
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

4

Test Case Generation based on Activity Diagram for

Mobile Application

ABSTRACT

Testing impacts the popularity of any software and hardware

products. If proper testing of any product is done it will increase

the cost and sale of the product. Mobiles are widely used

electronic device there are several mobile companies established

which provide variety of applications and features. It is obvious

that people attract on the model that provides new features and

comparatively less cost than others. If any problem arises in

mobile application, it will affect the selling and impacts bad

result. This problem arises when proper testing is not done. To

test any product, test cases are used. It shows all possible paths it

needs to cover by the software. This paper proposed a TCBAD

model for mobile application. TCBAD model generates test

cases on the basis of the activity diagram where activity diagrams

are used in representing the workflows of stepwise activity and

actions with support for choice, iteration and concurrently the

complexity will be calculated using Cyclomatic complexity.

General Terms

Unified Modeling Language, Test case Generation, and

Cyclomatic Complexity.

1. INTRODUCTION

Navigational mobile applications are widely used software. In

any mobile device to perform any task user have to switch on

various pages or screens, these pages are interconnected and

provide functions for end users. The development of mobile

application is based on software development life cycle (SDLC).

SDLC have six stages: Feasibility Study, Requirement Analysis,

Design Phase, Coding, Testing, and Maintenance. Testing is the

imperative phase for mobile application for bug detection and

test case generation. Client provides information regarding

mobile application to Programmer then he generates design

document on the basis of pre-described information. This model

proposed an approach to check the validity and the performance

of activities. ADG (Activity Dependency Graph) is the

conceptual diagram form of ADT (Activity Dependency Table),

basically on the on the basis of ADG we can find all possible test

paths. This work uses Model Based Testing (MBT) which

depends on extracting test cases from different models, and

quality of test cases depends on how far they would cover all the

functionalities in the system under test. The generated test case

covers all the branches in the activity diagram, so it uses as

branch coverage criteria. Section II all appears on test case

generation and activity diagrams in detail. Section III illustrates

the proposed model TCBAD and TCBAD Algorithm. Section IV

shows experimental evaluation and results. Section V concludes

the research work.

2. BACKGROUND WORK

Mobile phone systems have become an avoidable necessity now

days. As the requirement of mobile phone system increases the

requirement of manufacturing and development of software

systems for it also increases. The main aspect of any software is

working of every function properly.In the case of mobile system

many pages are linked with each other and have some predefined

sequence of occurrences. Testing is one of the phases of software

development life cycle and contains several phases to accomplish

the testing task. Figure 1 shows STLC.

2.1 MODEL BASED TESTING

There are three types of models: Requirement model, usage

model and model constructed from source code. Requirement

models are specification based models and black box testing are

applied on these types of models. The model constructed from

source code contains program based testing, also known as white

box testing.Model Based Testing (MBT) is a special type of

testing strategy that depends upon extracting test cases from

different models (Requirement model, usage model and model

constructed from source code). MBT have three main key

technologies:

• Notation used for the model

• The test generation Diagram

• The tools that generate supporting infrastructure for the

tests.

The test cases derived from the behavior model are functional.

Test on the same level of abstraction as the model. Many types of

model are used to derive test cases, UML model are one of the

highly ranked type of model used.UML is the most dominant

standard language used in modeling the requirements [2,14] and

is considered as an important source of information for test case

design. Therefore if it is satisfactorily exploited, it will reduce

testing cost and effort and at the same time improve the software

quality [2].

2.2 SOFTWARE TESTING LIFE CYCLE

Software testing is one of the phase of SDLC which is used for

development of software, all phases of SDLC generates a good

quality software, testing is a essential phase of SDLC.The

research results on SDLC shows that testing can cover 50%

Chanda Chouhan Vivek Shrivastava Parminder S Sodhi
Dept. of Information Technology Dept. of Information Technology Graphics Engineer

InstituteofTechnology&Management Institute of Technology & Management

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

5

efforts and also takes credit for popularity and cost. STLC is also

accomplished in several phases.

Requirement Study: Testing cycle starts with the study of clients

requirements. As requirement is already taken in SDLC phase

but to test software, software testing engineer also needs to study

the requirements of client. SRS (software requirement

specification document) is the output of requirement analysis

phase of SDLC; STLC uses this document for requirement study.

Analysis and Planning: After completion of requirement analysis

testing objective and coverage is decided, overall scheduling,

resources required for process is decided and role and

responsibilities are assigned.

Test case design and development: Test case design and

development phase covers component identification, test

specification design, test specification review.

Test Execution: In this phase performance of testing is evaluated

on the basis of code review.

Test Closure: In test closure phase test summary reported project

documentation is created. Generated documents are useful for

new developers as well as sort out the drawback and errors of the

testing and code.

