
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

19

An Intelligent Protocol Algorithm to improve the

Performance of Enterprise Systems Communications

Hashmi Domun

Department of Computer Science & Engineering,
University of Mauritius,

Réduit, Mauritius.

Leckraj Nagowah
Department of Computer Science & Engineering,

University of Mauritius,
Réduit, Mauritius.

ABSTRACT

Enterprise communications rely on the hardware and the

network infrastructure through which clients connect to gain

access to enterprise server resources and services. The

communication protocols used in enterprise networks

however, do not always take into account the optimization of

data communications between the client and the server, and

this may hamper the efficiency of the enterprise systems. The

networking infrastructure that connects the clients to the

server is a major source of communication inefficiency. This

paper aims at proposing an intelligent protocol algorithm

which dynamically senses the state of the network and

determines the best mode for sending files from the server to

the clients. The protocol algorithm uses multiple data

compression algorithms to provide for data compression and

decompression during communication. It initially learns by

considering different communication scenarios whereby the

protocol payload is compressed using different compression

algorithms. After this learning curve, the protocol algorithm

intelligently decides on and uses the best compression

algorithm to optimize data transfer on the network, therefore

increasing the efficiency of enterprise systems

communications. Using TCP as Transport Layer protocol, the

protocol algorithm can achieve up to an 80% gain in

efficiency.

General Terms

Internet and Distributed Computer Systems.

Keywords

Enterprise systems, intelligent protocol algorithm,

communication efficiency.

1. INTRODUCTION
Enterprise systems are important for the efficient and effective

operations of the enterprise. In order for companies to

enhance their business operations and become more

competitive in the market, companies are realizing the

benefits of implementing enterprise systems, such as

Enterprise Resource Planning (ERP) systems. Indeed, ERP

system implementation in the organization accounts for

increased business efficiency [1]. While enterprise systems

leverage the benefits of the Three-Tier architectural model [2],

there are various factors that limit the performance of the

enterprise systems usage, most importantly, from an end-user

point of view.

Enterprise system vendors have adopted various protocols and

communication schemes to maintain data integrity during

communication with enterprise systems. However, such

communication protocols might not efficient and the

performance of enterprise systems is not heightened.

2. LITERATURE REVIEW
Enterprise systems can be described as "commercial packages

that enable the integration of transactions-oriented data and

business processes throughout an organization" [3]. Enterprise

systems provide for "seamless integration of all the

information flowing through a company—financial and

accounting information, human resource information, supply

chain information, and customer information" [4]. The goal of

an enterprise system is to help companies streamline their

business processes [5].

The client-server model is used in most enterprise systems

architectural model. This model accounts for flexibility and

scalability with increasing number of end-users accessing the

enterprise system, since this is where "the traditional

monolithic access methods begin to fail" [6].

While the appropriate hardware and network sizing enables

the enterprise system to provide for intense information

processing and communication, the problem often lies within

the communication part. The inefficiencies of existing

protocols and the transmission of uncompressed data over the

network are some of the factors responsible for the increased

overhead on network and computer systems.

Also, little effort has been made to understand the limitation

of the existing data communication through the existing

network and ways that data communication can be enhanced

for the enterprise to benefit from increased efficiency and

effectiveness of their enterprise systems.

Various communication protocols are used in enterprise

systems to handle their communication in two scenarios, that

is, between enterprise systems such as in the case of

Enterprise Application Integration and between the enterprise

system and the client terminal accessing the enterprise system.

There are many communication technologies that make it

possible for different systems to communicate between each

other. These include Object Request Broker Architecture

(CORBA), Distributed Component Object Model (DCOM),

HyperText Transfer Protocol (HTTP), Message-Oriented

Middleware (MOM) and Remote Procedure Call (RPC) [6]

amongst others. Simple Object Access Protocol (SOAP),

Remote Method Invocation (RMI) and MQSeries are also

considered [7].

In the following section, several well-established and widely

adopted communication protocols and schemes, as well as

emerging protocols, are analyzed with their benefits and

drawbacks highlighted.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

20

2.1 HyperText Transfer protocol (HTTP)
The HyperText Transfer Protocol (HTTP) is perhaps the most

popular and widely used communication protocol on the

internet, local area networks and in communication between

computer systems across enterprise systems. HTTP has been

designed to be a communication protocol to support

communication between computers and its use for

communication over the internet has been a success. The data

transferred may be plain text, hypertext, images, or anything

else [8].

