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ABSTRACT 

This paper presents Learning Fuzzy Cognitive Maps (LFCM) 

as a new paradigm, or approach, for modeling complex 

adaptive systems (CAS). This technique is the fusion of the 

advances of the fuzzy logic, formal neural network, and 

reinforcement learning where they are suitable for modeling 

systems in artificial life domain of CAS.The FCM structure is 

similar to a recurrent artificial neural network. The 

reinforcement learning (RL) gives the explicative frame of 

entities like environment changing adaptation. A 

mathematical adaptation of the Q-learning algorithm is 

discussed and we present in this work an inspired pseudo-

hybridization algorithm Q-learning, mainly used in non-linear 

dynamic systems RL, and the Hebb law for the inference 

calculus introduced by the cognitive maps. The prey and 

predator simulation model is shown. 
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Keywords 
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1. INTRODUCTION  

A Complex Adaptive System (CAS) is defined as a collection 

of entities or agents, merged in a dynamic environment, with 

simple rules of behavior and able to adapt to its environment 

by learning experiences. The overall adaptation to the 

environment appears through the local behavior of entities 

that is adaptive.. 

Found in nature, many biological and social systems are 

similar to the CAS: the immune system, bird flocks, the cell, 

insect colonies, brain, economic markets etc.... All these 

systems are characterized by their two key concepts, namely 

the emergence of global behavior, which is due to of the lack 

of centralized control and measuring self- organization 

adaptation to the environment by relative learning. 

The multi-agent systems (MAS) and cellular automata (CA) 

are the only approaches, used by the community for modeling 

CAS. The MASs are criticized for their complexity, by 

against the CAs are also criticized for lack of environment. 

Recently, many studies have using FCMs [1][2], to model 

complex systems where CASs are a special case, and have  

given encouraging results [3] [4]. In this paper we present an 

approach for modeling CASs based on FCM formalism 

augmented by the concept of reinforcement learning algorithm 

inspired Q-Learning, and linear weight adaptation method 

based on hebbian learning algorithm [5] developed for neural 

networks to achieve adaptation to new environmental 

conditions. 

2. THEORY ASPECTS 

2.1 Fuzzy cognitive maps 

The term cognitive map (CM) appears for the first time in 

1948's in article by E. Tolman [6] cognitive maps in rats and 

men to describe the abstract mental representation of space 

built by rats trained to navigate in the labyrinth. The term 

FCM (Fuzzy Cognitive Map) was introduced in 1986 by B. 

Kosko [2], to describe a simple extension of CMs by the 

combination of fuzzy logic and artificial neural networks. This 

robust combination given FCMs a structure similar to 

artificial recurrent neural networks (Artificial Recurrent 

Neural Network ARNN. FCMs (Figure 1) can describe  the 

complex behavior of entities. They are represented as directed 

graphs whose nodes are concepts (classified into three types: 

sensory, motor and effectors) and the arcs represent causal 

relationships between these concepts.  Each arc from one 

concept Ci to one concept Cj is associated with a weight wij 

reflecting a relationship of inhibition (wij <0) or excitation  

(wij > 0). Each concept is associated with a degree of 

activation, represent's the state at time t, and can be modified 

over time. The dynamics of an FCM can be summarized in 

one cycle (from t to t +1) by updating the activations vector.  

 

 

 

 

 

 

 

Fig 1: An FCM as a graph 

The following gives a formal description of an FCM [7]. 

K denotes one of the rings or , by δ one of the numbers 

0 or 1, for V one of the sets {0, 1}, {-1.0, 1}, or [-δ,a]. Let 

(n, t0) ∈ IN² and k ∈ *+
.  An FCM F is a sixfold   

(C, A, W, A, fa, R): 

• C = {C1, …, Cn} is the set of n concepts forming the nodes 

of a graph. 

• A ⊂ C × C is the set of arcs (Ci, Cj) oriented from Ci to 

Cj. 

• W: C×C→K 
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     (Ci, Cj) → Wij is a function of C×C to IR associating a 

weight Wij to a pair of concepts (Ci, Cj), with Wij = 0 if 

(Ci, Cj) ∉ A, or Wij equal to the weight of the edge if 

(Ci, Cj) ∈ A. Note that W(C × C) = (Wij) ∈ Kn × n is a 

matrix of  Mn (IR).  

• A:C→Vn 

     Ci →ai is a function that maps each concept Ci to the 

sequence of its activation degree at the moment t ∈ 

IN, ai (t) ∈ V is its degree of activation at the moment 

t. We Note a (t) = [(ai (t)) i ∈ [[1, n]] T the vector of 

activations at the moment t.  

• fa ∈ (IR n) N is a sequence of vectors of forced activations 

such as for i ∈[1, n] and   t ≥ t0 is the forced activation of 

the concept Ci at the moment t. 

