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ABSTRACT 
An Evolutionary algorithm for resource constrained project 

scheduling (RCPS) problem is proposed with the objective to 

minimize project duration (makespan). The algorithm is tested 

with standard data sets given by Kolisch library for J30 and 

J60 and found to be performing well.  
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1. INTRODUCTION 
Complexity and the challenging nature makes resource 

constrained project scheduling problem very popular in 

project scheduling area. There is a tradeoff between resource 

requirement and project duration (makespan). This tradeoff 

reveals the challenging nature of the problem. Moreover 

uncertainty in availability of resources adds to complexity of 

the problem.  

Since decades, various methods are being evolved to solve the 

complex RCPSP. Early attempts were focused on developing 

exact methods (LP, IP, MIP) which gained popularity and are 

the most reliable approach to solve the problem [1]. However 

their application to the real life problems is difficult due to the 

size of problems. This led to development of heuristics 

methods for this class of NP hard problem. Priority rule based 

heuristic methods are simple to use and hence became 

popular. However, performance of priority rule depends 

mainly on characteristics of the project. Hartmann found that 

metaheuristics perform better than heuristics [2]. Once 

trapped in local optima, heuristic tends to converge earlier 

thus showing their inability to explore larger search space.  

This led to development of better search algorithms like 

Simulated Annealing (SA), Genetic Algorithm (GA), Tabu 

Search (TS), Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO). In this paper, an evolutionary 

approach based Genetic Algorithm (GA) is developed to solve 

RCPSP with the objective to minimize project duration. 

The paper is organized in 5 sections. In section 2, problem 

definition is discussed. The proposed genetic algorithm is 
described in section 3. In section 4 computational experiences 

are presented. Finally, conclusions are presented in section 5. 

2. PROBLEM DEFINITION 
In this section the mathematical model for makespan 

minimization objective subject to resource and precedence 

constraints is discussed. Herroelen model for RCPSP is 

considered as basic model for proposed GA [3]. The project is 

represented as activity on node network; G (N, A) where N 

denotes set of activities and A denotes set of pairs of activities 

between which there is finish-start precedence relationship. In 

the project network, first and last activities are dummy 

activities with zero time duration and resource requirement. 

There are minimal time lags (0). Each activity requires certain 

amounts of resources to perform a job. The set of resources is 

referred to as K. The processing time (duration) of an activity 

i is referred as   , and     denotes resources required by 

activity i of type k. Once started, an activity cannot be 

interrupted. The RCPSP is formulated as follows.  

The notations used for the mathematical model are 

n = number of activities in a project 

N = Set of activities {1, 2, …, n} 

R = set of resources and defined as R = 1, 2 …k 

k = number of resource types 

  = duration of activity i 

   = start time of activity i 

  = start time of activity j, where j > i.    (i, j)   A 

    = amount of resource type k that is required by activity i 

   = the total availability of resource type k  

t = time instance, t   1,…,                         

P = Set of activities in process in the time period t 

 

The RCPSP model is expressed as  

                                                                                        

          

                                                                      

    
    

                                                                   

                                                                                       
 

Equation (1) gives the objective function of project duration 

(makespan) minimization, i.e. minimizing the start time of n+ 

1 th (dummy) activity. Equation (2) gives the precedence 

constraint whereas Equation (3) gives resource constraint i.e 

total number of resources required at time instant t; for all 

activities in process at t must be less than or equal to the 

maximum resources available. Equation (4) states that project 

start at instance zero.  

3. PROPOSED GENETIC ALGORITHM 
GA is most popular metaheuristics among the researchers due 

to its efficiency. One of the first attempts to apply GA in the 

scheduling problem was made by Davis [4]. Drexl and 

Gruenewald compared GA approach with stochastic 

scheduling methods and established the supremacy of GA 

approach [5]. Hartman introduced permutation based 

encoding strategy i.e the activity list representation in their 

genetic algorithm. Here the individual schedule is represented 

by precedence feasible permutation of the set of activities [6]. 
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Kolisch and Padman examined the performance of different 

algorithms based on their computational experiences [7]. 

Various other metaheuristics techniques like SA, TS, ACO, 

PSO techniques have been developed. However the speed and 

effectiveness of the algorithm while exploring the search 

space is what distinguishes GA as an efficient algorithm. 

GA is a search heuristics that belong to the class of 

evolutionary algorithm. The evolutionary process starts with 

population generated by convex combination based heuristics. 