HTTP is considered as an application protocol [9], since

according to the TCP/IP model, HTTP handles the

communication between an application and the underlying

layer of the communication stack. Since HTTP is layered over

TCP [10], the use of TCP by the HTTP protocol makes it

perhaps an excellent choice because TCP employs

mechanisms for data flow control and congestion prevention

[11]. This accounts for the reliability of communication

systems over the Internet.

The interoperability that can be achieved by using HTTP as a

transport protocol [12] makes it possible for Enterprise

Systems to use HTTP for enterprise communication. For

instance, SOAP in the enterprise uses HTTP [13]. "Those

seeking to exploit HTTP’s ubiquity — to transport SOAP

over it, for instance — tend to focus on its ability to transport

other protocols, an act commonly called “tunneling.” The fact

that HTTP is an application protocol means that it is much

more than just a transporter of bytes [12].

2.2 Common Object Request Broker

Architecture (CORBA)
The Common Object Request Broker Architecture [14] is a

communication standard using the Internet InterORB Protocol

(IIOP) enabling applications running on different platforms to

communicate between them since CORBA provides an

abstraction layer to the applications as far as the network

communication is concerned [15].

However, CORBA has many drawbacks since "the

disadvantages of CORBA are its complexity and variation in

vendor implementation" [16] [17]. Furthermore, it has been

stated [18] that old technologies like CORBA are often tied to

vendor specific implementations and usually require a highly

administered, costly, and complex environment to implement

and manage.

Another drawback is that "many businesses and organizations

have implemented service oriented style architectures using

older technologies like CORBA" [18]. Enterprises will be less

likely to opt for CORBA or similar technologies since these

technologies will be replaced by alternatives with enhanced

flexibility, scalability, performance and lesser cost to

implement.

2.3 Remote Procedure Call (RPC)
RPC enables programs to call program functions across the

network [19]. RPC has bindings for multiple operating

systems and programming languages making it a very simple

solution for cross-platform distributed system programming

[20]. This means that the use of RPC in the enterprise is not

limited to the platforms on which the applications are running.

RPC also provides for automatic marshalling and

unmarshalling of messages [19], thus reducing

implementation time and easing implementation costs.

XML-RPC [21] is an extension of RPC to provide for

Enterprise Information Integration "which uses XML

messages traveling on HTTP to represent client-server remote

procedure calls (RPC)" [22].

However, RPC also has drawbacks. It has been stated [23]

that clients and servers are tightly-coupled and client

applications can only invoke methods by using proprietary

communication protocols. RPC is also disadvantageous

whereby it does not support group communication,

asynchronous communication, replication and load balancing

[19].

2.4 Simple Object Access Protocol (SOAP)
SOAP is a protocol using XML messages transmitted over

HTTP during request-response communications. "SOAP

XML-based object serialization format can be used to perform

asynchronous messaging and RPC between non-XML

applications" [21], a major achievement over RPC. The XML

nature of SOAP accounts for advantages like loose coupling

of services and network transparency [24].

"Web services allow different applications from different

sources to communicate with each other without time-

consuming custom coding, and because all communication is

in XML, Web services are not tied to any one operating

system, programming language, or communication protocols"

[23]. XML is also advantageous over the implementation of

Electronic Data Interchange (EDI) for enterprise systems [25]

"including readability, popularity, flexibility, heterogeneity,

rich format, and low cost" [26].

However, SOAP also has various disadvantages. SOAP has

been developed with "a poor set of default security features"

[27]. Hence, complex and large scale implementations require

additional security implementations which might be time-

consuming and costly. SOAP is also responsible for "low

operation speed, which is more complex problem, as

developers cannot change protocol specification in order to

reduce response delay" [27].

2.5 Distributed Component Object Model

(DCOM)
As an extension of the Component Object Model [28], the

Distributed Object Component Model [29] makes it possible

to achieve software systems based on modular or component

based software modules.

DCOM is considered as a high-level network protocol

because it is built on top of several layers of existing protocols

[30]. DCOM is an application-level protocol for object-

oriented remote procedure call (ORPC). The DCOM protocol

is layered on top of the OSF DCE RPC specification [31].

However, DCOM has drawbacks and limitations. Support for

DCOM will most likely decrease since other technologies

have quickly gained greater industry acceptance and support

than predecessors like DCOM or CORBA [18]. This means

that enterprises will be plagued with high maintenance cost

and limitations as a result of enterprise systems evolution.

Technologies like DCOM "are often tied to vendor specific

implementations and usually require a highly administered,

costly, and complex environment to implement and manage"

[18].

