
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

41

A Modified Genetic Algorithm for Resource Constrained

Project Scheduling

Kanchan Joshi
Research Scholar

Indian Institute of Technology, Bombay

Karuna Jain
 Professor

 Indian Institute of Technology, Bombay

ABSTRACT
An Evolutionary algorithm for resource constrained project

scheduling (RCPS) problem is proposed with the objective to

minimize project duration (makespan). The algorithm is tested

with standard data sets given by Kolisch library for J30 and

J60 and found to be performing well.

General Terms

Project Scheduling, Resources.

Keywords

Makespan, Evolutionary Algorithms, GA, RCPSP.

1. INTRODUCTION
Complexity and the challenging nature makes resource

constrained project scheduling problem very popular in

project scheduling area. There is a tradeoff between resource

requirement and project duration (makespan). This tradeoff

reveals the challenging nature of the problem. Moreover

uncertainty in availability of resources adds to complexity of

the problem.

Since decades, various methods are being evolved to solve the

complex RCPSP. Early attempts were focused on developing

exact methods (LP, IP, MIP) which gained popularity and are

the most reliable approach to solve the problem [1]. However

their application to the real life problems is difficult due to the

size of problems. This led to development of heuristics

methods for this class of NP hard problem. Priority rule based

heuristic methods are simple to use and hence became

popular. However, performance of priority rule depends

mainly on characteristics of the project. Hartmann found that

metaheuristics perform better than heuristics [2]. Once

trapped in local optima, heuristic tends to converge earlier

thus showing their inability to explore larger search space.

This led to development of better search algorithms like

Simulated Annealing (SA), Genetic Algorithm (GA), Tabu

Search (TS), Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO). In this paper, an evolutionary

approach based Genetic Algorithm (GA) is developed to solve

RCPSP with the objective to minimize project duration.

The paper is organized in 5 sections. In section 2, problem

definition is discussed. The proposed genetic algorithm is
described in section 3. In section 4 computational experiences

are presented. Finally, conclusions are presented in section 5.

2. PROBLEM DEFINITION
In this section the mathematical model for makespan

minimization objective subject to resource and precedence

constraints is discussed. Herroelen model for RCPSP is

considered as basic model for proposed GA [3]. The project is

represented as activity on node network; G (N, A) where N

denotes set of activities and A denotes set of pairs of activities

between which there is finish-start precedence relationship. In

the project network, first and last activities are dummy

activities with zero time duration and resource requirement.

There are minimal time lags (0). Each activity requires certain

amounts of resources to perform a job. The set of resources is

referred to as K. The processing time (duration) of an activity

i is referred as , and denotes resources required by

activity i of type k. Once started, an activity cannot be

interrupted. The RCPSP is formulated as follows.

The notations used for the mathematical model are

n = number of activities in a project

N = Set of activities {1, 2, …, n}

R = set of resources and defined as R = 1, 2 …k

k = number of resource types

 = duration of activity i

 = start time of activity i

 = start time of activity j, where j > i. (i, j) A

 = amount of resource type k that is required by activity i

 = the total availability of resource type k

t = time instance, t 1,…,

P = Set of activities in process in the time period t

The RCPSP model is expressed as

Equation (1) gives the objective function of project duration

(makespan) minimization, i.e. minimizing the start time of n+

1 th (dummy) activity. Equation (2) gives the precedence

constraint whereas Equation (3) gives resource constraint i.e

total number of resources required at time instant t; for all

activities in process at t must be less than or equal to the

maximum resources available. Equation (4) states that project

start at instance zero.

3. PROPOSED GENETIC ALGORITHM
GA is most popular metaheuristics among the researchers due

to its efficiency. One of the first attempts to apply GA in the

scheduling problem was made by Davis [4]. Drexl and

Gruenewald compared GA approach with stochastic

scheduling methods and established the supremacy of GA

approach [5]. Hartman introduced permutation based

encoding strategy i.e the activity list representation in their

genetic algorithm. Here the individual schedule is represented

by precedence feasible permutation of the set of activities [6].

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

42

Kolisch and Padman examined the performance of different

algorithms based on their computational experiences [7].

Various other metaheuristics techniques like SA, TS, ACO,

PSO techniques have been developed. However the speed and

effectiveness of the algorithm while exploring the search

space is what distinguishes GA as an efficient algorithm.

