

Embedded systems are becoming more complex by

integrating multiple features. They require a lot of resources

to improve execution performances. Their developments are a

real challenge due to both their complexity and their quality of

service requirements. To manage this complexity, a model

driven approach focuses on the design of these systems by

raising the level of the specification abstraction. For this

reason the number of modeling languages (metamodels) is

increasing (scientific publications, industrial projects).

However, there is currently little use and dissemination of

good practice to define metamodels (metamodeling) and

transforming these metamodels for verification, validation and

code generation. However, the identification of a string of

well-structured model transformation and formalization of

metamodeling patterns should be an important practice in the

sense that it should speed up the metamodels writing,

facilitate their reuse, teaching and finally processing for code

generation. The research below suggests a structure of a

model transformations chain by defining an intermediate

language.

General Terms
Embedded systems; metamodel; patterns; code generation.

Keywords

Metamodel; Model; Models’ transformation; Intermediate

language;

1. INTRODUCTION
To answer the increasing complexity of the embedded

systems real-time, several languages of modeling such as

UML (Unified Modeling Language), AADL (Architecture

Analysis and Design Language) and SDL (Specification and

Description Language) [1] have been developed in order to

allow a global and abstracted approach of the complex

computer systems modeling which require a modeling for the

analysis, the check [2] and the validation of the systems [3]

before any production of code for platforms which are

generally very forced. Actually, the models’ engineering

(MDEiv) present a development paradigm based on the

models use [4], however if the modeling languages allow to

describe the deployment of application program bricks by

considering an abstract support (medium) of execution, a very

important phase of the development consists in concretizing

these bricks by the executable code generation intended for a

defined execution support (medium) [5]. For this purpose the

engineering managed by the models (MDE) proposes a model

transformation technique [6] to be able to generate

(automatically or semi-automatically) application soft wares

dedicated to particular technological platforms (computing

and electronic), from a description independent from any

technologies. Nevertheless, it is worth mentioning that there

are several modeling languages [7] the number of which

increases constantly and the consideration of the diversity of

the jobs in the conception of the embedded systems goes

through the integration of the various tools and the modeling

languages used by these jobs. Every modeling language is

represented by a meta-model which is only a model that

describes the modeling elements. The target languages are

also represented by meta-model. So, for the executable code

generation, we transform models corresponding to meta-

model towards meta-model target [6]. This requires high-level

of expertise for the definition of several transformations and

rules of transformation due to the significant number of the

modeling languages, target languages and the big difference

between the high level of abstraction of the modeling

languages (UML, AADL, SDL) and the low level of

abstraction of the target languages (Java, C, C ++).To resolve

this problem, our research is interested in the definition of

pivot modeling language or intermediate which we named

COCODEL (Communicating Component Description

Language). This language will have the particularity to define

a models transformation chains structure dedicated to the

development of the embedded systems in order to allow the

executable code generation and the generation of the code for

the formal check of the embedded systems.

In this purpose, this work is articulated as follow: First of all,

we will present the general framework of the study to place

our research work and to present its general aim, then we will

enumerate the advantages of an intermediate language in

transformation chain models, and finish with the definition

and the organization of our intermediate language.

2. GENERAL FRAMEWORK
Our approach joins the MDE framework and recommends that

instead of making direct modeling languages transformations

(UML, AADL, SDL) towards the target languages of low

level abstraction (Java, C, C ++), subject of several works [8]

[9] [10] and several tools allow its achievement (ex:

Rhapsody IBM), we are going to perform a first

transformation towards intermediate meta-model. This one is

composed of various common notions of the modeling

languages (UML, SDL and AADL). The second

transformation is to convert the result of the first one towards

meta-model closer to languages of low-level abstraction (Java,

C, C ++).

Thus, the objective is to have a chain of modular, reusable and

evolutionary transformation to integrate new languages in

entry and exit while obtaining a more optimized code into the

embedded systems. For that we propose the following chains:

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

2

Fig 1: If necessary, the images can be extended both columns

3. ADVANTAGES OF INTERMEDIATE

LANGUAGE
After a quite detailed study of the modeling languages we

noted that they represent important meta-models with a

significant number of classes and concepts [7] with many

several similarities between the various languages. This

noticed identical parts for the majority of the languages during

the transformation of these meta-models. It was also noticed

that the good semantic separation between architecture and

the behavior in these languages. For these reasons, we

introduced an intermediate language into the chain of

transformation which we named Cocodel (Communicating

Component Description Language) and of which we defined

the meta-model. The introduction of an intermediate language

has several advantages.

Indeed, the intermediate languages allow a generic description

of the services and concepts used by the majority of the

languages. The taking into account of a new language or a

new executive is clearly simplified (figure 2) and requires a

low number of concepts to be considered during the

transformation. The capitalization of the common rules is

direct. Moreover, we can carry out transformations of

refinement and optimization directly on the level of

descriptions of the intermediate language according to the

concepts handled by each meta-model.

Fig2:Approach to model transformation with intermediate

languages

4. COCODEL LANGUAGE DEFINITION
The purpose of this pivot language named Cocodel is to allow

a generic description of the services and concepts used by the

majority of the modeling languages which are very rich and

too much used as the UML2, AADL and SDL languages.