2.6 SPDY
SPDY is a protocol from Google which has already been

implemented in browsers such as Chromium and an Internet

Draft is available [33]. The SPDY protocol has been designed

"for low-latency transport of content over the World Wide

Web" [34] and therefore "SPDY provide a significant

improvement in speed over HTTP" [33].

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

21

SPDY is layered in such a way that "applications which run

over HTTP today can work over SPDY with little or no

change on behalf of the web application writer" [33]. SPDY

does not entirely replace HTTP, but adopt the existing HTTP

headers to maintain compatibility.

However, the design of SPDY is such that "regardless of the

Accept-Encoding sent by the user-agent, the server may

always send content encoded with gzip or deflate encoding"

[33]. This means that the SPDY protocol compresses

information prior to transmission over the network, but does

not take into account whether it would be more efficient to

send uncompressed data over a fast network or whether the

network is slow and then in such case it would be more

efficient to compress data.

3. ANALYSIS

3.1 Critical analysis of existing protocols
The analysis of existing communication protocols used in

enterprises enables us to have much information on their use,

their benefits but also their limitations. Some of these protocol

characteristics and features are common to some protocols, if

not all. These characteristics have been grouped and analyzed

in the following section.

3.1.1 Heterogeneity
Protocols such as XML-RPC and CORBA are application-

protocols which are specific to their scope of use and

therefore these protocols are not readily open to other

applications, making these protocols heterogeneous.

However, heterogeneity has been reduced to a minimum in

the case of Hypertext Transport Protocol (HTTP), since HTTP

is used as an application protocol which is multiplatform,

open and widely adopted.

3.1.2 Stateless
HTTP is a stateless transaction-based protocol. By stateless,

we mean that the server need not store any information about

a client or its requests. This means that every request is

completely self contained; it includes all the information

needed by the server to answer the request. By transaction-

based, we mean that the fundamental element of interaction is

a simple transaction in which the client opens a network

connection to a server, sends a single request over the

connection, receives a response, and the connection is closed.

This may be contrasted with session-based protocols in which

connections persist over many transactions [35].

However, stateless protocols also have drawbacks. HTTP is a

vulnerable, stateless protocol unsuitable for persistent state

applications [36]. The problems of entity authentication,

resource-access authorization, and session management are

not unique to the HTTP environment [37] and information

security is important in the enterprise.

3.1.3 Asynchronous
Communication protocols can be grouped into two categories,

namely synchronous and asynchronous. While DCOM is

mainly synchronous [38], CORBA, XML-RPC and SOAP are

also synchronous, whereby the client issues a blocking request

each time it invokes a service at the server side.

However it should be noted that HTTP is asynchronous. Since

HTTP can be used as a wrapper for other communication

protocol messages, the asynchronous nature of HTTP does not

make it dependent on the communication response nor any

blocking waits.

3.1.4 Flexibility
The flexibility of communication protocols is dependent on

their design. While DCOM and CORBA are limited in scope

to their use in the distributed computing environment,

protocols like HTTP are much more flexible since it can

transport any data type [8].

3.1.5 Acceptance
DCOM and CORBA are considered as ageing technologies

[18] and these technologies will cause increasing costs related

to support, maintenance and administration. In contrast, the

nature of the HTTP protocol makes it possible to encapsulate

any communication type across the network.

Moreover, the increased use of HTTP for sensitive

applications has required security measures [39], for example

using Secure Socket Layer (SSL) and the Transport Layer

Security (TLS).

4. DESIRABLE FEATURES OF AN

IDEAL PROTOCOL
An ideal protocol should be able to provide for the benefits

and the desirable features amongst the analyzed features of

existing protocols. The protocol we proposed therefore adopts

the most desirable features of existing communication

protocols.

4.1 Cross-platform compatibility
An ideal communication protocol should not have any

restriction on the hardware and/or software platform on which

it is being used. This is often the case in enterprises, whereby

servers run on different platforms than client computers.

4.2 Transaction-based
In order to provide for ordered interactions between the client

and server requests and responses, the interactions should be

based on atomic or distinct transaction or events to handle the

connection establishment, data request, data response and

closing of the connection between the client and the server.

4.3 Flexibility of communication
An ideal communication protocol should be able to transport

any kind of data on the network. The protocol should be able

to act as a wrapper for other protocols and any type of data.

4.4 Data compression
Data compression enables lesser amount of information to be

exchanged between computers. This will reduce the number

of packets transmitted over the network and the loading time

for the requested content over the network is reduced.

4.5 Stateful protocol
An ideal protocol should be able to retain useful client-server

communication information so as to make decisions to make

communications more efficient. This can be achieved by

using an intelligent algorithm to decide on the best way of

transferring information over the network.