GA is a search heuristics that belong to the class of

evolutionary algorithm. The evolutionary process starts with

population generated by convex combination based heuristics.

In GAs, solution to a problem (schedule) is represented as a

chromosomes or genotypes. The initial population is

composed of such chromosomes. Makespan becomes the

fitness function in our case. The fitter chromosomes have

higher probability of survival and participate in reproduction

process. In each generation, multiple individuals are selected

from current initial population. These multiple individuals

(chromosomes) are modified to form a new population (off

springs) with different traits. Characteristics of these fitter

chromosomes are combined together using crossover operator

and mutation operator to produce evolved chromosomes

called offspring’s. Thus chromosomes evolve through

successive generations. This process repeats until the

termination criterion is met. The termination criteria can be

total number of generations or the total solutions generated.

The success of the algorithm depends on population size,

crossover probability, mutation probability and fitness

evaluation function and solution representation scheme. The

algorithm for GA is given as:

Step 1: Initialize t = 0, Generate Initial Population (POP).

Select the solution representation technique.

Step 2: If t > 1 update population, else go to step 3.

Step 3: Crossover.

Step 3.1: Parent Selection for Crossover.

Step 3.2: Generate Child population (POP’) such that

 Number of parent schedules = number of child

schedules and Number of child schedules consists of equal

number of son and daughters.

Step 4: Mutation.

Step 4.1: Set Mutation probability.

Step 4.2: Select Chromosome (Schedule).

Step 4.3: Perform swap mutation such that precedence is not

 violated.

Step 4.4: Generate mutated schedules.

Step 5: Selection of Next Generation Population.

Step 6: Increment t.

Step 7: Check if termination criteria is achieved. If yes end

loop else go to step 2.

3.1 Initial Population
Ideally, the initial population should have a gene pool as

diverse as possible in order to be able to explore the larger

search space. Generally to achieve this, the initial population

is randomly generated and sometimes population is implanted

with solutions generated by some kind of heuristic. The

advantage of using heuristically developed population element

is that the fitness of the population can be improved thereby

enabling the algorithm to find good solutions faster. Hartmann

suggests that using two good priority rules and a randomized

activity selection method leads to a diversified initial

population of good activity lists in single mode RCPSP [6].

The larger the population is, the easier it is to explore the

search space. But it has been found that the time required by a

GA to converge is directly proportional to the population size.

The population converges when all the individuals are very

much alike (clones). However, when the population size

becomes too large, only few generations can be computed

within the time limit and thus GA will not give improved

results.

While making the choice, for priority rules Kolisch and

Hartmann findings were considered and LFT (Latest Finish

time), Min SLK (Minimum Slack) and GRPW (Greatest Rank

Position Weight) are selected [8]. Using combinatorial

considering of these priority rules only 30 unique schedules

can be obtained. However larger the number of schedules in

initial population pool, better is the solution, hence weighted

average approach is used. Weights in the range of [0.1 to 0.9]

are assigned and 150 schedules are generated. Thus the

convex combination model is a distinguishing method to

obtain initial population of precedence and resource feasible

schedules. The schedules are ranked in ascending order i.e

with increasing project duration (makespan). The first

schedule amongst ranked 150 schedules is the one with

minimum makespan and is chosen to be the best schedule.

Here we get only limited number of unique and feasible

schedules. If we increase the number of schedules we get

clones and hence there is chance of getting stuck in local

optima. Table 1 gives the priority rules used to generate initial

population.

Table 1. Priority Rules for generation of Initial Population

3.1.1 Solution Representation
The way in which solutions are represented is crucial for the

performance of the algorithm. Kolisch and Hartmann

discussed five representation techniques [8].Most popularly

being the activity list and random key representation for

solutions representation. Goncalves have represented

chromosomes using random key generation technique [9].

Activity list representation technique for the chromosomes

has been used in the proposed GA.

3.2 Crossover
Crossover combines the feature of two parent chromosomes to

form two offspring’s which inherit their characteristics.

Various crossover techniques stated in literature are single

point, two point crossover, partially matched crossover,

uniform crossover methods. Two point crossover method has

been used by many authors and found to be very effective.

