
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

5

Performance Comparison of Server Load Distribution
with FTP and HTTP

Yogesh Chauhan
Assistant Professor

HCTM Technical Campus, Kaithal

Shilpa Chauhan
Research Scholar

University Institute of Engg & Tech, Kurukshetra

ABSTRACT
A Web server’s constraint on the number of pages it can serve

simultaneously is largely because of two factors: the bandwidth

available and the Web server itself. When a website is popular

and if there is only one web server responding to all the

incoming HTTP requests for a website it may be possible that

the capacity of the web server may not be able to handle high

volumes of incoming traffic. The increase in traffic and

connections to the website can lead to a point where the

upgrading of server hardware will no longer be cost effective.

Thus, more servers need to be added to distribute the load

among the group of servers. The load distribution among these

servers is known as load balancing. In this paper we are

analyzing the performance of HTTP network for optimum load

balancing using OPNET.

Keywords
Opnet, CPU Utilization, IP, Cluster

1. INTRODUCTION

Server Load Balancing (SLB), Fig.1, is defined as a process

and technology that distributes site traffic among several

servers using a network-based device. This device intercepts

traffic destined for a site and redirects that traffic to various

servers. [6] The load-balancing process is completely

transparent to the end user. There are often dozens or even

hundreds of servers operating behind a single URL. The

functions of a load balancer are as:

1. It intercepts network-based traffic (such as web traffic)

destined for a site and splits the traffic into individual

requests and also decides which servers receive individual

requests.

2. It watches all the available servers and ensures that they

are responding to traffic. If they are not responding they

are taken out of process.

3. It provides redundancy by employing more than one unit

in a fail-over scenario.

4. It also offers content-aware distribution, by doing things

such as reading URLs, intercepting cookies, and XML

parsing.

Load balancing applies to all types of servers (application

server, database server), however this paper is about FTP and

HTTP server only.

Load balancing is a critical issue in parallel and distributed

systems to ensure fast processing and good utilization. Load

balancing involves IP Spraying when multiple web servers are

present in a server group; the HTTP traffic needs to be evenly

distributed among the servers. In this process, these servers

must appear as one web server to the web client, for example

an internet browser. The equipment used for IP spraying is also

called the 'load dispatcher' or 'network dispatcher' or simply,

the 'load balancer'. In this case, the IP sprayer intercepts each

HTTP request, and redirects them to a server in the server

cluster. Web server’s performance is determined by the

underlying hardware resources available to it. This limit is

higher when the content delivered is static like images or text,

but considerably lower when dealing with dynamic content.

Load balancing involves spreading the load among multiple

machines, or sometimes even among multiple sites, thereby

increasing the resources available.

Fig 1 SLB simplified

Load balancing in its crudest form would, for example, involve

placing all HTML files on one host, all images on another and

all CGI scripts on the third. Real-life load balancing, however,

involves carefully examining access patterns of various files on

the website and keeping identical copies of the same Web

server and distributing the load amongst them.

2. RELATED WORK
Qin Zheng [1] gives details on load distribution over computers

in a group that leads to the minimum response time or

computational cost. Many researchers work on how to reduce

the computational cost in servers and how to improve the

resource utilization in load balancers. For this a framework of

weighted alpha rules[2] that can improve the global resource

utilization and load balancing, which translates into a smaller

blocking rate of MS arrivals without extra resources, while the

aggregate throughput remains roughly the same or improved

around the hotspots is presented. Increasing utilization of

cluster web servers through effective and fair load balancing

for heterogeneous as well as homogeneous network [8] is a

crucial task specifically when it comes to advent of dynamic

contents.

The exponential demands for high performance web servers led

to use of cluster-based web servers especially for multimedia

applications [7]. The algorithm to select dynamically servers

from a class and assigns the request to a server is proposed by

Saeed Sharifiana[3]. Also mobile agent based framework[4]

Server 1 Server 2 Server 3

Internet Users

Load Balancer

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

6

called Mobile Agent based Load balancing (MALD) that uses

mobile agents technology to implement scalable load balancing

on distributed web servers. The web servers can dispatch

mobile agents to collect system-wide load information and

accomplish load redistribution on all servers. Beside this A

random selection algorithm [5] is proposed in which concurrent

requests occur, a server will be selected randomly for clients

from the optional servers which accord with anycast condition.

