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ABSTRACT 

The new fast full search motion estimation algorithm for 

optimal motion estimation is proposed in this paper. The Fast 

Computing Method (FCM) which calculates the tighter 

boundaries faster by exploiting the computational redundancy 

and the Best Initial Matching Error Predictive Method 

(BIMEPM) which predicts the best initial matching error that 

enables the early rejection of highly impossible candidate 

blocks are presented in this paper. The proposed algorithm 

provides the optimal solution with fewer computations by 

utilizing these two methods FCM and BIMEPM. 

Experimental results show that the proposed new fast full 

search motion estimation algorithm performs better than other 

previous optimal motion estimation algorithms such as 

Successive Elimination Algorithm (SEA), Multilevel 

Successive Elimination Algorithm (MSEA) and Fine 

Granularity Successive Elimination (FGSE) on several video 

sequences. The operation number for this proposed algorithm 

is reduced down to 1/52 of Full Search (FS). But MSEA and 

FGSE algorithms can reduce computations by 1/40 and 1/42 

of FS. Finally, the proposed new fast full search motion 

estimation algorithm is modified to sub optimal motion 

estimation algorithm introducing only a small average PSNR 

drop of around 0.2dB but achieves very fast computational 

speed. The superior performance of this sub optimal motion 

estimation algorithm over some fast motion estimation 

algorithms is also proved experimentally. 

General Terms 
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Keywords 
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1. INTRODUCTION 
The main objective of Block-matching algorithm for motion 

estimation is to find the best matched candidate block in the 

reference frame for every macroblock in the current frame, 

according to a predetermined matching error criterion. The 

displacement between these two blocks defines a motion 

vector. Some of the matching errors used are Sum of Absolute 

Difference (SAD), Sum of Squared Difference (SSD) and the 

Cross Correlation Function (CCF). In most situations the SAD 

is used as matching error because it does not require any 

multiplication and gives similar performance as the mean 

square error. The full search block matching algorithm 

examines all the (2W+1)2 candidate blocks in the search 

window to find the best-matched candidate block that 

produces the minimum matching error with a maximum 

displacement of W pixels/frame. To reduce the computational 

load of full search, many fast search algorithms such as Three 

step search algorithm(3SS)[1], new three-step search 

algorithm(N3SS)[2], diamond search algorithm(DS)[3], 

hexagon-based search algorithm (HEXBS)[4], and 

Unsymmetrical-cross Multi-Hexagon-grid Search 

(UMHexagonS) [5][6] have been proposed. These algorithms 

use pre defined search patterns to reduce the search points in 

the search window. If the actual motion is not matched with 

the search pattern then the both speed and quality will 

decrease. Moreover these algorithms are easily trapped to 

local minimum and hence sub optimal motion vectors are 

obtained. For the optimal solution with reduced computations, 

Successive elimination algorithm [7] or modified versions 

based on SEA [8, 9] are preferred. These algorithms provide 

the optimal solution as that of full search, but with less 

operation number by eliminating highly impossible candidate 

blocks as early as possible to reduce the computational cost. 

In this paper, we propose both optimal and sub optimal 

solutions for block motion estimation based on best initial 

matching error predictive method. The proposed new fast full 

search motion estimation provides optimal solution by 

utilizing Fast Computing Method (FCM) and Best Initial 

Matching Error Predictive Methods (BIMEPM). The new fast 

full search motion estimation is slightly modified to reduce 

the computational load further but relaxes optimality. The rest 

of this paper is organized as follows. Some well-known fast 

full-search algorithms are reviewed In Section 2. Then, we 

present the new fast full search motion estimation algorithm 

and its modified versions which utilize FCM and BIMEPM 

methods in   section 3. In Section 4, the simulation results for 

the proposed and the conventional methods are compared to 

verify the performance of the proposed algorithms. Finally, 

conclusions are given in Section 5.  

2. REMARKS ON SEA, MSEA AND 

FGSE ALGORITHMS 
SEA is an efficient method for fast full search, which 

successively eliminates search points from calculating the 

error measure (SAD) using a decision boundary based on the 

sum norms of blocks. The reduction of SAD computations in 

SEA is mainly based on the mathematical principle that the 

absolute value of the difference between the sum norms of the 

two blocks is definitely less than or equal to the SAD value 

between these two blocks. The SEA skips the candidate block 

if the Sum Norm Difference (SND) between candidate block 

in reference frame and macro block in current frame is greater 

than or equal to up-to-date minimum SAD, SADmin. Suppose 

some non best candidate blocks whose SND values are less 

than SADmin but their SAD values greater than SADmin. In this 

case these non best candidate blocks cannot be removed from 

the SAD calculation and efficient elimination cannot be 

accomplished in SEA. This problem can be solved by having 

tighter boundaries between SND and SAD. Multilevel 
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Successive Elimination Algorithm offers tighter boundaries 

by partitioning the sum norms in a multilevel manner [8]. 