In GAs, solution to a problem (schedule) is represented as a 

chromosomes or genotypes. The initial population is 

composed of such chromosomes. Makespan becomes the 

fitness function in our case. The fitter chromosomes have 

higher probability of survival and participate in reproduction 

process. In each generation, multiple individuals are selected 

from current initial population. These multiple individuals 

(chromosomes) are modified to form a new population (off 

springs) with different traits. Characteristics of these fitter 

chromosomes are combined together using crossover operator 

and mutation operator to produce evolved chromosomes 

called offspring’s. Thus chromosomes evolve through 

successive generations. This process repeats until the 

termination criterion is met. The termination criteria can be 

total number of generations or the total solutions generated. 

The success of the algorithm depends on population size, 

crossover probability, mutation probability and fitness 

evaluation function and solution representation scheme. The 

algorithm for GA is given as: 

Step 1: Initialize t = 0, Generate Initial Population (POP). 

Select the solution representation technique. 

Step 2: If t > 1 update population, else go to step 3. 

Step 3: Crossover. 

Step 3.1: Parent Selection for Crossover. 

Step 3.2: Generate Child population (POP’) such that  

         Number of parent schedules = number of child 

schedules and Number of child schedules consists of equal 

number of son and daughters. 

Step 4: Mutation. 

Step 4.1: Set Mutation probability. 

Step 4.2: Select Chromosome (Schedule). 

Step 4.3: Perform swap mutation such that precedence is not 

         violated. 

Step 4.4: Generate mutated schedules. 

Step 5: Selection of Next Generation Population. 

Step 6: Increment t.  

Step 7: Check if termination criteria is achieved. If yes end 

loop else go to step 2.  

3.1 Initial Population 
Ideally, the initial population should have a gene pool as 

diverse as possible in order to be able to explore the larger 

search space. Generally to achieve this, the initial population 

is randomly generated and sometimes population is implanted 

with solutions generated by some kind of heuristic. The 

advantage of using heuristically developed population element 

is that the fitness of the population can be improved thereby 

enabling the algorithm to find good solutions faster. Hartmann 

suggests that using two good priority rules and a randomized 

activity selection method leads to a diversified initial 

population of good activity lists in single mode RCPSP [6]. 

The larger the population is, the easier it is to explore the 

search space. But it has been found that the time required by a 

GA to converge is directly proportional to the population size. 

The population converges when all the individuals are very 

much alike (clones). However, when the population size 

becomes too large, only few generations can be computed 

within the time limit and thus GA will not give improved 

results. 

While making the choice, for priority rules Kolisch and 

Hartmann findings were considered and LFT (Latest Finish 

time), Min SLK (Minimum Slack) and GRPW (Greatest Rank 

Position Weight) are selected [8]. Using combinatorial 

considering of these priority rules only 30 unique schedules 

can be obtained. However larger the number of schedules in 

initial population pool, better is the solution, hence weighted 

average approach is used. Weights in the range of [0.1 to 0.9] 

are assigned and 150 schedules are generated. Thus the 

convex combination model is a distinguishing method to 

obtain initial population of precedence and resource feasible 

schedules. The schedules are ranked in ascending order i.e 

with increasing project duration (makespan). The first 

schedule amongst ranked 150 schedules is the one with 

minimum makespan and is chosen to be the best schedule. 

Here we get only limited number of unique and feasible 

schedules. If we increase the number of schedules we get 

clones and hence there is chance of getting stuck in local 

optima. Table 1 gives the priority rules used to generate initial 

population. 

 

Table 1. Priority Rules for generation of Initial Population 

 

3.1.1 Solution Representation 
The way in which solutions are represented is crucial for the 

performance of the algorithm. Kolisch and Hartmann 

discussed five representation techniques [8].Most popularly 

being the activity list and random key representation for 

solutions representation. Goncalves have represented 

chromosomes using random key generation technique [9]. 

Activity list representation technique for the chromosomes 

has been used in the proposed GA.  

3.2 Crossover 
Crossover combines the feature of two parent chromosomes to 

form two offspring’s which inherit their characteristics. 

Various crossover techniques stated in literature are single 

point, two point crossover, partially matched crossover, 

uniform crossover methods. Two point crossover method has 

been used by many authors and found to be very effective. 

The advantage with two point cross over technique is that it 

will not destroy entire chromosome structure. This will help 

retain the genetic characteristics of parent population. It is 

possible to capture the strongest portion of the chromosomes. 

This will enhance the quality of the solutions in the next 

generations. Hartmann’s two point uniform crossover strategy 

is modified to incorporate the precedence with temporal 

Minimum 

late finish 

time(LFT) 

Priority: min {  
  }, where   

  is the latest 

finish time of activity i from eligible set 

Minimum 

slack 

(MINSLK) 

Priority: min {  
     

   }, where   
   &   

   

is the early start & late start time respective 

of the activity   from the eligible set. 