4.6 Transparency over transport layer

protocols
An ideal communication protocol should not be restricted to

only a particular transport layer protocol. This means that it

can use, but is not limited to, the Transmission Control

Protocol (TCP), User Datagram Protocol (UDP), Datagram

Congestion Control Protocol (DCCP), Stream Control

transmission Protocol (SCTP) and others.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

22

5. DESIGN
In order to address the issues of enterprise systems

communications, the solution that we proposed is to provide

for an Application Layer communication protocol with real-

time data compression before the data being handled by the

underlying protocol, thus providing for more efficient data

communication. The decision to use data compression,

however, relies on the intelligent protocol algorithm to learn

about all client-server communication and then decide on the

best way to transfer data between the client and the server.

The ideal communication protocol should be able to transport

any kind of information prior to transmission. Efficiency of

information over the network is achieved through transport

layer protocols such as TCP. The proposed protocol is

therefore designed to represent information over the network

in an optimized way so as to enhance enterprise systems

communications.

5.1 High level design
A high level architecture for the proposed protocol is shown

in Figure 1.

Figure 1: High-level components representation of the

proposed protocol structure

To maintain compatibility with HTTP, the existing set of

header messages of HTTP/1.1 are reused in the proposed

protocol, while also using additional messages that extends

the capabilities of the proposed protocol.

Data compression is used for the payload. This has the

advantage of reducing the payload size, therefore reducing the

time taken to transfer the information.

The protocol must be able to handle data compression

dynamically since different data compression algorithms has

different compression ratios and at different speeds.

5.2 Detailed protocol design considerations
A desirable feature of the protocol is to provide for an

intelligent algorithm for adaptive data compression, since this

will reduce unnecessary data compression overheads in the

case of a fast network. An intelligent approach to learn and

adapt to network changes means that the proposed protocol is

able to decide for the best decision on the way information is

exchanged between the client and the server.

In order to automatically determine whether data

communication by the proposed protocol is based on a high

performance, slow, congested or uncongested network,

multiple factors can be considered by the protocol to take its

decisions.

One way to compare a fast network to a slow network is by

calculating the round trip time (RTT); that is, the time taken

for a message to be sent to a destination computer and a reply

sent back to the source computer. On a slow network, the

RTT will be a much larger value than the RTT for a fast

network. The decision to provide for data compression can

thus be based on a calculated threshold value. Using RTT as a

means to decide for data compression is entirely feasible since

the calculated value for the RTT can be justified by a slow

network, or a fast network which is heavily congested; in the

latter case, the fast network will still experience increased

delays in network communication.

The algorithm considers several communication scenarios

during its learning curve. It initially sends a file

uncompressed. When another client requests a similar file, it

compresses the file using the first compression algorithm and

sends the file and note the time taken and the compression and

decompression time. When another client requests another

similar file, another entry is added. The protocol uses a list to

store information for each client-server communication. Using

various metrics, the protocol algorithm takes the decision

whether it is efficient to use data compression, and if so,

which data compression algorithm will be most efficient for

the transmission of a similar file.

5.3 Algorithm design
The protocol algorithm stores communication information in

its list as follows:

MimeType;Filesize;RTT;Algorithm;TransferTime;Compressi

onTime;DecompressionTime

Using stored entries in a list, the protocol algorithm checks for

similar communication scenarios for similar mime-type, file

size and round trip time. The similar file size and round trip

time is in a range of 0.5 to 1.5 times the current round trip

time and the entry file size.

The protocol algorithm to decide on the most efficient mode

of communication for each client request is described in the

pseudo code below.

Step 1: Populating the list of entries and determining the

communication scenarios already learned

Let the flag mimeExist denotes the presence of an entry with

similar mime-type

Let the flag sizeExist denotes the presence of an entry with

similar filesize

Let the flag rttExist denotes the presence of an entry with

similar RTT

Let the list algorithmList contain all protocol entries to

determine the best compression algorithm

Let file algoStat contain all protocol information

If file algoStat does not exist

 Create empty file

 Write header information to file

Get Mime-Type of requested resource

For each entry in file algoStat :

 If the mime-type of the requested resource is found

in the list, mimeExist = true.

 If the requested resource filesize is within range of

0.5 to 1.5 times the protocol entries, sizeExist = true.

 If the RTT is within range of 0.5 to 1.5 times the

protocol entries, rttExist = true.

If mimeExist = true AND sizeExist = true AND rttExist = true,

then add entry to list algorithmList.