First, the block with size of N × N is partitioned into four sub-

blocks with a size of N/2 × N/2 and then each sub-block is 

partitioned into four sub-blocks with a size of N/4 × N/4. This 

procedure is repeated until the size of the sub-block becomes 

2×2. In MSEA, one candidate block is evaluated sequentially 

from the lowest to the highest level. If the candidate block is 

eliminated at any level then that candidate block need not be 

evaluated for the remaining levels. In MSEA, the more non 

best candidate blocks can be eliminated by tightening the 

distortion boundaries. FGSE algorithm [9] uses more number 

of lower boundaries than MSEA to reduce the gap between 

adjacent boundaries. Thus, FGSE has more chance to 

eliminate the non best candidates than MSEA before 

calculating the SAD. It utilizes the boundary value at any 

level while calculating the boundary at next level thus FGSE 

algorithm is computationally efficient than MSEA. The main 

limitations of the SEA, MSEA and FGSE algorithms are: The 

efficiency of these algorithms depend on initial matching 

error. If initial matching error is small then more successive 

tests have a less SADmin and may be skipped. The early 

rejection of highly impossible candidate blocks depends on 

the good initial matching error, but there is no method 

specified in these algorithms to predict better initial minimum 

SAD. The computational redundancy is not identified between 

any two adjacent boundaries while computing the boundaries. 

To fulfill these shortages of these algorithms, a new fast full 

search motion estimation algorithm is proposed in the 

following. 

3. PROPOSED ALGORITHM 
The proposed new fast full search motion estimation 

algorithm traces global optimal as traced by the full search but 

with less computational load. In this proposed algorithm the 

non best candidate blocks are eliminated by tightening the 

boundaries but by taking fewer computations to calculate 

tighter boundaries. This is obtained by using the FCM.  The 

BIMEPM predicts the best initial matching error that enables 

the early rejection of candidate blocks facilitating to reduce 

computations. The best initial matching error is predicted 

basing on the assumption that a good matching candidate 

block with a small SAD value will also likely to have smaller 

tighter boundary values. The SAD between between a macro 

block of size N ×N at position (p, q) in the current frame ft 

and the candidate block at position (p + x, q + y) in the 

reference frame ft-1 is defined as follows 
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Where x and y are the horizontal and vertical components of 

the motion vector. According to the inequality |a| + |b| ≥ |a + 

b|, where a, b ∈ R, the boundary in SEA is derived by 

performing absolute operation on the difference between sum 

norms of the macro block and candidate blocks as in eq (2). 
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A fast algorithm to calculate the sum norms of candidate 

blocks at every search position is presented in [7]. First, the 

column sums (sum of pixels in column) are calculated for 

every possible column of the reference frame. These column 

sums are calculated quickly by reusing accumulated sum of 

overlapped area of vertical adjacent columns. In the second 

step, the column sums are summed up in a horizontal 

direction using the same technique to compute the sum norms 

at every search position in reference frame. Let St (p, q) and 

St-1(p, q) represent the sum norms at position (p, q) in the 

current frame and reference frames respectively and Ct (p, q) 

and Ct-1 (p, q) represent the column sums of columns at (p, q) 

in the current frame and reference frames respectively. Then 

the SEA boundary can be expressed in column sums as 
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The SEA boundary is treated as first boundary (BV_1) in our 

proposed algorithm, i.e. BV_1=SEA(x, y). If an absolute 

operation is performed on the difference not between the sum 

of column sums, but between column sums, it gives a second 

boundary value greater than BV_1. 
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The onward boundaries are obtained by replacing the absolute 

of the difference between each pair of column sums by sum of 

absolute differences between pixels in that pair of columns. 
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There are N+2 boundaries in this proposed algorithm. The last 

boundary is SAD. These boundaries except first one are 

computed by FCM proposed in this paper. 