The method not only ensures the QoS of anycast server but

also provides clients with an optimal server. The algorithm has

been proved to be feasible and efficient by simulation

experiment. Experiments on minimizing use of computer

hardware, software failures and mitigating recourse limitations

by cloud computing [9], [10] are the hot area of research now

days.

3. LOAD-BALANCING TECHNIQUES
Load balancing can be done through hardware- or software-

based techniques. DNS load balancing [6], involves

maintaining identical copies of the site on physically separate

servers. The DNS entry for the site is then set to return multiple

IP addresses, each corresponding to the different copies of the

site. The DNS server then returns a different IP address for

each request it receives, cycling through the multiple IP

addresses. This method gives you a very basic implementation

of load balancing. However, since DNS entries are cached by

clients and other DNS servers, a client continues to use the

same copy during a session. This can be a serious drawback, as

heavy website users may get the particular IP address that is

cached on their client or DNS server, while less-frequent users

get another. So, heavy users could experience a performance

slowdown, even though the server’s resources may be available

in abundance.

Another load-balancing technique involves mapping the site

name to a single IP address, which belongs to a machine that is

set up to intercept HTTP requests and distribute them among

multiple copies of the Web server. This can be done using both

hardware and software. Hardware solutions, even though

expensive, are preferred for their stability. This method is

preferred over the DNS approach, as better load balancing can

be achieved. Also, these load balancers can see if a particular

machine is down, and accordingly divert the traffic to another

address dynamically. This is in contrast to the DNS method,

where a client is stuck with the address of the dead machine,

until it can request a new one.

Another technique, reverse proxying, involves setting up a

reverse proxy, that receives requests from the clients, proxies

them to the Web server and caches the response onto itself on

its way back to the client. This means that the proxy server can

provide static content from its cache itself, when the request is

repeated [6]. This in turn ensures that the server itself can focus

its energies on delivering dynamic content. Dynamic content

cannot generally be cached, as it is generated real time.

Reverse proxying can be used in conjunction with the simple

load- balancing techniques discussed earlier, static and

dynamic contents can be split across different servers and

reverse proxying used for the static content Web server only.

Firewall Load Balancing [6] (FWLB), Fig. 2, has been

developed to overcome some of the limitations of firewall

technologies. Most firewalls are CPU-based, such as a SPARC

machine or an x86-based machine.

Because of the processor limitations involved, the amount of

throughput a firewall can handle is often limited. Processor

speed, packet size, configuration, and several other metrics are

all determining factors for what a firewall can do, but

generally, they tend to max out at around 70 to 80 Mbps

(Megabits per second) of throughput. Like SLB, FWLB allows

for the implementation of several firewalls sharing the load in a

manner similar to SLB. Because of the nature of the traffic,

however, the configuration and technology are different. Figure

2 shows a common FWLB configuration.

Fig 2 A common FWLB configuration

4. SIMULATION WORK
Studies can be done to determine the best load balancing

policy to use for a particular. We use the image browsing as the

internet application and determine the traffic received on the

work stations with four different load balancing configurations

using Load Balancer with 3000 users using the application. The

following statistics are collected at the load balancer when load

balancing is enabled. Statistics are collected per application

and per server. Traffic Sent (in Bytes/sec or Packet/sec). The

amount of traffic sent to a particular application server. Traffic

Received (in Bytes/sec or Packet/Sec) The amount of traffic

received from a particular application server. The following

statistics are collected at each of the servers. CPU load (%), the

percentage load on server CPU. The results shown on the CPU

Utilization (%) are collected from the individual server who

serves the workstations for One Hour.

4.1 No Load Balancing Configuration
Six client server are made, out of three are http servers and

other three are ftp servers. Client1 is addressed to

internet_server (server 1) as destination server. (Likewise all

six clients are addressed to internet_server (server 1) as

destination server) Client1 has supported the Web_User

Profile. (Likewise all six clients are using the same profile).