A
U

T
O

M
A

T
IC

 M
O

D
E

L
 T

R
A

N
S

F
O

R
M

A
T

IO
N

A
B

S
T

R
A

C
T

I
O

N

L
E

V
E

L

SDL MARTE UML X

COCODEL

Validation

y ADA C CADP IF TINA

AADL

VHDL

ALOS

CO - DESIGN

FIACRE

Fig 1: General diagram of the development chain of embedded systems

Transfo

A->I

Language

A
Language

B
Language

C

Transfo
B->I

Transfo
C->I

Intermediate

Language

Transfo
I->T

Target

Language

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

3

Fig3: Language Cocodel Description

During construction of the meta-model Cocodel, we had a

choice between two strategies to define it:

• Identify common concepts between different modeling

languages in order to have a minimal description of Cocodel.

• Assemble all possible concepts of modeling languages.

After studying the two strategies, we realized that given the

large number of concepts offered by modeling languages, the

description of Cocodel must be minimal. We must therefore

incorporate the common and important concepts in these

different languages for having in the end a generic description

for the meta-model "Cocodel".

During the writing of the meta-model Cocodel, we used

generic patterns that are often used in defining meta-models

for existing languages, in addition to other reasons specific to

particular areas. Reusing patterns saves time and quality.

A model of a system is considered as a set of components

whose ports are connected by relations. The meta-model

Cocodel is divided into four packages:

4.1. The package architecture

It describes the appearance of the architecture of the meta-

model Cocodel. It defines the architectural abstractions based

on the technology components. Indeed the system is described

by a number of components. Its configuration is represented

by an assembly of components via connectors through

associated ports.

4.2. The package behavior

It is described by a state machine transitions through the class-

state machine that describes the internal behavior of an object

using a finite state automaton.

Fig4:Partial behavior Package (State Machine) of Cocodel

4.3. The package action

It defined a language-specific action Cocodel order to

describe the body of all actions, operations, and expressions

used in a model Cocodel, which take all the basic actions

required to model embedded systems and are defined in [11]

[12].

4.4. The package instance

It defines the representation of an instance of the architecture.

While allowing a particular representation system, classes of

this package refer to classes in the package architecture. It is

therefore dependent packages presented above.

The representation by instance allows, in particular:

• To have models whose root is an implementation of the

system,

• To consider only object instances of Cocodel,

• To treat only property values relevant to code generation or

specific analyzes.

5. THE MODELS TRANSFORMATION

Automating the transformation from one model to another is

done by model transformation. This is done by matching

elements of the entry model with elements of the model

output. Consequently, a transformation is based on the meta-

model source and target met-models handled. As well,

transformation rules from one model to another will be

specified to create the chain of transformations using the

specific language QVT (Query, View and Transformation).

6. CASE STUDY

To validate our chain of embedded systems development via

an intermediate language, we chose to perform a case study as

a demonstration. The case study concerns a shooting

simulator modeled with UML. The modeled shooting

simulator consists of two main parts implemented in the

software and the FPGA with the hard real-time constraints of

Behavior

Classifier

Operation

StateMachine

ProtocolStateMachine

Ownedbehavior

0..*

Port

Protocol
0..1

COMMON
CONCEPTS

AADL SDL MARTE UML X

COCODEL

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.7, November 2012

4

the tracking algorithm. We will apply a set of automatic

transformations described in our chain, to validate the

simulator and automatically generate executable code.

7. CONCLUSION AND PERSPECTIVES

During our research we have demonstrated that using the

approach of model transformations in a structured and

thoughtful, manages to build a chain of model transformation

and reusable code generation that supports multiple languages

by the introducing of the intermediate language (Cocodel).

The Engineers' work is simplified by allowing them to focus

on profession aspects rather than simple translations. It

guarantees a level of quality and promotes reuse.

This study also tends to present the feasibility of automatic

generation of executable code from a graphic description

"UML2.0, AADL" to low levels of language because that

most code generation tools and simulation from models do not

always allow to do. If the approach simplifies the problem by

manipulating only a few concepts, a possible improvement is

to expand the number of concepts used to encompass all of

the modeling languages in the chain. For this purpose, there

shall be specified a real-time model [13] which covers the

different notions and concepts of time in different modeling

languages for real-time embedded systems, and define them in

the Cocodel meta-model for modeling the time constraints

related to these systems.

Taken into consideration that the code generated is generally

not optimized, a perspective of this work is to think of a

method for optimizing the generated code.

8. REFERENCES

[1] A. A. J.P. Babau, «A development method for

Prototyping embedded SystEms by using UML and SDL

(PROSEUS,» workshop SIVOEES , Hungary, 2001.

[2] J. R. F. B. P. Dhaussy, «Mise en œuvre d'unités de

preuve pour la vérification formelle de modèles ,»

IDM’07, France, 2007.

[3] H. Kopetz, Real-Times systems : Design Principles for

Distributed Embedded Applications, USA: Kluwer

Academic Publishers, 1997.

[4] OMG, MDA Guide Version 1.0.1, 2003.

[5] M. CHOUKRI, «Modélisation des systémes temps-réel

embarqués en utilisant AADL pour la génération

automatique d'applications formellement vérifiées,»

France, 2010.

[6] OMG, «Mofqvt Technical report,» Object Management

Group, 2005.

[7] OMG, Unified Modeling Langage :Superstrustur Version

2.0, OMG, 2003.

[8] O. Habart, «UML vers IF,» ENSIETA, France, 2004.

[9] U. Faghihi, «UML vers IF,» ENSIETA, France, 2005.

[10] T. Abdoul, «AADL vers IF,» ENSIETA, France, 2006.

[11] OMG, Action Semantics for the UML, Request For

Proposal, OMG Document, 2003.

[12] OMG, UML Action Semantics, November 2001.

[13] A. KOUDRI, «Méthodologie UML/MARTE Pour La

conception Conjointe Logicielle / Materiélle,»

ENSIETA, France, 2010.