For all entries in algorithmList, retrieve compression

algorithm used :

If protocol entry = “none”, then noneFound = true.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

23

If protocol entry = “GZip”, then gzipFound = true.

If protocol entry = “ZIP”, then zipFound = true.

If protocol entry = “Bzip2”, then bzip2Found = true.

Step 2: Deciding on the most efficient communication mode

5.4 Low level design
The proposed protocol comprises of a Header and a Body

section, as shown in Figure 2:

Figure 2: Proposed protocol header and body

Compatibility with the HTTP protocol is maintained by

adopting the HTTP header messages as defined in RFC 2616.

The proposed protocol also uses additional request-response

messages which are useful especially in an Enterprise context.

Figure 3 shows the interactions between the client and server

components.

Figure 3: Interactions between the client and the server

The implementation scope of our proposed protocol focuses

on the intelligent use of data compression to determine the

most efficient data compression algorithm according to the

state of the network. The algorithm is able to learn from the

different compression algorithms and becomes increasingly

efficient over time.

The proposed protocol has been implemented in Java using

available libraries for data compression and decompression.

The three compression algorithms used for the

implementation are Zip, Gzip and Bzip2.

The protocol algorithm first learns about the different

communication scenarios with and without data compression

and then takes decisions as to which communication mode is

most efficient. This means that the protocol algorithm does

have a learning curve. However the greater the number of

client requests, the faster the protocol learns.

6. TESTING
In order to weigh the efficiency of the proposed protocol,

different test scenarios have been devised to analyze the effect

of having an intelligent algorithm increasing the efficiency of

network communication between a client and a server. A test

scenario has been devised whereby two clients programs,

Client 1 and Client 2, each request a HTML file and a JPEG

file respectively from the server.

When Client 1 requests the HTML file, the protocol stores the

communication information in the list after receiving the

acknowledgement as shown in Figure 4.

Figure 4: Protocol entries for Client 1 HTML request

When Client2 requests the JPEG file for the first time, another

entry is stored by the protocol as shown in Figure 5.

Figure 5: Protocol entries for Client 2 JPEG request

For each request that the server receives, the algorithm checks

if a communication scenario has been saved by the protocol.

For the first time, the protocol considers no compression.

For a second file transfer, the protocol considers Gzip

compression algorithm as a possible scenario and stores an

entry after the acknowledgement as shown in Figure 6.

Figure 6: Protocol entries with new Client 1 entry

The Gzip compression is also considered for the second JPEG

data transfer for Client 2 as shown in Figure 7.

Figure 7: Protocol entries with new Client 2 request

For the third file transfer for Client 1, the protocol considers

the Zip compression algorithm as a possible scenario and

updates its list as shown in Figure 8.

If noneFound = true AND gzipFound = true AND

zipFound = true AND bzip2Found = true, then

 This means that similar scenarios have already

been taken into account by the protocol. Call

method to return the best algorithm from the

list of protocol communication entries by

returning the entry having the least time to

compress, transfer and decompress data.

Else

 This means that at least one communication

scenario has not been tested. Call method to

return a possible algorithm that can be

considered which is not present in

algorithmList.

End If

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

24

Figure 8: Third file transfer for Client 1

Similarly, the Zip algorithm is used and the list updated as

shown in Figure 9.

Figure 9: Third file transfer for Client 2

For the fourth file transfer for Client 1, the protocol uses the

Bzip2 compression algorithm as a possible scenario and

updates its list after the data transfer as shown in Figure 10.

Figure 10: Fourth file transfer for Client 1

Similarly, the protocol uses the Bzip2 compression algorithm

Client 2 and updates its list as shown in Figure 11.

Figure 11: Fourth file transfer for Client 2

For the fifth file transfer for Client 1 and Client2, the protocol

decides on the best algorithm since all possible scenarios have

been learned.

Table 1. Protocol communication entries

Mime

Type

File

size
(KB)

RTT

(ms)
Algo

Transfer

(ms)

Compr

ession
(ms)

Decomp

ression
(ms)

text/

html
74 430 none 29010 0 0

image/
jpeg

836 371 none 25458 0 0

text/

html
74 447 GZip 175 3927 1021

image/
jpeg

836 383 GZip 6177 50834 19733

text/

html
74 421 ZIP 1021 3388 1690

image/
jpeg

836 400 ZIP 6371 51780 22158

text/

html
74 468 Bzip2 235 15719 45392

image/
jpeg

836 430 Bzip2 6377 16028 121575

Table 2. Compression algorithm comparison table

Compression

Algorithm

Client 1: Total

time taken (ms)

Client 2: Total

time taken (ms)

none 29010 25458

Gzip 5124 76746

Zip 6100 80310

BZip2 61346 143981

From the results obtained as shown in Table 1, the protocol

compares the total time taken for each file request as shown in

Table 2. The protocol therefore chooses Gzip as the best

algorithm for Client 1 (HTML file) while no compression

algorithm is considered for Client 2 (JPEG file). After

deciding on the most efficient communication mode for each

client, the protocol updates its communication entries after

receiving acknowledgements from each client as shown in

Figure 12.