The advantage with two point cross over technique is that it

will not destroy entire chromosome structure. This will help

retain the genetic characteristics of parent population. It is

possible to capture the strongest portion of the chromosomes.

This will enhance the quality of the solutions in the next

generations. Hartmann’s two point uniform crossover strategy

is modified to incorporate the precedence with temporal

Minimum

late finish

time(LFT)

Priority: min {
 }, where

 is the latest

finish time of activity i from eligible set

Minimum

slack

(MINSLK)

Priority: min {

 }, where
 &

is the early start & late start time respective

of the activity from the eligible set.

Greatest

Rank Position

Weight

(GRPW)

Priority : inverse(sum of duration of all the

successors of + duration of activity)

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

43

relationship amongst activity to produce feasible offspring’s

[6].

Next step is the parent selection from the initial population for

crossing. For the resource constrained project scheduling the

various selection strategy are rank selection, the tournament

selection and random selection method. The algorithm uses

random selection method for crossover parent selection. The

best schedule i.e. the one with minimum time duration

(makespan) from initial population is chosen as one of the

parent while other parent is selected randomly from the

remaining population.

The procedure to perform crossover operation starts with

selection of crossover points. Since two point crossover

method has been employed, two points, say p and q are

generated randomly such that 1≤ p ≤ n and 1≤ q ≤ n except

p+1 and p-1. The position of crossover point p is selected

randomly. Then any other point is selected as q except point’s

p-1, p and p+1. The length of the chromosome string is equal

to the number of activities n in the project.

For generation of son (daughter) the best schedule forms the

father (mother) while randomly selected schedule forms

mother (father). Son (daughter) will be generated by copying

father’s (mother’s) genes from the locations 1 to p. The gene

positions from p+1 to q are filled from the mother’s (father’s)

schedule by traversing from left to right such that an activity

already existing in the son(daughter) schedule is not selected

from mother’s (father’s) schedule again. The gene positions

from q+1 to n are filled from father’s (mother’s) schedule by

traversing from left to right such that an activity already

existing is not selected again. This will maintain the

precedence relationship among the activities. The crossover

technique is used to generate equal number of offspring’s as

that of parent population. Also, crossover operator in the

algorithm is adjusted such that equal number of son and

daughter are generated. Thus population pool is generated

which consists of parent population (POP) and offspring

(POP’).

3.3 Mutation
Mutation operator maintains genetic diversity in the

population. It modifies the genetic structure thus generating

modified diverse population. Swap Mutation technique has

been used due to its popularity in the literature. The operator

simply selects two activities at random and if the temporal

precedence relationship is satisfied it performs a swap,

otherwise the operator selects another position randomly [10].

The process continues until swapping is feasible. For RCPSP

the mutation probability takes a value in the range 0.02 to

0.05depending upon other genetic operators. The algorithm is

tested for various mutation probabilities in the range

suggested by literature and it is found that algorithm gives

best results for mutation probability of 0.03.

3.4 Next Generation Population Selection
This is the one of the very crucial step in the evolutionary

process. It determines the effectiveness of the evolutionary

process. The proportions of the population from each pool

needs to be carefully chosen so as to maintain diversity while

conserving the original characteristics of the parent

population. The results were computed considering various

combinations of child and parent populations. The extensive

computational experiments were performed to determine most

effective combinatorial population pool. As the initial

population pool consists of limited schedules, child population

must form the major proportion of next. This increases the

diversity and decreases the chances of getting stuck in local

optima. The child population is ranked and for next generation

population pools consists of 80 % of the schedules from child

population, all the mutated schedules generated and the

balance from the best schedules of parent population pool so

as to have same number of schedules as initial population for

next generation.

3.5 Termination Criteria
Number of schedules generated forms the termination criteria.

The termination criteria is also based on number of solutions,

such that they have either achieved minimum criteria or

solutions have reached a plateau where successive iterations

no longer produce improved results. The algorithm performs

iteration for successive generations until any further

improvement is achieved.

