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ABSTRACT
Digital imaging in medicine is improving the medical standards
since last few decades. The images acquired by various imag-
ing modalities suffer from various kinds of noise in the acquisi-
tion phase. The noise in the image decrease the contrast of the
image and it becomes difficult to locate the tumours, lesions etc
from these corrupted images. So the removal of noise from these
images is very important. In this paper we developed the algo-
rithms for the removal of Poisson noise in X-Ray Images and
Rician noise in Magnetic Resonance Images. The noise in these
modalities won’t follow the Gaussian distribution. The Poisson
noise in X-ray images will follow the Poisson distribution and the
noise in MR images is modeled as Rician noise. In this work we
developed the algorithms using Discrete wavelet transform, Un-
decimated wavelet transform, Dual tree Complex wavelet trans-
form, Double Density discrete wavelet transform and Double den-
sity dual tree complex wavelet transforms to decompose the im-
age into multiple resolution levels along with the variance stabil-
isation transforms to convert the Poisson noise and Rician noise
into approximate gaussian noise. The performance of the algo-
rithms were evaluated using PSNR (Peak signal to noise ratio),
UQI (Universal quality index) and SSIM (Structural similarity in-
dex) etc. The results show that the double density dual tree complex
wavelet transform is performing well than the other transforms.

General Terms:
Multi Resolution Analysis, Wavelet Transforms, Variance Stabilization

Keywords:
Discrete Wavelet Transform, Dual tree complex wavelet trans-
form, Double density wavelet transform, Wavelet shrinkage,
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1. INTRODUCTION
Medical imaging became an integral part of medical diagnosis in
present days. Various medical imaging modalities are developed
for various applications since last few decades. These modalities
are used to acquire the images of the anatomical structures within
the body to be examined without opening the body. X-rays,
Computed Tomography, Ultrasound, Magnetic resonance Imag-
ing and Nuclear imaging are the popular modalities at present to
diagnose the various diseases. However these modalities are suf-
fering with a big problem called noise. Every modality is suffer-
ing from noise in image acquisition and transmission stage such
as Quantum noise in X-rays and Nuclear imaging, speckle noise
in ultrasound imaging, Rician noise in Magnetic resonance imag-
ing etc. The noise present in the images will degrade the contrast
of the image and creates problems in the diagnostic phase. So

denoising is very important to remove the noise from these im-
ages [16]. The noise may be additive or multiplicative depending
on the modality used for medical image acquisition. The noise
due to electronic components in the acquisition hardware will
be modeled with Gaussian noise which is independent of data,
the data dependent noise such as quantum noise in X-ray imag-
ing is modeled with Poisson distribution, the speckle noise in ul-
trasound imaging is modeled with Rayleigh distribution and the
noise in MRI is modeled with Rician distribution. Here in this
paper we are attempting to denoise the images corrupted with
quantum noise in X-ray and Nuclear imaging and Rician noise in
Magnetic Resonance Imaging [16, 12]. The mathematical mod-
eling of degradation and restoration process is given as

g (x, y) = f (x, y) ∗ h(x, y) + η (x, y) (1)
G (u, v) = F (u, v)H (u, v) +N (u, v) (2)

Where g(x,y) is the noisy and blurred observation, H is the blur-
ring kernel and f(x,y) is the signal we are recovering. In the case
of denoising problem the blurring kernel will be dropped and the
degradation model will be given as

g (x, y) = f (x, y) + η (x, y) (3)
G (u, v) = F (u, v) +N (u, v) (4)

In the case of multiplicative noise the model is given as

g (x, y) = f (x, y) · η (x, y) (5)

2. MATHEMATICAL PROPERTIES OF NOISE
2.1 Poisson Noise
The noise in X-ray imaging and Nuclear Imaging (PET, SPECT)
is modeled with Poisson noise. X-ray photons incident on a re-
ceptor surface in a random pattern. We cannot force them to be
evenly distributed over the receptor surface. One area of the re-
ceptor surface may receive more photons than another area, even
when both the areas are exposed to the same average x-ray in-
tensity. In all medical imaging procedures using gamma or x-ray
photons most of the image noise is produced by the random be-
haviour of the photons that are distributed within the image. This
is generally designated as quantum noise. Each individual pho-
ton is a quantum (specific quantity) of energy. It is the quantum
structure of an x-ray beam that creates quantum noise [10].
A Poisson model assume that each pixel x of an image f(x)
is drawn from a Poisson distribution of parameter λ = f0 (x)
where is the original image to recover. The Poisson density is
given as