Test Process Analysis: Analysis done on the reports and

improving the application’s performance by implementing new

technology and add features [5].

2.3 ACTIVITY DIAGRAMS

Activity diagrams belong from Unified Modeling Language

(UML). UML is a standard language which helps customers and

developers to develop software and provide various types of

diagram for the purpose of specifying the task, visualizing results

or models, constructing, documentation, business modeling and

communication.UML basically provide notations in the form of

diagrams and is capable to show a prototype of model without

implementation or coding. The UML diagrams are used in

analysis and design phases of SDLC. The selection of UML

diagram is based on user’s perspective. For clients, Use case

diagrams are useful. Designers work with class diagram,

analyzers work with activity or state chart diagram, which is a

scenario-based approach. Activity Diagrams are used to describe

the workflow behavior of the system. In the case of mobile

application activity diagram shows behavior and stepwise

activities and actions. Notations for the activity diagram are

shown in table 1[2].

2.4 TEST CASE GENERATION

Software testing plays an important role to improve the quality of

software. The purpose of software testing is not concern only

with proper working of software it is also used for quality

assurance, reliability estimation. If the software size and

complexity of development and logic behind it increases, it takes

more time and efforts for testing.

SYMBOL REPRESENTS

Activity

Decision

Initial State

Final State

Joint

Test case generation is the most important issue in the research

field of software testing. Test case generation can be divided in

two main phases, test case design and test case execution, both

phases are time consuming. So, automatic generation of test case

is widely discussed issue in research field. Test cases show the

flow of actions or all possible paths of the system. Test cases are

used to describe an input, action or events and an expected

response to determine if a feature of an application is working

correctly. There are two main approaches to generate test cases

automatically [5].

Design test cases from requirement and design specification: Test

cases generated from requirement and design specification are

basically generated in requirement analysis and specification

phase and design phase. Test cases generated in this phase are

designed after understanding userrequirement; the designer

generates test cases in the absence of a working system, so it is a

challenging job and requires lots of imagination and creativity. A

good software design must show a series of steps and

iterations[6,7].

Test cases generated from Code: Test cases generated from code

are an easy task then test case generated from requirement and

design specification. Coding is one of thephases of SDLC which

comes after feasibility study, Requirement analysis and Design

phase. If a software follows the same path as shown in test cases

then it is considered that software is developed properly as per

users requirement and its costalso increases.Test cases are useful

in cost estimation, effort estimation, size estimation and

scheduling of software. Coverage criteria are one of the metrics

established to check the quality of test cases which are generated

from behavior models and requirement and design specification.

NewActivity

Table 1:Notations for Activity Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

6

2.5 COVERAGE CRITERIA

To check the quality of test cases which are generated by

behavior models coverage criteria is used. There are various

types of coverage criteria to check the quality of test cases. For

example: Branch coverage criteria applied on control flow

graphs, where control flow graphs are used to show the overall

flow of the graph.It shows the number of branches which are

covered by the graph. The second type of criteria is full predicate

coverage which is applied on test case generation method by

using state chart or communication diagram based techniques.

Activity diagrams are used for basic path coverage criteria.

This paper proposed a model TCBAD based on hybrid coverage

criteria. Hybrid coverage criteria are the combination of branch

coverage criteria, full predicate coverage criteria, basic path

coverage criteria and also Cyclomatic complexity criterion.

Hybrid criterion can be defined as “a set of activity path P

satisfies the hybrid coverage criterion if and only if P contains all

start-to-end activity paths in an activity diagram, all predicates or

conditions in an activity diagram and all test cases produced by

Cyclomatic complexity technique.

a. Cyclomatic Complexity:

CyclomaticComplexity (CC) is used to calculate the minimum

number of test cases that should be covered for each activity

diagram. Cyclomatic complexity can be computed via using two

notations number of edges (E) and number of nodes (N).Figure 1

shows the examples of calculate the Cyclomatic complexity and

equation 1 shows the formula to calculate CC [2].