Fig 3 FTP Server (1-3) & HTTP Server (1-3) CPU

Utilization (%) under No Load Configuration

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

7

4.2 Random Balancing Scenario
Load balancer randomly chooses from one of the three

application servers according to the specified weight.

.

Fig 4 FTP Server (1-3) CPU Utilization (%) in random

configuration.

Fig. 5 HTTP Server (1-3) CPU Utilization (%) in random

configuration.

4.3 Round Robin balancing configuration
This scenario uses the Round Robin fashion in which the load

balancer chooses each application server in turn depending on

the server weight. Fig.6 shows the CPU utilization of FTP

servers, and of HTTP servers in Fig.7.

Fig. 6 FTP Server (1-3) CPU Utilization (%) in Round

Robin configuration.

Fig. 7 HTTP Server (1-3) CPU Utilization (%) in Round

Robin configuration.

4.4 Server Load balancing configuration
The fourth scenario uses the Server Load fashion in which the

load balancer chooses the server with the lowest load at the

time when a request is made. In this scenario, the load balancer

is connected to the server through an Ethernet hub instead of

individual links.

Fig. 8 FTP server (1-3) CPU Utilization (%) in Server Load

Configuration

Fig. 9 HTTP Server (1-3) CPU Utilization (%) in Server

Load Configuration

4.5 Number of connection Configuration for

Load Balancing
In Number of Connection configuration scenario the load

balancer tracks the number of open connections it has with

each server. When a new request is received, it chooses the

server with the least number of connections.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

8

Fig. 10 FTP Server (1-3) CPU Utilization (%) in No. of

Connection Load Configuration

Fig. 11 HTTP Server (1-3) CPU Utilization (%) in No. of

Connection Load Configuration

4.6 Server’s performance in different Load

configuration
Here each performance shows its performance individually in

different Load Balancing configuration. So it is seen here that

the Performance is looking sharply vary in different

configuration.

Fig. 10 Performance of FTP Server 1 in four load balancing

configurations with no load balancing configuration

Fig. 11 Performance of FTP Server 2 in four load balancing

configurations with no load balancing configuration

Fig. 12 Performance of FTP Server 3 in four load balancing

configurations with no load balancing configuration

Fig. 13 Performance of HTTP Server 1 in four load

balancing configurations with no load balancing

configuration

Fig. 14 Performance of HTTP Server 2 in four load

balancing configurations with no load balancing

configuration

Fig. 15 Performance of HTTP Server 3 in four load

balancing configurations with no load balancing

configuration

So we see that in the all the load balancing configuration

load balancer equally divide the load on the servers either it is

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.3, November 2012

9

http server or ftp server. Also the there is some uneven

distribution of the load in http application. The ftp application

shows the somewhat equal distribution of load among the ftp

servers. In this project we use only 3 servers for the ftp and3

servers for the http application, but in reality we have

hundreds, thousands of servers for handling the applications.

5. CONCLUSION
The statistics which we are obtained are given below. The

entire four scenarios have shown the CPU Utilization for the

purpose for performance analysis. Table I shows the CPU

Utilization for the single server. It is shown in the table that the

server 1 is busy during the whole simulation period or during

the whole busy working hours. In this case server1 is getting

the whole Load.

Table 2 shows the CPU utilization for random configuration. In

table 3, round robin configuration and table 4, server load

configuration, data shows that server 3 is at shoot for this

configuration. Table 5 shows that as no. of connections

increases the ftp server CPU usage is increases. Thus it can be

concluded that the effect of different load balancing

configuration is very less for small network. But as the number

of connections increases, FTP server CPU utilization is also

increases.