Greatest 

Rank Position 

Weight 

(GRPW) 

Priority : inverse( sum of duration of all the 

successors of   + duration of activity   ) 
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relationship amongst activity to produce feasible offspring’s 

[6]. 

Next step is the parent selection from the initial population for 

crossing. For the resource constrained project scheduling the 

various selection strategy are rank selection, the tournament 

selection and random selection method. The algorithm uses  

random selection method for crossover parent selection. The 

best schedule i.e. the one with minimum time duration 

(makespan) from initial population is chosen as one of the 

parent while other parent is selected randomly from the 

remaining population.  

The procedure to perform crossover operation starts with 

selection of crossover points. Since two point crossover 

method has been employed, two points, say p and q are 

generated randomly such that 1≤ p ≤ n and 1≤ q ≤ n except 

p+1 and p-1. The position of crossover point p is selected 

randomly. Then any other point is selected as q except point’s 

p-1, p and p+1. The length of the chromosome string is equal 

to the number of activities n in the project.  

For generation of son (daughter) the best schedule forms the 

father (mother) while randomly selected schedule forms 

mother (father). Son (daughter) will be generated by copying 

father’s (mother’s) genes from the locations 1 to p. The gene 

positions from p+1 to q are filled from the mother’s (father’s) 

schedule by traversing from left to right such that an activity 

already existing in the son(daughter) schedule is not selected 

from mother’s (father’s) schedule again. The gene positions 

from q+1 to n are filled from father’s (mother’s) schedule by 

traversing from left to right such that an activity already 

existing is not selected again. This will maintain the 

precedence relationship among the activities. The crossover 

technique is used to generate equal number of offspring’s as 

that of parent population. Also, crossover operator in the 

algorithm is adjusted such that equal number of son and 

daughter are generated.  Thus population pool is generated 

which consists of parent population (POP) and offspring 

(POP’).  

3.3 Mutation   
Mutation operator maintains genetic diversity in the 

population. It modifies the genetic structure thus generating 

modified diverse population. Swap Mutation technique has 

been used due to its popularity in the literature. The operator 

simply selects two activities at random and if the temporal 

precedence relationship is satisfied it performs a swap, 

otherwise the operator selects another position randomly [10]. 

The process continues until swapping is feasible. For RCPSP 

the mutation probability takes a value in the range 0.02 to 

0.05depending upon other genetic operators. The algorithm is 

tested for various mutation probabilities in the range 

suggested by literature and it is found that algorithm gives 

best results for mutation probability of 0.03.  

3.4 Next Generation Population Selection 
This is the one of the very crucial step in the evolutionary 

process. It determines the effectiveness of the evolutionary 

process. The proportions of the population from each pool 

needs to be carefully chosen so as to maintain diversity while 

conserving the original characteristics of the parent 

population.  The results were computed considering various 

combinations of child and parent populations. The extensive 

computational experiments were performed to determine most 

effective combinatorial population pool. As the initial 

population pool consists of limited schedules, child population 

must form the major proportion of next. This increases the 

diversity and decreases the chances of getting stuck in local 

optima. The child population is ranked and for next generation 

population pools consists of 80 % of the schedules from child 

population, all the mutated schedules generated and the 

balance from the best schedules of parent population pool so 

as to have same number of schedules as initial population for 

next generation. 

3.5 Termination Criteria 
Number of schedules generated forms the termination criteria. 

The termination criteria is also based on number of solutions, 

such that they have either achieved minimum criteria or 

solutions have reached a plateau where successive iterations 

no longer produce improved results. The algorithm performs 

iteration for successive generations until any further 

improvement is achieved.   

4. EXPERIMENTS AND RESULTS 
Here, the performance of the proposed GA for RCPSP is 

compared with other popular solution approaches. For this 

purpose the results are tested for the standard data sets of 

RCPSP instances from Project Scheduling Problem Library 

(Kolisch and Sprecher, 1996) (PSPLIB) [11]. For each 

instances, the algorithm is tested for problem set that uses four 

renewable resources. The results are compared with the 

makespan obtained from PSPLIB for problems dealing with 

30 and 60 activities. Percentage deviation is computed as,  

             
                                

                   
 

Further Average % deviation is computed for summing up the 

results. Here the range of parameters Network Complexity 

(NC)={1.5,1.8,2.1} ; Resource Strength (RS)={0.2,0.5,0.7} 

and Resource Factor (RF) = {0.25, 0.5, 0.75, 1} are 

considered as complexity indicators for the problem instances. 