CC=E-N+2……………………………….. (1)

3 PROPOSED MODEL

The proposed model studies the activity diagrams as a element in

initiation the automated algorithm of generating test cases for

navigation mobile application. This model constructs an

intermediate table called the Activity Dependency Table (ADT)

which contains columns: Activity Name, dependency nodes, in

degree value, dependent nodes, out degree values. The produced

ADT table automatically generates a directed graph called

Activity Dependency Graph (ADG). The ADG is then examined

using the Depth First Search (DFS) in order to extract all the

possible test cases for mobile applications. The ADT’s form

makes the ADG cover all the functionalities in the activity

diagram. The generated test cases should go through all the

branches in the activity diagram. Each activity diagram will be

utilized to automatically generate its ADT which is specially

designed to contain all necessary details that enable the model to

examine all the activity diagram’s functionalities and

capabilities. The ADT will then be used to automatically

generate the ADG. The ADG will be accessed using the DFS to

extract all the possible test paths. Therefore, all the details are

added to each test path using the ADT to have the final test cases

[2]. Each activity diagram should pass through all the four

modules to generate at the end a set of highly efficient test cases

meeting the hybrid coverage criterion for the mobile application

system. Figure 2 shows architecture of TCBAD.Figure 3 shows

algorithm for TCBAD.This algorithm is the extended form of

Algorithm Generating Test cases Suite. TCBAD proposed to add

extra nodes to satisfy the condition for root node and end node,

which state that for root node the value of in order is null as well

as for end node value of out node is null. This condition can be

used for automatic decision of root node and end node.

Figure 1:Cyclomatic Complexity Calculation Example

Figure 2: Architecture of TCBAD

Algorithm for TCBAD(Test case generation based on Activity

Diagram.)

Input: ADT, ADG.

Output: Test Cases, Test case Table which contains columns test

case no., Test Path Node, Node Input, Node expected Output,

Test case Input, and Test case Expected Output.

//This algorithm is used to generate automatic test cases using

ADG and ADT .Root node is a node whose in degree value is

null and End node shows out degree value is null.

STEP 1: Select Root node and End node.//Root node and End

node decided on the Basis of in order and out order values.

STEP 2: Mark Root node as visited, and push this node onto

stack.

STEP 3: Scan the whole graph and push every adjacent node

of root node into the stack.

STEP 4: Repeat STEP 1 to STEP 3 till all paths are covered.

4 EXPERIMENTAL EVALUATION

TCBAD is a model to automatic generates

activity Diagram as well as Activity Dependency Table. In

section III, the architecture of TCBAD is shown

the algorithm for TCBAD. This section shows the experimental

analysis of proposed algorithm.

Activity Diagram:Figure 4 shows activity diagram for

field for mobile application. As discussed in section II activity

diagrams covers all basic paths for any situation. Figure 4 shows

all possible options and paths for user to access and use contact

field in any mobile system. The diagram are generated in

Rational rose enterprise edition.

Start

 Access

Contacts

Add ContactsView

Contacts

Delete

Contacts

Edit

Contacts

Add Name

Add Number

View by

Name

View by

Number

Delete by

Name

Delete by

Number

Edit Details

<<Sav e Changes>>

End

Select

Contacts

Figure 3:Algorithm of TCBAD

Figure 4: Activity Diagram for Contacts Field

International Journal of Computer Applications (0975

Volume 57

case generation based on Activity

Output: Test Cases, Test case Table which contains columns test

case no., Test Path Node, Node Input, Node expected Output,

case Input, and Test case Expected Output.

//This algorithm is used to generate automatic test cases using

ADG and ADT .Root node is a node whose in degree value is

null and End node shows out degree value is null.

//Root node and End

node decided on the Basis of in order and out order values.

STEP 2: Mark Root node as visited, and push this node onto

STEP 3: Scan the whole graph and push every adjacent node

till all paths are covered.

EXPERIMENTAL EVALUATION

a model to automatic generates test cases using

activity Diagram as well as Activity Dependency Table. In

shown Figure 3 shows

the algorithm for TCBAD. This section shows the experimental

Figure 4 shows activity diagram for contact

field for mobile application. As discussed in section II activity

all basic paths for any situation. Figure 4 shows

all possible options and paths for user to access and use contact

The diagram are generated in

Activity Dependency Table
created by activity diagram Table 2

table which contains columns Activity

in degree value, dependent nodes, out degree values.

Activity Dependency Graph
(Activity Dependency Graph) which is generated by ADT.

Copy

Contacts

 Copy Sim

to Phone

Copy Phone

 to Sim

No

TCBAD

Diagram for Contacts Field

Table 2: Activity Dependency Table

Figure 5: Activity Dependency Graph

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

7

Table:Activity dependency table is
Table 2 shows activity dependency

columns Activity Name, dependency nodes,

in degree value, dependent nodes, out degree values.

Graph: Figure 5 shows ADG
(Activity Dependency Graph) which is generated by ADT.

Activity Dependency Table

Activity Dependency Graph

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

8

Test Path Generation: Table 3 shows automated generated

test paths based on TCBAD algorithm which is applied on

ADT and ADG.

TEST PATH

NO.