• (R) is a recurrence relationship on t ≥ t0 between         ai (t 

+1), ai(t) and fai (t) for  i ∈[1,n] indicating the dynamics 

of the map F.  

 

(R) :   ∀ i ∈  [1, n], ∀ t ≥ t0, 

ai (t0) = 0 

ai (t+1) = σ[gi(ƒ ai(t),∑j∈[1,n]Wij aj(t))] 

 

 

 

 

 

 

ƒ (x) = 1/(1+e-x)      ƒ (x) = 1 si x ≥k     ƒ (x) = 1 si x≥k 

                                            0 si x ≤k                 0 si x = k 

                                                                          -1 si x≤k 

Fig 2.  Cognitive maps’ standardizing function. 

The Mode represented by the function   is to reduce the value 

of concepts within the range of values taken as the area and 

can be either binary, ternary and sigmoid. The value of each 

concept is calculated with original formula proposed by 

Kosko [2]: 

 

Other alternatives involve taking into account the past history 

of concepts and jointly proposed the following equation: 

       (2) 

The Algorithm 1 shows the steps to follow for the calculation 

of the next input vector . 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. Reinforcement Learning (RL) 

The Markov Decision Processes (MDP) defines the formal 

framework of reinforcement learning [8]. More formally, an 

MDP process is defined by: 

• S, a finite set of states. s Є S  

• A, a finite set of actions in state s. a Є A(s) 

• r, a reward function. r(s, a) Є R  

• P, the probability of transition from one state to another 

depending on the selected action P (s '| s, a) = Pa(s, s'). 

The problem is to find an optimal policy of actions that 

achieves the goal by maximizing the rewards, starting from 

any initial state. At each iteration, the agent being in the state 

chooses an action, according to these outputs the environment 

sends either  award or a penalty to the agent shown by the 

following formula:   ri = h (si, ai, si+1).  

 

 

 

 

 

Fig 3 : Agent-environment Interaction in reienforcement 

learning 

To find the total cost, which is represented by the formula Σ 

h(si,ai ,si+1), the costs are  accumulated at each iteration of  the  

system. In [9] the expected reward is weighted by the 

parameter γ and becomes Σ γ h (si,ai,si+1) with 0 ≤ γ ≤ 1. The 

RL is to find a policy or an optimal strategy π *, among the 

different π possible strategies in the selection of the action. Q-

Learning algorithm [8] is to introduce a quality function Q 

represents a value for each state-action pair and Qπ (s, a) is to 

strengthen estimate when starting from state s, executing 

action a by following a policy π: Qπ(s, a) = E Σγri  and      

Q*(s, a) is the optimal state-action pair by following policy π* 

if Q*(s, a) = max Qπ(s, a)  and if we reach the Q*(si, ai)  for 

each pair state-action then we say that the agent can reach the 

goal starting from any initial state . Initially, the Q values are 

initialized  most cases to 0 and the value of Q is updated by 

the equation: 

Qk+1(si
 ,ai) = Qk (si

 ,ai) + α[h(si,ai ,si+1) + γ arg max(Qk(si+1,a)) - 

Qn (si
 ,ai)]          (2) 

α is called learning parameter. 

 

Algorithm 1: Calculation of the output vector 

 

Step 1: Read the input vector and weight matrix W. 

Step 2: Calculate the output vector  

  

Step 3: Apply the transfer function  to the output vector 



Step 4: verify the conditions of termination of the 

algorithm 
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3. THE ADAPTATION OF LFCM 

 The CASs [10] are distinguished from other systems by their 

dynamic improvements in current policy for each interaction 

with the environment. So this is a local building that does not 

require an assessment of the overall strategy. This observation 

leads us to overlook the value of the quality function Q in step 

(i+1). This translates mathematically by: Qn(si+1, a) = 0 and 

therefore equation (2) of the function Q becomes as follows: 

Q (si, ai) = Q (si,
 ai) + α [ri - Q

 (si, ai)]   (3) 

The following pseudo code provides an update of the value of 

Q function: 

If r = 1 / / Award  

Q(si, ai) = Q(si,
 ai) + α[1- Q(si

 ,ai)] 

If r = 0 / / Penalty 

Q(si,
 ai) = (1 - α) Q(si,

 ai) 

In our approach, if the states are represented after 

fuzzyfication by the concepts inputs or sensory concepts, the 

output vector is represented by the set of output concepts or 

effectors concepts that represent actions to perform in the 

environment after defuzzyfication. The motors concepts  are 

the decision-making mechanism. 

The value of Q is designed to instruct the agent to consider 

optimally its historical past. If the agent is in a state already 

visited, with a Q value in the table of values, it will be directly 

exploited to move to the next state, otherwise it will explore 

the possible actions in this state according to their respective 

probabilities. The exploration of the actions is accompanied 

by an update of their probabilities according to the linear 

scheme [11]: 

If r = 1 / / Award 

P (si, ai) 
 = P(si,

 ai) + β (1 - P(si,
 ai))    

If r = 0 / / Penalty 

P(si, ai) = (1-β) P(si,
 ai) 

4. THE PROPOSED APPROACH 

Based on the theoretical aspects described above, the pseudo 

code of Algorithm 2 summarizes our approach.  