3.1 Fast Computing Method (FCM) 
Any tighter boundary in this proposed algorithm is obtained 

by replacing the sum norm difference between two sets of 

numbers in previous boundary by SAD between these two 

sets of numbers. The boundaries from BV_2 to BV_N+2 are 

successively calculated using FCM that is any boundary is 

updated by using previous boundary. The difference between 

any two successive boundaries (from BV_3 to BV_ (N+2)) is 

calculated as follows 
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Suppose Ct (p+i, q) - Ct-1 (p+x+i, q+y) > 0 then  
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Where D (j) = ft (p+i, q+j) - ft-1 (p+x+i, q+y+j). Now the 

boundaries BV_ (i+3) for i=0 to N-1 can be expressed as 

follows 
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Similarly if Ct (p+i, q) - Ct-1 (p+x+i, q+y) < 0 then it follows 

that  
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If Ct (p+i, q) - Ct-1 (p+x+i, q+y) = 0 then eq (10) or (11) can 

be used to find the boundaries. The boundary BV_2 is updated 

from BV_1 by checking the sign of the block sum norm 

difference. If St (p, q) > St-1 (p, q) then BV_2 can be updated 

as follows  
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If St (p, q) < St-1 (p, q) then BV_2 can be calculated as follows 











0iM

13yqixp
1t

Cqip
t

C2

1BV2BV

)(

)(),(),(

__

 

Where M (i) = Ct (p+i, q) - Ct-1 (p+x+i, q+y). In conventional 

boundary calculation, the operations of subtraction, absolution 

and addition will take place at each pixel essentially.  

Whereas in this method initially checking is made of the sign 

of ft (., .) - ft-1(., .) at each pixel and if the sign is found 

negative of column sum difference the operations of addition 

and subtraction will be done otherwise the pixel is skipped of 

the operations. Finally the accumulated sum is multiplied with 

2. Since the skipped pixels have no contribution in boundary 

computation, this method removes redundant computations 

involved in conventional SAD calculation. The tests are 

conducted on many video sequences to observe the percentage 

of pixels per macroblock that really do not contribute in the 

boundaries computation. These experimental tests show that 

about 75% to 83% pixels do not contributed in tighter 
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boundaries calculation and hence this redundancy can be 

removed by FCM. Figure 1 shows the %Redundancy per 

macroblock in a cricket and flower video sequences.  
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Figure 1: The percentage of pixels per macroblock 

(%Redundancy) that do not contribute in the SAD 

calculation in a cricket and flower videos on frame by 

frame basis. 

3.2 Refinement phase to pick best initial 

motion vector 
While comparing the blocks with the tighter boundaries if the 

initial prediction is good, then more successive tests have a 

less SADmin and may be skipped. If a block with less SAD is 

found early while scanning the candidate blocks in a search 

window, then more candidate blocks can be eliminated in 

subsequent searches that results in obtaining reduction of  

computational complexity. In this paper a simple method, 

BIMEPM is proposed to predict good matching candidate 

with a small SAD value. This method is based on the 

assumption that a good matching candidate with a small SAD 

value will also likely to have smaller lower tighter boundary 

values. The proposed new fast full search motion estimation 

algorithm employs two phases. In the first phase, a set of a 

possible motion vector set (PMV set) is determined. In the 

second phase, a best motion vector in PMV set is predicted 

and global minimum point among the search points in the 

PMV set is determined. The outline of the proposed algorithm 

is as follows:  

First phase: 

 The motion vector of the corresponding block in the 

previous frame is selected as an initial motion vector. The 

SAD at that motion vector is assumed to be SADmin. 

 At each search point of the search window, BV_1 is 

calculated initially. If it is less than SADmin, then BV_2 is 

calculated and compared with SADmin. If BV_2 is also less 

than SADmin that checked point is a possible motion vector 

and placed in the PMV set. 

Second phase (BIMEPM): 

 Find the motion vector with the smallest BV_2 in the 

PMV set. Calculate the SAD at this motion vector and 

compare with SADmin. The search position with smallest 

SAD between these two points is treated as a best initial 

motion vector. 

 Now find the global minimum point among the search 

points in the PMV set by computing the boundaries 

(BV_2 to BV_ (N+2)) and comparing with up-to-date 

SADmin sequentially. While comparison, if the boundary 

at any stage is greater than SADmin reject that point and 

stop the calculation of remaining boundaries                                                                             

    

The BIMEPM finds the good matching block in PMV set 

according to their BV_2 values. So, the good matching block 

may arrive at starting stage and thereby next subsequent 

candidate blocks will be obviously eliminated at lower levels 

of boundary values. If the number of motion vectors in PMV 

set is equal to zero, then skip second phase (BIMEPM) and 

the index of the initial motion vector predicted in first phase 

will be the true motion vector. 

3.3 Modified fast motion estimation 

algorithm 
In this paper the emphasis is also made on suboptimal motion 

estimation as this process helps to reduce the number of 

computations without much quality variation in comparison 

with the optimal motion estimation. Suppose all the points in 

PMV set are sorted according to their BV_2 values (the points 

with small BV_2 values appears first) and the global minimum 

point is found by testing all the points, practically it is 

observed by exhaustive study on various video sequences that 

the true motion vector appears in the starting locations of the 

sorted PMV set. So instead of testing all the points, find the n 

search points with the smallest BV_2 in the PMV set and 

compare only among them. As the selective n search points 

are tested, the number of computations is invariably reduced. 