Figure 12: Protocol entries with the most efficient
communication for each data type

7. DISCUSSION AND EVALUATION
The primary aim of this research project is to investigate the

causes of inefficient data communication in enterprise

systems and to propose a new way to enhance the

communication performance in enterprise systems. From the

results and findings, it is clear that inefficient communication

has a negative effect on enterprise communication

performance.

The intelligent protocol that we developed with a server and

client application to transfer different data types is able to

largely enhance the communication between the client and the

server. The protocol algorithm successfully learns from all

client-server communication which allows it to consider the

most efficient means of communication for each data transfer.

The algorithm is also able to adapt to new data types and

becomes most efficient at the end of its learning curve.

Three compression algorithms have been used in this protocol

implementation, namely Gzip, Zip and Bzip2. The data

compression functionality used by the protocol can also be

extended to other compression algorithms as well. While

SPDY offers, by design, data compression through Gzip or

Deflate algorithms by default, the proposed protocol offers the

choice of either compressing the data or not, and if so, which

compression algorithm would be best.

An important point to consider is that the protocol first builds

up a list of communication scenarios before deciding on the

best algorithm. Therefore the most efficient communication is

determined after a number of learning trials. As the protocol

handles more and more client requests, the protocol algorithm

is able to learn faster by building up the communication

entries faster but also allowing the protocol to perform data

analysis and comparison with a larger pool of data.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

25

The effectiveness of data compression, however, varies for

different file types. For instance, a HTML file of size 74KB

can be compressed to 13.6KB using Zip algorithm. The

transfer time is therefore much less than for uncompressed

data transfer, even when taking into account the compression

and decompression time. On the other hand, a 836KB JPEG

image can be compressed to about 799KB only. Also, this

implementation takes into account the data compression time

and decompression time as well, if any. If the compression

and decompression time is not taken into account, then only

the communication with least transfer time is considered.

The efficiency achieved with our proposed protocol for

different data types has been calculated and listed in Table 3.

Table 3. Efficiency comparison for different scenarios

File

Worst

case

(ms)

Best

case

(ms)

Gain

(ms)

%

Gain

HTML 73.47 8.04 65.43 89.06

CSS 2.43 0.76 1.67 68.64

HTML+CSS

+JS+JPEG
2150.40 765.95 1384.45 64.38

HTML 29.01 5.12 23.89 82.34

HTML+

JPEG
544.68 305.82 238.85 43.85

Average efficiency 69.7

From the communication scenarios listed above, our proposed

protocol can achieve an average of 69.7% communication

efficiency increase over a range of data types while the

efficiency increase for HTML files is more than 80%.

A fast communication will have the enterprise tasks done

quickly and effectively while inefficient communication will

not be able to heighten the efficiency and use of the enterprise

system [40]. Slow communication also means that users will

be more frustrated with their tasks taking time to complete

and not being able to be productive [41].

8. CONCLUSION AND FUTURE

WORKS
This section highlights the achievements of this research

project, along with limitations encountered and future works

to further enhance the protocol.

In this research paper, the protocol algorithm that we

proposed highlights the efficiency increase in communication

that can be achieved and therefore heighten enterprise system

communications performance. The algorithm can achieve an

average of 69.7% communication efficiency increase over a

range of data types while the efficiency increase for HTML

files is more than 80%. The protocol uses an intelligent

algorithm that learns through all communications and is able

to decide on the most efficient means of communication. The

algorithm can also adapt to new data types and is most

efficient after its learning time.

The protocol is not only suitable for the enterprise, but also

for any computer system, since the design does not restrict the

protocol only in the enterprise context. By addressing issues

regarding enterprise systems communications, the enterprise

is able to operate more efficiently and effectively. Without

having a proper means to enhance enterprise communication

performance means that the enterprise system will not be used

efficiently.

Although the protocol algorithm brings a considerable

increase in communication efficiency, it can be further

improved in the following ways. E.g. the sorting algorithms

can be enhanced by using more efficient algorithms. The

comparison of the round trip time and the file size can be

enhanced so as for the comparison thresholds to vary

dynamically. Also, the protocol can be made to use a wider

range of compression algorithms. The protocol algorithm can

be made to estimate the comparison values to reducing the

computational time before sending the data over the network.