Algorithm 2 : Pseudo code of the proposed appoach 

Step 1: Read the vector k and weight matrix W 

Step 2: Calculate the output vector k:        

 kk k W 

Step 3: Apply the transfer function   to the output vector 

k

Step 4: Among the active concepts choose the one that has the 

highest value of the function Q, if not probability 

Step 5: calculate the new output vector (output concepts)  

k

Step 6: Depending on the response to the environment: 

 If r = 1 / / Award 

(Updating the probability Pij and the Q value) 

Q


 (si, ai) = Q

(si,

 ai) + α [1 – Q(si,
 ai)] 

W Ci,Cj) = W Ci,Cj) 

P(ai) = P(ai) + β [1 - P(ai)] 

If r = o / / Penalty 

(Updating the probability Pij, the weight of the 

connection and the value of Q) 

 Qk (si, ai)) = (1- α) Qk (si, ai) 

W Ci,Cj) = W Ci,Cj) +η [1 - W Ci,Cj)] 

P(ai) = (1-β) P(ai) 

Step 7: If the termination conditions are realized Stop. 

Otherwise go to Step 2 

5. THE PREY AND PREDATOR MODEL 

SIMULATION 

It is assumed that the prey in a presence of a predator has only 

two actions to be taken for escape. Leak to the right (LR) and 

Leak to the left (LL). The use of probabilities of actions and 

values of the function Q provide a compromise between 

exploration and exploitation of actions. An FCM to represent 

this model in the theoretical framework of FCMs can be 

outlined as follows: 
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 Fig 4 : FCM's escape behavior of prey against its predator 

and W matrix link 
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 Fig 5: Main view of LFCM tools 

Concepts C1, (PF) for the Predator Far, and C2, (PN) Predator 

Near, are the inputs sensory concepts. The concepts C4 (LR), 

Leak Right, and C5 (LL), Left Leak,  are taken as effectors 

outputs concepts and concept C3 (Fear) is a concept motor. 

The FCM (Figure 3) has four edges and five concepts with 

links excitatory (+1) of 'NP' to 'Fear' and 'Fear' to 'LR' and 

'LL', and linked inhibitor (-1) of 'PF' to ' fear' . Activation of 

sensory concepts NP and PF fuzzyfication is achieved by the 

distance to the predator, while the defuzzification gives to 

escape a recession velocity for this agent. 

The concept is active if its value is 1, otherwise it is inactive 

(binary mode). It is given an initial activation vector A = (0 1 

0 0 0). Table 1 show’s the values P(ai) of the probabilities of 

actions and values of the function Q  updated at each iteration. 

Table 2 gives the output vector for all iterations in response to 

the environment. 

Table 1. Action probabilities and Q-Function values 

ai P(ai) Q(si, ai) value 

LL 

LR 

 

0.5 

0.5 

 

(NP,LL) 

(PF,LR) 

 

0 

0 

 

 Table 2. Output Vector 

 

 

 

 

 

 

 

 

At iteration n ° 3 the prey is facing a situation where it has 

two possible actions, represented by the active concepts C4  

and C5, but must choose one among them and this choice is 

guided either by the value of function Q, if the state is already 

visited, or by the value of the probability of the action if the 

first pass in this state. 

6. Related work 

We have selected two axes to compare our approach with the 

approaches used by the different teams in the field of 

intelligent modeling of dynamic systems. The first concerns 

the graphical representation and the second axis concerns the 

mathematical description of the studied system. 

1. The FCMs graphical representation can view the structure 

of the studied system in the form of concept (node) that 

represent a state, a propriety or other characteristic of the 

modeled system, connected by causal relationships that 

determine the nature of the action exerted on each other 

concepts which it is connected. This graphical representation 

can develop relatively simple and readable models something 

that is not found in the AMAS theory [12] and in the cellular 

automata field [13]. 

2. The FCMs mathematical foundations [4] can express the 

behavior of the investigated system in algebraic form. The 

future state of the system is derived by simply applying 

algebraic methods represented here by the multiplying the 

current state vector with the causal links matrix and the result 

of the operation gives a new state vector to be used as an input 

for the nest step. 
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8. CONCLUSION 

The  complexity and  criticism raised by the  community in  

the  field of  modeling CASs by MASs and CAs, led us to 

seek another approach, which is contained in same concepts 

inspired by the area of life. In psychology behavior is 

generally related to the concepts of emotions, perceptions and 

sensations. These key concepts of life can be supported by 

FCMs. CASs  are therefore in the field of artificial life more 

than other areas of computing. The area of FCMs, despite the 

improvement made by different research teams in the world, 

remains an area dense, low-unified. 
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