The highly impossible candidate blocks are rejected while 

comparing with boundaries BV_1 and BV_2 causing the 

search points in PMV to have less possible variation in their 

SAD values that results insignificant degradation of quality 

even in the condition that the global minimum point is not 

found in the selected n search points. In case, the highly 

impossible candidate blocks are not even rejected while 

comparing with boundaries BV_1 and BV_2, the quality 

variation is mostly insignificant because they may be 

eliminated during the sorting process. The results of modified 

fast motion estimation algorithm will be the same as FS when 

the true motion vector is located within n search points. 

Therefore, larger n improves the video quality while smaller n 

saves more computation. Generally speaking, the n parameter 

provides an easy trade off between speed and quality. The 

experiments have conducted on various video sequences with 

n values from 1 to 10. Let the number of motion vectors in 

PMV set is m. In case the m is less than selected n then the 

best motion vector is found among these m motion vectors. 

4. SIMULATION RESULTS 
In order to evaluate the performance of the proposed 

algorithms, the simulations are performed on .AVI (240 X 

320,20fps) test sequences in a MATLAB 7.7 version. The 

block size is 16 X 16 pixels and the search range is ±15 

pixels. The motion prediction quality with proposed new fast 

full search motion estimation algorithm is same as that of the 

FS algorithm, so the performance is compared in terms of 

computational complexity through addition (ADD), 

subtraction (SUB), absolution (ABS), comparison (CMP) and 

multiplication with 2 (MULT-2) operations. The average 

numbers of operations per macroblock for “cricket” and 

“flower” video sequences are shown in Table-1. The speed-up 

ratios and average PSNR drops with respect to FS are also 

presented in Table-I. Figure 2(a and b) show the reference and 

current frames. These are the 43rd and 44th luminance frames 

of cricket video. Figure 2 (c and d) show the corresponding 

predictive and error frames using new fast full search motion 
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estimation algorithm.The average numbers of total operations 

per macroblock (ANOB) on frame by frame basis for 

“cricket” and “flower” video sequences are also shown 

graphically in the Figure 3 (a) and 3 (b). It is clear from these 

figures and table that the computational complexity is 

drastically reduced as compared with FS, SEA, MSEA and 

FGSE algorithms. The proposed new fast full search motion 

estimation algorithm is able to achieve a reduction of the 

computations up to 84% of the SEA, 27% of the MSEA and 

15% of the FGSE algorithms. The proposed new fast full 

search motion estimation algorithm takes fewer computations 

as compared with MSEA and FGSE algorithm in almost all 

frames and is shown in the Figure 3 (a) and 3 (b).The 

modified fast motion estimation algorithm is compared with 

optimal and well noted suboptimal motion estimation methods 

Hexagon based search (HEXBS) and Diamond search (DS) 

using the following two test criteria:       Average number 

operations per macroblock and average peak signal to noise 

ratio (PSNR). The average numbers of operations per 

macroblock for various values of n are shown in Table-1. It is 

clear from this table that even if n is 1 average PSNR drop is 

less than DS and HEXBS algorithms. The modified fast 

motion estimation algorithm is able to achieve a further 

reduction of the computations up to 33% to 16% of the 

proposed fast full search motion estimation for n values from 

1 to 10, introducing only a small quality penalty around 

0.2492dB for n=10 and 1.7605dBfor n=1. PSNR (dB) values 

of modified fast motion estimation algorithm (n =1,5 and 10) 

are compared with proposed fast full search motion 

estimation, Hexagon based search and Diamond search 

algorithms for flower and cricket videos on frame by frame 

basis are shown in Figure 4 (a) and 4 (b) respectively. From 

these figures it is observed that modified fast motion 

estimation algorithm shows better PSNR (dB) values than 

Hexagon based search and Diamond search algorithms. Since 

the selective n search positions are tested in PMV set, the 

probabilities of getting true motion vector for all macro blocks 

are experimentally studied on different video sequences. 

Figure 5 (a) and 5 (b) plot probability of getting true motion 

vector per macroblock in modified fast motion estimation 

algorithm (n= 1 to 10) for cricket and flower video sequences 

on frame by frame basis. From these figures, it is observed 

that the probability of finding global minimum point is about 

0.65 and 0.95 when n value is 1 and 10 respectively. 