The CPU usage can also be taken into account by the protocol

algorithm during data compression and decompression so as

to consider the battery life of mobile devices. Last but not

least, the protocol headers can also be compressed prior to

data transfer over the network. This will help to achieve more

than the efficiency increase that our proposed protocol can

achieve.

9. REFERENCES
[1] Markus, M. and Tanis, C. 1999, "The Enterprise Systems

Experience – From Adoption to Success", in Framing the

Domains of IT Research: Glimpsing the Future Through

the Past, Pinnaflex Educational Resources Inc.,

Cincinnati, pp. 1-46.

[2] Gupta, A. 2000, "Enterprise resource planning: the

emerging organizational value systems", Industrial

Management & Data Systems 2000; 103(3): pp. 114-18.

[3] Markus, M. and Tanis, C. 2000, "The enterprise system

experience - from adoption to Success", in Zmud, R.W.

(Ed.), "Framing the Domains of IT Management:

Projecting the Future Through the Past", Pinnaflex

Educational Resources, Inc., Cincinnatti, OH, pp. 173-

207.

[4] Davenport, T. 1998, "Putting the Enterprise into the

Enterprise System", Harvard Business Review, July-

August, pp. 121–131.

[5] Fan, M., Stallaert, J. & Whinston, A. 2000, "The

adoption and design methodologies of component based

enterprise systems", European Journal of Information

Systems, pp. 25-35.

[6] Rezayat, M. 1999, "The Enterprise-Web portal for life-

cycle support", Computer-Aided Design 2000, 32(2), pp.

85–96.

[7] Fremantle, P., Weerawarana, S. and Khalaf, R. 2002,

"Enterprise services", Communications of the ACM

45(10), pp. 77-82

[8] Berners-Lee, T., Caillau, R., Luotonen, A., Nielsen, H.F.

& Secret, A. 1994, "The world-wide web".

Communications of the ACM 37(8), pp. 76–82.

[9] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,

L., Leach, P. and Berners-Lee, T. 1999, "Hypertext

Transfer Protocol — HTTP/1.1," Internet Engineering

Task Force RFC 2616, June 1999. [Online]. Available at

<http://www.ietf.org/rfc/rfc2616.txt>

[10] Heidemann, J., Obraczka, K. and Touch, J. 1997,

"Modeling the Performance of HTTP Over Several

Transport Protocols", IEEE/ACM Transactions on

Networking, 5(5), 1997, pp. 616–630.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.22, November 2012

26

[11] Jacobson, V. 1988, "Congestion avoidance and control",

Proceedings of the ACM SIGCOMM'88, pp. 314-329.

[12] Vinoski, S. 2002, "Web services Interaction Models, Part

2", IEEE Internet Computing, vol. 6, no 3 (2002), pp.

89–91.

[13] Leong, K. S, Ng, M. L. & Engels, D. W. 2004, "EPC

network architecture", Auto-ID Labs Research

Workshop, 2004. [Online]. Available at: <http://www.m-

lab.ch/auto-id/SwissReWorkshop/agenda.html>

[14] CORBA 1998, Common Object Services Specification,

available at <ftp://ftp.omg.org/pub/docs/formal/98-07-

05.pdf>

[15] Gritzalis, S., Iliadis, J. and Oikonomopoulos, S. 2000,

"Distributed component software security issues on

deploying a secure electronic marketplace", Information

Management & Computer Security, Vol. 8 Iss: 1, pp.5-13

[16] Frankewitsch, T. and Prokosch, H. 2000, "Graphical

navigation of the UMLS metathesaurus on a locally

installed database implementing CORBAmed's Lexicon

Query Service", Proceedings of the AMIA Symphony,

2000, pp. 1009

[17] Muller, M., Ganslandt, T., Eich, H. P., Lang, K.,

Ohmann, C. & Prokosch, H. 2001, "Towards integration

of clinical decision support in commercial hospital

information system using distributed, reusable software

and knowledge components", International Journal of

Medical Informatics 64, pp. 369-377.

[18] Henzel, J., Hutchinson, B. & Thwaits, A. 2006, "Using

web services to promote library-extension collaboration",

Library Hi Tech, Vol. 24 Issue: 1 pp. 126 – 141.