P (f (x) = k) =
λke−λ

k!
(6)
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2.2 Rician Noise
Magnetic Resonance Imaging (MRI) is a non-invasive widely
used modality in medical diagnosis such as cardiac related dis-
eases and neurological disorders. The MRI imaging will suffer
from low signal to noise ratio (SNR) or contrast to noise ratio
(CNR) because of which the image analysis tasks such as seg-
mentation, reconstruction and registration will become compli-
cated. So the noise reduction in MR images is very important
as a pre-processing task before going to image analysis and to
improve the diagnostic quality of the images [10, 12].
Thermal noise is the major source of noise in MR imaging. The
MR images are reconstructed from the raw data by applying the
inverse Fourier transform to it. The signal component is present
in both real and imaginary channels which are orthogonal to each
other and are affected by additive white Gaussian noise. Hence
the noise in the reconstructed date is complex white Gaussian
noise. Normally the magnitude image of the reconstructed com-
plex data is used for visual inspection. So the magnitude of the
MR signal is the square root of the sum of the squares of the data
present in real and imaginary channels, the noise is the square
root of the two independent Gaussian variables. Hence the noise
in MR images is no longer Gaussian.
LetA be the pixel intensity in the absence of noise andM be the
observed or measured pixel intensity. In the presence of noise the
probability distribution for M is given as

PM (M) =
M
σ2 e

−(M2+A2)

2σ2
I0

(
A ·M
σ2

)
(7)

Where σ denotes the standard deviation of the Gaussian noise
in the real and imaginary images which is considered as equal
here and Io is the modified zeroth order of Bessel function of the
first kind. This is called as Rice density. For small values of SNR
(A/σ ≤ 1) the rice distribution is far from being Gaussian and
from ratios as small as A/σ = 3 it starts to move towards the
Gaussian distribution.
In the image regions where signal content is much less (approx-
imately zero i.e.A = 0 ) only noise is present then the above
equation is reduces to

PM (M) =
M
σ2 e

−(M2)

2σ2
(8)

This is well known as Rayleigh distribution. This distribution
governs the noise in image regions where no NMR signal and
only noise is present. The mean and variance of this distribution
is given as

M = σ

√
π

2
andσ2

M =
(

2− π

2

)
σ2 (9)

These relations are useful in the estimation of the true noise
power.
When the SNR is large then

PM (M) ≈ 1√
2πσ2

e
−1(M−

√
A2+σ2)

2

2σ2 (10)

From the above equations we can say that for image regions
where large signal intensities are present the noise distribu-
tion will be considered as a Gaussian distribution with mean√
A2 + σ2 and variance σ2

3. DENOISING USING MULTISCALE
TRANSFORMS

In this section we want to use the multiscale transforms for the
image denoising because they are very much useful to isolate the

discontinuites present in the image and to handle the nonstation-
ary signals or time varying signals. The spatial domain filtering
is succeeded to some extent by introducing the adaptivity in the
filtering scheme through first order and higher order statistics at
the cost of computational cost and leaving few artifacts such as
ringings and smoothing the edges. In some filters the computa-
tional cost is too high so that they are not optimal for real time
filtering. To overcome these limitations lot of research was taken
place in the last two decades.
The multiscale transforms such as gaussian and laplacian pyra-
mids,steerable pyramids and wavelets are performing well in
many image processing tasks by decomposing the images into
multiple scales and using the benefit of sparsity and energy com-
paction of the above transforms. In this paper we are denoising
the images using wavelet transform, undecimated wavelet trans-
form, dual tree complex wavelet transform and double density
dual tree complex wavelet transform and compared the denoising
performance with various quality metrics along with observing
the effect of denoising on texture of the medical images which is
a very important factor while choosing the denoising algorithm.