TEST PATHS

1. R-A-Q

2. R-A-B-G-Q

3. R-A-B-H-Q

4. R-A-C-I-O-P-Q

5. R-A-C-I-O-P-A-Q

6. R-A-D-J-P-Q

7. R-A-D-K-P-A-Q

8. R-A-E-L-P-Q

9. R-A-E-L-P-A-Q

10. R-A-F-M-P-Q

11. R-A-F-M-P-A-Q

12. R-A-F-N-P-Q

13. R-A-F-N-P-A-Q

Cyclomatic Complexity Calculation: Cyclomatic Complexity

(CC) is used to calculate the minimum number of test cases that

should be covered for each activity diagram. CC can be

calculated using equation (1). Table 4 shows the value of CC.

CC=E-N+2

Where E=27

N= 18

Then;

CC=24-18+2 =8

We also know that test cases should also satisfy the condition

Branch Coverage ≤CC≤ Number of Paths

Then,

Branch Coverage= 7

CC=8

Number of Paths=13

7≤8≤ 13

Test Path

Nodes

Cyclomatic

complexity

Total Test

Cases

80 8 72

5. CONCLUSION

Now a day’s several mobile companies are established and trying

to provide better facilities than others. This type of facilities

increases the functionality of mobile application along with

complexity. As mobile applications have become an important

part of human life, if any application is not running in

navigational mobile application, it will decrease the popularity of

that model. So, the testing phase in SDLC becomes a crucial part

of mobile application designing process.

This work proposes a model for test case generation for

navigation mobile application based on activity diagram and

complexity will be calculated by Cyclomatic complexity.

Activity diagram is one of the famed UML diagram. The

proposed model introduces an algorithm that

automaticallycreates a table called Activity Dependency Table

(ADT) and then uses it to create a directed graph called Activity

Dependency Graph (ADG).The ADT isconstructed in a detailed

form that makes the generated ADG cover all the functionalities

in the activity diagram. Finally the ADG with the ADT is used to

generate the final test cases. The proposed model includes

validation of the generated test cases during the generation

process to ensure their coverage and efficiency. The generated

test cases meet a hybrid coverage criterion in addition to their

form which enables using them in system, regression as well as

integration testing. The proposed model saves time and effort.

Besides, it also increases the quality of generated test cases.

6. REFERENCES

[1] Ayan Nigam, Bhawna Nigam , Devendra Kumar Vatsa

“Generating all Navigational Test Cases using Cyclomatic

Complexity from Design Documents for Mobile

Application” International Journal of Computer

Applications (0975 – 8887) Volume 40– No.12, February

2012.

[2] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed Hashem

and Mohamed F.Tolba, “A Proposed Test Case Generation

Technique Based on Activity Diagrams” International

Journal of Engineering & Technology IJET-IJENS Vol: 11

No: 03, June 2011.

[3] Santosh Kumar Swain , Durga Prasad Mohapatra, and Rajib

Mall “Test Case Generation Based on Use case and

Sequence Diagram” Int.J. of Software Engineering, IJSE

Vol.3 No.2 July 2010.

[4] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Francesco

Faralli, Ugo De Carlini “Testing Web Applications”

Proceedings of the International Conference on Software

Maintenance (ICSM.02),Napoli,Italy,2002

[5] Paolo Tonella and Filippo Ricca, “Statistical testing of Web

applications” Journal of Software Maintenance and

Evolution: Research and Practice, Trento, Italy, 2004

Table 3: Test Paths from ADT and ADG

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.23, November 2012

9

[6] Zhongsheng Qian, Zhongsheng Qian, Hongwei Zeng, “A

Practical Web Testing Model for Web Application Testing”

Third International IEEE Conference on Signal-Image

Technologies and Internet-Based System, Shangai, China,

2005

[7] Martin Sheppard,” A critique of cyclomatic complexity as

software metric”, Software Engineering Journal, England,

March, 1988

[8] L. Luo. “Software Testing Techniques, Technology

Maturation and Research Strategies”, Class Report, Institute

for Software Research International, Carnegie Mellon

University, Pittsburgh, USA, 2009.

[9] A.C. Dias-Neto, R. Subramanyan, M. Vieira, G.H.

Travassos. “A Survey on Model-based Testing Approaches:

A Systematic Review”, Proceedings of the 1st ACM

international workshop on Empirical assessment of software

engineering languages and technologies in conjunction with

the 22nd IEEE/ACM International Conference on

Automated Software Engineering (ASE), New York, USA,

2007.

[10] A.C. Dias-Neto, G.H. Travassos. “Model-based testing

approaches selection for software projects”, Journal of

Information and Software Technology 51 (2009).

[11] S.K. Swain, D.P. Mohapatra, R. Mall. “Test Case

Generation Based on Use case and Sequence Diagram”,

International Journal of Software Engineering, IJSE 3

(2010).