[19] Pinus, H. 2004, "Middleware: Past and present a

comparison", [Online]. Available at

<http://userpages.umbc.edu/~dgorin1/451/middleware/m

iddleware.pdf>

[20] Nunn, R. 2003, "Distributed software architectures using

middleware", available at

<http://www.cs.ucl.ac.uk/staff/W.Emmerich/lectures/3C

05-02-03/aswe18-essay.pdf>

[21] Pokorný, J. 2009, "Xml in enterprise systems",

Informatica 20, pp. 417–438.

[22] Harold, E. R. & Means, W. S. 2002, "XML in a

Nutshell", O’Reilly.

[23] Wei, H. and Godfrey, T. 2008, "Database Middleware

and Web Services for Data Distribution and Integration

in Distributed Heterogeneous Database Systems",

[24] Pulier, E. and Taylor, H. 2006, "Understanding

Enterprise SOA", Manning Publication Co., Greenwich.

[25] Huang, S., Kwan, I., Yen, D. & Hsueh, S. "Developing

an XML gateway for business-to-business commerce",

Proceedings of the First International Conference on

Web Information Systems Engineering, Hong Kong,

China, June 19–20, 2000, pp. 67 –74.

[26] Tao, Y.-H., Hong, T.-P., & Sun, S.-I. 2004, "An XML

implementation process model for enterprise

applications", Computers in Industry, Vol. 55: 181-196.

[27] Doroshenko, A. and Yatsenko, K. 2007, "Protocols for

Mobile Devices Integration in Heterogeneous

Environments", Information systems technology and its

applications, 6th international conference ISTA`2007

May 23-25, 2007, Kharkiv, Ukraine.

[28] Microsoft Corporation and Digital Equipment Corp.

1995, "The Component Object Model Specification",

Oct. 1995. [Online]. Available at

<http://www.microsoft.com/oledev/olecom/title.htm>

[29] Brown, N. and Kindel, C. 1996, "Distributed

Component Object Model Protocol -- DCOM/1.0”,

Internet Draft, [Online]. Available at

<http://www.microsoft.com/oledev/olecom/draft-brown-

dcom-v1-spec-01.txt>

[30] Eddon, G. and Eddon, E. 1998, "Understanding the

DCOM Wire Protocol by Analyzing Network Data

Packets", Microsoft Systems Journal, Microsoft

Corporation, March 1998. [Online]. Available at

<http://www.microsoft.com/msj/0398/dcom.aspx>

[31] OSF DCE RPC Specification, The Open Group, 1994.

[Online]. Available at

<http://www5.opengroup.org/dce/>

[32] Wang, Y., Damani, O. and Lee, W. 1997, "Reliability

and Availability Issues in Distributed Component Ojbect

Model (DCOM)", Fourth International Workshop on

Community Networking Proceedings, 1997, pp. 59 –63.

[33] Belshe, M. and Peon, R. 2012, "SPDY Protocol",

Internet Draft, Network Working Group, Internet

Engineering Task Force, Feb 2012. Available at

<http://tools.ietf.org/html/draft-mbelshe-httpbis-spdy-

00>.

[34] Rosenberg, S., Dangi, S. and Warnakulasooriya, I. 2012,

"Data and Network Optimization Effect on Web

Performance", Sillicon Valley Campus, Carnegie Mellon

University, Mountain View, CA 94035 [Online].

Available at

<http://repository.cmu.edu/cgi/viewcontent.cgi?article=1

091&context=silicon_valley>

[35] Farquhar, A., Fikes, R., Pratt, W. and Rice, J. 1995,

"Collaborative ontology construction for information

integration". Technical Report KSL-95-63, Stanford

University Knowledge Systems Laboratory, 1995.

[36] Zanero, S., Carettoni, L. and Zanchetta, M. 2005,

"Automatic Detection of Web Application Security

Flaws", Black Hat Briefings, 2005.

[37] Gutzmann, K. 2001, "Access control and session

management in the HTTP environment". IEEE Internet

Computing, January/February 2001.

[38] Adamopoulos, D. X., Pavlou, G. and Papandreou, C. A.

1999, "Distributed Object Platforms in

Telecommunications: A Comparison Between DCOM

and CORBA". British Telecom. Eng. 18 pp. 43-49.

[39] Rescorla, E. 2000, "HTTP Over TLS", Internet

Engineering Task Force (IETF).

[40] Guynes, J. 1988, "Impact of System Response Time on

State Anxiety", Communications of the ACM, vol. 31,

no. 3, 1988, pp. 342-347.

[41] Tolia, N., Andersen, D. & Satyanarayanan, M. 2006,

"Quantifying Interactive User Experience on Thin

Clients", Computer Science Department, Carnegie

Mellon University, Paper 7.