Table 1 Top Objects Report in CPU Utilization (%) for No

Load Balance Configuration

Rank Object Name Minimum Average Maximum

1 http_server1 0.000028 3.64 8.1

2 http_server2 0.000028 0.00 0.00

3 http_server3 0.000028 0.00 0.00

4 ftp_server1 0.000028 4.61 24.6

5 ftp_server2 0.000028 0.00 0.00

6 ftp_server3 0.000028 0.00 0.00

Table 2 Top Objects Report in CPU Utilization (%) for

Random Configuration

Rank Object Name Minimum Average Maximum

1 http_server1 0.000028 0.92 2.0

2 http_server2 0.000028 1.83 3.9

3 http_server3 0.000028 0.94 2.0

4 ftp_server1 0.000028 1.46 8.4

5 ftp_server2 0.000028 1.88 11.2

6 ftp_server3 0.000028 1.09 6.0

Table 3 Top Objects Report in CPU Utilization (%) for

Round Robin Configuration

Rank Object Name Minimum Average Maximum

1 http_server1 0.000028 0.62 1.3

2 http_server2 0.000028 1.21 2.6

3 http_server3 0.000028 1.83 4.0

4 ftp_server1 0.000028 1.51 8.0

5 ftp_server2 0.000028 1.16 6.6

6 ftp_server3 0.000028 1.83 10.6

Table 4 Top Objects Report in CPU Utilization (%) for

Server Load Configuration

Rank Object Name Minimum Average Maximum

1 http_server1 0.000028 0.62 1.3

2 http_server2 0.000028 1.21 2.6

3 http_server3 0.000028 1.83 4.0

4 ftp_server1 0.000028 1.51 8.0

5 ftp_server2 0.000028 1.16 6.6

6 ftp_server3 0.000028 1.83 10.6

Table 5 Top Objects Report in CPU Utilization (%) for No. of

Connection Configuration

Rank Object Name Minimum Average Maximum

1 http_server1 0.000028 1.21 2.85

2 http_server2 0.000028 1.24 2.55

3 http_server3 0.000028 1.22 2.79

4 ftp_server1 0.000028 1.60 8.31

5 ftp_server2 0.000028 1.53 8.45

6 ftp_server3 0.000028 1.59 8.87

6. REFERENCES

[1]. Zheng, Q. Chen-Khong Tham and Bharadwaj, V. J. 2008.

Dynamic Load Balancing and Pricing in Grid Computing

with Communication Delay, Grid Computing, 6:239–253

DOI 10.1007/s10723-007-9093-5

[2]. Aimin Sang, Madihian, M. , Richard D. Gitlin, 2004.

Coordinated Load Balancing, Handoff/Cellsite Selection, and

Scheduling in Multicell Packet Data Systems, MobiCom

2004, Philadelphia, Pennsylvania, USA.

[3]. Sharifiana, S., Motamedia, S. A.and Akbarib, M. A. 2010. A

predictive and probabilistic load-balancing algorithm for

cluster-based web Servers, Appl. Soft Comput. J. (2010)

[4]. Jiannong Cao, A., Sun, Y., Wang, X. and Das,S. K.2003.

Scalable load balancing on distributed web servers using

mobile agents, Parallel Distrib. Comput. 63 (2003) 996–1005

[5]. Zhou, Z., Xu, G., Deng，C. and Jiang, J. 2009. A Random

Selection Algorithm Implementing Load Balance for Anycast

on Application-layer, Proceedings of the 2009 International

Symposium on Web Information Systems and Applications

(WISA’09), May 22-24, 2009, pp. 444-4486.

[6]. Bourke, T., ” Server Load Balancing”, Published by O'Reilly

& Associates, Inc., 101 Morris Street, Sebastopol, 2001.

[7]. Guo,J. and Bhuyan,L. N. 2006. Load Balancing in a

Cluster-Based Web Server for Multimedia Applications,

IEEE Transactions On Parallel And Distributed Systems, Vol.

17, No. 11, November 2006.

[8]. Rommel, C. G.1991. The Probability of Load Balancing

Success in a Homogeneous Network, IEEE Transactions On

Software Engineering, Vol. 17, No. 9, September 1991.

[9]. Chaczko, Z., Mahadevan, V., Aslanzadeh, S. and Mcdermid,

C. 2011.Availability and Load Balancing in Cloud

Computing, International Conference on Computer and

Software Modeling, Singapore, Vol. 14, 2011.

[10]. Mishra, R. and Jaiswal, A. 2012. Ant colony Optimization: A

Solution of Load balancing in Cloud, International Journal Of

Web & Semantic Technology (IJWEST) Vol.3, No.2, April

2012