The resource strength measures the proportion of resource 

demand and availability. RS is normalized to the interval [0, 

1]. Hence, the problem is highly resource constrained for RS 

= 0 while for RS = 1, the problem is no longer resource-

constrained. The third parameter is RF is normalized to the 

interval [0, 1]. If we have RF = 1, then each activity requests 

all resources. RF=0 indicates that no activity requests any 

resources. 

The algorithm is tested for J30 as well as J60 project sets for 

various complexity criteria. In order to select the project 

instances from data sets, selective random sampling for J30 

and J60 is performed. The algorithm is tested for almost 250 

project instances for each of them for various complexity 

cases. 

 

Table 2. Average % Deviation from Kolisch library results 

 

The table 2 gives the comparative analysis for J30 and J60 

projects. It gives the % average deviations of the results from 

Kolisch data set makespan. For both J30 (1.5 %) as well J60 

(0.4%) the deviation is very minimal. With the increase in the 

number of schedules the deviations reduces depicting the 

efficiency of the evolutionary mechanism and proximity to the 

Project 
Maximum number of schedules  

500 1000 5000 10000 

J30 1.0 0.9 0.5 0.4 

J60 1.8 1.6 1.5 1.5 
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best available makespan. The results are very sensitive to the 

resource tightness given by RS and RF factor. The results 

obtained match with the Kolisch library best available results 

for loose and moderate resource constraint for most of the 

instances. However deviation is observed for tight resource 

constraint. It shows a decreasing trend with increase in 

number of schedules. Thus with increase in the number of 

generations the deviation can be reduced to acceptable level. 

Table 3 illustrates the performance for different resource 

constraints for J30. 

Table 3. Average % deviation for different resource 

constraints 

Resource 

Constraints 

 

Number of Schedules 

1000 5000 10000 

Loose 0 0 0 

Moderate 0.2 0 0 

Tight 1.8 1.5 1.3 

 

Further, Table 4 and 5 summarize Average % deviation for 

various parameters that impact the efficiency of the proposed 

algorithm for J30. Similar results follow for J60 data sets as 

well. The algorithm was tested for various mutation 

probabilities within the range described by the literature to be 

effective. Various mutation probabilities tested were 0.2 0, 

0.33 and 0.6 i.e 3, 5 and 10 mutated schedules respectively. It 

was observed that 0.33 is the best mutation probability for 

proposed GA. Table 4 give the performance for various 

mutation probabilities, 

Table 4. Impact of mutation probability 

Number of 

Schedules   

Mutation Probabilities 

0.2 0.33 0.6 

500 1.9 1 2.3 

1000 1.6 0.9 1.9 

5000 1.5 0.5 1.8 

 

Proportion of Child population is another parameter that 

impacts the proposed significantly. The numbers of initial 

schedules are limited to 150 hence to increase the diversity it 

was observed that the proportion of child population should 

be increased. It was tested for next generation population pool 

with 80% of child population, equal parent and child 

population and more number of parent scheduled i.e 80 % of 

parent population. It is observed that best results are obtained 

with the greater child population pool for next generation. 

Table 5. Impact of Proportion of Child Population for next 

generation 

Number of 

Schedules   

Child Population Proportion 

0.2 0.5 0.8 

500 1.7 1.7 1 

1000 1.67 1.65 0.9 

5000 1.08 0.9 0.5 

When comparing the child population proportion it was 

observed that the convergence is faster when proportion is 0.5 

than 0.2 and best results are achieved due to still earlier 

convergence when proportion is 0.8. 

All the results were compared with best results given by 

Kolisch library. This gives a comparative analysis of the 

proposed algorithm with established algorithms considering 

various techniques. The convex combination heuristics for 

generation of initial population, parent selection for crossover 

and the selection technique of the population pool for next 

generation distinguishes the proposed algorithm. 

5. CONCLUSION 
The paper discusses various cases of the computational 

experimentations for the proposed algorithm. The results 

obtained elaborate the efficiency while comparing with the 

best available results from Kolisch library.  The proposed 

algorithm is sensitive to resource constrainedness or tightness. 

While considering loose and moderate resource constraints 

the algorithm has achieved the best available results of 

Kolisch library for most of the instances. For tight resource 

constrains the average % deviation does not exceed 2% 

deviation which is reasonably acceptable. The algorithm was 

further tested for parameters like proportion of child 

population and mutation probability. The algorithm 

considered multiple resources constraints simultaneously, 

scenario closer to real life problems. Although the proposed 

algorithm is tested for 30 and 60 activities it can be tested for 

120 activities as well as a future extension. In future we shall 

enhance the research for cost parameters as well as trade off 

problems. 
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