 

 

 

 

 

 

5. CONCLUSION 

The experiments made upon the proposed algorithms new fast 

full search motion estimation algorithm and modified fast 

motion estimation algorithm demonstrate that number of 

computations can be reduced.  The former algorithm reduces 

the required computations to achieve optimal motion vector 

using two methods. The first method, FCM calculates the 

tighter boundaries faster by exploiting the computational 

redundancy. Thus the computational complexity of any 

algorithm based on MSEA can be reduced by this method.  

The second one, BIMEPM predicts the best initial matching 

error that enables the early rejection of candidate blocks 

facilitating to reduce computations. Experimental results show 

that the former algorithm can achieve better performance than 

MSEA and FGSE algorithms. The latter one is the slightly 

modified one of the former.  In this algorithm the 

computations needed are very less having less quality 

degradation.  This can be achieved by finding out better n 

value.  The study has been made in comparison with the noted 

Suboptimal Motion Estimation methods like Hexagon based 

search and Diamond search and proven experimentally 

comprehensive and qualitative. 
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Figure 2. The 43rd and 44th luminance frames   and the 

corresponding predictive and error frames (a) 

Reference frame (43rd frame) (b) Current frame (44th 

frame)    (c) Predictive frame (d) Error frame 
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Figure 3. Comparison of the average number of total operations per macroblock (ANOB) applying Proposed, MSEA and 

FGSE Algorithms individually to  (a) Cricket video sequence  and   (b) Flower video sequence. The scale in y-direction over the 

range of ANOB values of Proposed, MSEA and FGSE algorithms is expanded to observe the graphs of Proposed, MSEA and 

FGSE without jamming. So FS and SEA are not included in the above figures. 
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Figure 4.  PSNR comparison of modified fast motion estimation algorithm with proposed, HEXBS and DS for (a) Flower video 

sequence and (b) Cricket video sequence. To avoid overcrowding among the graphs, only few values of n (n = 1, 5 10) are 

shown 
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TABLE 1. The average numbers of operations per macroblock for both new fast full search motion estimation algorithm and 

modified fast motion estimation algorithms in Cricket and Flower videos. The Speed-up gains and average PSNR drops are 

calculated with respect to FS. 
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(b) 

Figure 5. Probabilities of getting true motion vector per macroblock in modified fast motion estimation algorithm (n=1 to 10) 

for (a) Cricket video sequence and (b) Flower video sequence. Probability increases as the number of motion vectors (n) that 

are sorted and compared in the PMV set. 

CRICKET VIDEO SEQUENCE 

 

 FS SEA MSEA FGSE Proposed 

 

Modified version of proposed  

HEXBS 

 

DS n=1 n=3 n=5 n=10 

ADD 219008 24942 6715 5889 2930 2172 2204 2228 2274 3372 4379 

SUB 219008 25513 5124 4798 1696 1082 1107 1126 1162 3372 4379 

ABS 219008 25046 5124 4109 898 899 899 898 898 3372 4379 

CMP       854     948    815    898 6722 4090 4367 4624 5196      12 16 

MULT-2 ----- ----- ----- ------ 662 528 530 533 538 ----- ----- 

TOTAL 657878 76450 17778 15694 12908 8773 9109 9412 10070 10128 13153 

SPEED-UP  1.0 8.60 37.00 41.91 50.96 74.98 72.22 69.89 65.33 64.95 50.01 

AVERAGE 

PSNR 

DROP 

0 0 

 

0 

 

0 

 

0 

 

1.7605 

 

0.9520 

 

0.5521 

 

0.2492 

 

2.0830 

 

1.9463 

FLOWER VIDEO SEQUENCE 

 

 FS SEA MSEA FGSE Proposed 

 

Modified version of proposed  

HEXBS 

 

DS n=1 n=3 n=5 n=10 

ADD 219008 26135 5649 5115 2758 2146 2188 2216 2264 3092 3929 

SUB 219008 26706 4166 4149 1542 1059 1092 1115 1153 3092 3929 

ABS 219008 26239 4166 3568  908  909  908   908   908 3092 3929 

CMP 854 953   764   796 6540 4126 4439 4703 5276      11     16 

MULT-2 ----- ----- ----- -----   614   489    494    498   507 ---- ------ 

TOTAL 657878 80034 14745 13628 12362 8731 9123 9443 10111 9287 11803 

SPEED-UP  1.0 8.21 44.61 48.27 53.21 75.34 72.11 69.66 65.06 70.83 57.73 

AVERAGE 

PSNR 

DROP 

0 0 

 

0 

 

0 

 

0 

 

1.5154 

 

0.6946 

 

0.4389 

 

0.2242 

 

1.8671 

 

1.5550 
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