4. EXPERIMENTS AND RESULTS
Here, the performance of the proposed GA for RCPSP is

compared with other popular solution approaches. For this

purpose the results are tested for the standard data sets of

RCPSP instances from Project Scheduling Problem Library

(Kolisch and Sprecher, 1996) (PSPLIB) [11]. For each

instances, the algorithm is tested for problem set that uses four

renewable resources. The results are compared with the

makespan obtained from PSPLIB for problems dealing with

30 and 60 activities. Percentage deviation is computed as,

Further Average % deviation is computed for summing up the

results. Here the range of parameters Network Complexity

(NC)={1.5,1.8,2.1} ; Resource Strength (RS)={0.2,0.5,0.7}

and Resource Factor (RF) = {0.25, 0.5, 0.75, 1} are

considered as complexity indicators for the problem instances.

The resource strength measures the proportion of resource

demand and availability. RS is normalized to the interval [0,

1]. Hence, the problem is highly resource constrained for RS

= 0 while for RS = 1, the problem is no longer resource-

constrained. The third parameter is RF is normalized to the

interval [0, 1]. If we have RF = 1, then each activity requests

all resources. RF=0 indicates that no activity requests any

resources.

The algorithm is tested for J30 as well as J60 project sets for

various complexity criteria. In order to select the project

instances from data sets, selective random sampling for J30

and J60 is performed. The algorithm is tested for almost 250

project instances for each of them for various complexity

cases.

Table 2. Average % Deviation from Kolisch library results

The table 2 gives the comparative analysis for J30 and J60

projects. It gives the % average deviations of the results from

Kolisch data set makespan. For both J30 (1.5 %) as well J60

(0.4%) the deviation is very minimal. With the increase in the

number of schedules the deviations reduces depicting the

efficiency of the evolutionary mechanism and proximity to the

Project
Maximum number of schedules

500 1000 5000 10000

J30 1.0 0.9 0.5 0.4

J60 1.8 1.6 1.5 1.5

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

44

best available makespan. The results are very sensitive to the

resource tightness given by RS and RF factor. The results

obtained match with the Kolisch library best available results

for loose and moderate resource constraint for most of the

instances. However deviation is observed for tight resource

constraint. It shows a decreasing trend with increase in

number of schedules. Thus with increase in the number of

generations the deviation can be reduced to acceptable level.

Table 3 illustrates the performance for different resource

constraints for J30.

Table 3. Average % deviation for different resource

constraints

Resource

Constraints

Number of Schedules

1000 5000 10000

Loose 0 0 0

Moderate 0.2 0 0

Tight 1.8 1.5 1.3

Further, Table 4 and 5 summarize Average % deviation for

various parameters that impact the efficiency of the proposed

algorithm for J30. Similar results follow for J60 data sets as

well. The algorithm was tested for various mutation

probabilities within the range described by the literature to be

effective. Various mutation probabilities tested were 0.2 0,

0.33 and 0.6 i.e 3, 5 and 10 mutated schedules respectively. It

was observed that 0.33 is the best mutation probability for

proposed GA. Table 4 give the performance for various

mutation probabilities,

Table 4. Impact of mutation probability

Number of

Schedules

Mutation Probabilities

0.2 0.33 0.6

500 1.9 1 2.3

1000 1.6 0.9 1.9

5000 1.5 0.5 1.8

Proportion of Child population is another parameter that

impacts the proposed significantly. The numbers of initial

schedules are limited to 150 hence to increase the diversity it

was observed that the proportion of child population should

be increased. It was tested for next generation population pool

with 80% of child population, equal parent and child

population and more number of parent scheduled i.e 80 % of

parent population. It is observed that best results are obtained

with the greater child population pool for next generation.

Table 5. Impact of Proportion of Child Population for next

generation

Number of

Schedules

Child Population Proportion

0.2 0.5 0.8

500 1.7 1.7 1

1000 1.67 1.65 0.9

5000 1.08 0.9 0.5

When comparing the child population proportion it was

observed that the convergence is faster when proportion is 0.5

than 0.2 and best results are achieved due to still earlier

convergence when proportion is 0.8.

All the results were compared with best results given by

Kolisch library. This gives a comparative analysis of the

proposed algorithm with established algorithms considering

various techniques. The convex combination heuristics for

generation of initial population, parent selection for crossover

and the selection technique of the population pool for next

generation distinguishes the proposed algorithm.

5. CONCLUSION
The paper discusses various cases of the computational

experimentations for the proposed algorithm. The results

obtained elaborate the efficiency while comparing with the

best available results from Kolisch library. The proposed

algorithm is sensitive to resource constrainedness or tightness.

While considering loose and moderate resource constraints

the algorithm has achieved the best available results of

Kolisch library for most of the instances. For tight resource

constrains the average % deviation does not exceed 2%

deviation which is reasonably acceptable. The algorithm was

further tested for parameters like proportion of child

population and mutation probability. The algorithm

considered multiple resources constraints simultaneously,

scenario closer to real life problems. Although the proposed

algorithm is tested for 30 and 60 activities it can be tested for

120 activities as well as a future extension. In future we shall

enhance the research for cost parameters as well as trade off

problems.

6. REFERENCES
[1] Davis, E.W and Patterson, J.H. “A comparison of

heuristic and optimal solutions in resource-constrained

project scheduling,” Management Science, 21(8), 1975,

944-955.

[2] Kolisch and Hartmann, “Experimental Investigation of

heuristics for resource constrained project scheduling:

An update”, European Journal of Operational Research,

174(1), 2006, 23-37.

[3] Herroelene, Demeulemeester , “Resource constrained

project scheduling: A survey of Recent Developments”,

Computer Operations Research, 24, 1997,pp.279-302

[4] Davis, “Job shop scheduling with genetic algorithms,”

Proceeding of the first International conference on

genetic algorithms, 1985, 136-140.

[5] Drexl and Gruenwald, “Non-preemptive multi-mode

resource-constrained project scheduling”, IIE

Transactions, 25(5), 1993, 74-81.

[6] Hartmann, “A competitive genetic algorithm for

resource-constrained project scheduling”, Naval

Research Logistics, 45(7), 1998, 733-750.

[7] Kolisch and Padman, “An integrated survey of

deterministic project scheduling”, Omega, 29(3), 2001,

249-272.

[8] Hartmann and Kolisch. , “Experimental evaluation of

state-of-the-art heuristics for the resource-constrained

project scheduling problem”, European Journal of

Operational Research, 127(2), 2000, 394-407.

[9] J.JM. Mendes, J.F. Goncalves and M.G.C. Resende, “A

random key based genetic algorithm for the resource

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

45

constrained project scheduling problem”, Computers &

Operations Research, vol.36, 2009, pp.92-109.

[10] Masato Watanabe, Kenichi Ida and Mitsuo Gen, “A

genetic algorithm with modified crossover operator and

search area adaptation for the job-shop scheduling

problem”, Computer and Industrial Engineering, vol.48,

2005, pp.743-752.

[11] Kolisch and Sprecher, “PSPLIB-A project scheduling

problem library,” European Journal of Operational

Research, 96(1), 1996, 205-216.

[12] P. Brucker, A Drexl, R. Mohring, K. Neumann, E. Pesch,

“Experimental investigation of Resource constrained

project scheduling: an update”, European Journal of

Operational Research, Vol. 169, 2009, pp. 638-653.

[13] Hartmann and Briskorn, “A survey of variants and

extensions of the resource-constrained project scheduling

problem,” European Journal of Operational Research,

207, 2010, 1-14.

[14] T.Hegazy, “Optimization of resource allocation and

leveling using Genetic algorithms,” Journal of

Construction Engineering and Management, 125(3),

1999, 167-175.

[15] Icmeli, Erenguc and Zappe, “Project scheduling

problems: A survey,” International Journal of

Operations and Production Management, 13(11), 1993,

80-91.

[16] Lova, Maroto and Tormos, “A multi criteria heuristic

method to improve resource allocation in multi project

scheduling,” European Journal of Operational Research,

127, 2000, 408-424.

[17] Kim, Yun, Yoon, Gen and Yamazaki, “Hybrid genetic

algorithm with adaptive abilities for resource-constrained

multiple project scheduling,” Computers in Industry, 56,

2005, 143-160.

[18] Valls, V., Ballestin, F and Quintanilla, S. “A hybrid

genetic algorithm for the resource-constrained project

scheduling problem,” European Journal of Operational

Research, 185, 2008, 495-508.

[19] D. Sundar, B. Umadevi, K. Alagarasamy, “Multi

Objective Genetic Algorithm for optimized Resources

usage and the Prioritization of the Constraints in the

Software Project Planning”, International Journal of

Computer Applications, vol. 3, 2010, 0975-8887.