3.1 Discrete Wavelet Transform
The DWT of a signal x(n) is calculated by passing it through a
series of filters. First the samples are passed through a low pass
filter with impulse response h0(n) resulting in a convolution of
the two [17]:

y[n] = (x ∗ h0)[n] =

∞∑
k=−∞

x(k)h0(n− k) (11)
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Fig. 1. 1D DWT Analysis Filters

The signal is also decomposed simultaneously using a high-pass
filter h1(n). The outputs of the lowpass filter are approximation
coefficients and highpass filter are detail coefficients. It is im-
portant that the two filters are related to each other and they are
known as a quadrature mirror filter. Since half the frequencies
of the signal have now been removed, half the samples can be
discarded according to Nyquist’s rule. The filter outputs are then
subsampled by 2.

ylow[n] =

∞∑
k=−∞

x(k)h0(2n− k) (12)

yhigh[n] =

∞∑
k=−∞

x(k)h1(2n+ 1− k) (13)

2D DWT of the images can be implemented by applying 1D
DWT along the rows of an image first and then applying 1D
DWT on the columns of an image. When a wavelet transform
is applied to an image the image is decomposed into four sub-
bands as shown in the following figure. The LL band contains
the approximation coefficients, LH band contains horizontal de-
tails, HL band contains vertical details and HH band will contain
the diagonal details [17].
The Discrete wavelet transform is suffering from four shortcom-
ings they are Oscillations,Shift Variance,Aliasing and Lack of
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Fig. 2. Wavelet filtering of an Image

Directionality [20].To overcome these shortcomings a lot of re-
search is on-going in present days. The Undecimated wavelet
transform (UDWT) is the one of the solution by introducing the
redundancy in the transform through the removal of decimation
stage. The UDWT is shift invariant but it will increase the num-
ber of coefficients so the computational complexity is high.

3.2 Dual tree complex wavelet Transform
The dual-tree complex DWT of a signal x(n) is computed us-
ing two critically-sampled DWTs in parallel on the same data
as shown in the following figure. If the same filters used in the
upper tree and lower tree nothing is gained. So the filters in this
structure will designed in a specific way that the subbands of up-
per DWT is interpreted as real part of complex wavelet transform
and the lower tree as imaginary part. The transform is expansive
by a factor 2 and shift invariant [20, 21].
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Fig. 3. Dualtree DWT 1D Analysis Filters

The dual tree complex wavelet transform is implemented by de-
signing the filter banks such a way that the filters in the second
tree are the Hilbert transform of the first tree filters. That is in
dual tree complex wavelet transform the filter sets in the first
tree and second tree are forming a Hilbert transform pair. Let the
filters h0(n), h1(n) represents the CQF (conjugate quadrature
filter) pair. That is∑

n

h0(n)h0(n+ 2k) =δ(k) =

{
1fork = 0
0fork 6= 0

}
(14)

and h1(n) = (−1)(1−n)h0(n − 1). Equivalently interms of the
Z-Transform we have

Hz
0 (z)Hz

0 (1/z) +Hz
0 (−z)Hz

0 (−1/z) = 2
andHz

1 (z) = 1
z
Hz

0 (−1/z)
(15)

We used the notationHz(z) for the z-Transform of h(n) then the
frequency response of the filter is H(ω) = Hz(ejω). The filters
go(n) and g1(n) represent another CQF pair. Then the dilation

and wavelet equations give the scaling and wavelet functions

φh (t) =
√

2
∑
n

h0 (n)φh (2t− n)

ψ (t) =
√

2
∑
n

h1 (n)φh (2t− n)
(16)

The scaling function φg (t) and wavelet function ψg (t) are de-
fined similarly with filters g0 (n) and g1 (n). For dual tree com-
plex wavelet transforms the filters in the first tree and the filters
in the second tree will form a Hilbert transform pair. ψg (t) is the
Hilbert transform of ψh (t) if

Ψg (ω) =

{
−jΨh (ω) , ω > 0
jΨh (ω) , ω < 0

(17)

Various filter design methods for dual tree complex wavelet
transform were introduced by nick Kingsbury and Ivan Se-
lesnick in their literature. The detailed study of filter design is
found in the article ”The Dual-Tree Complex Wavelet Trans-
form” by Nick G. Kingsbury [20]. The filters must satisfy the de-
sired properties such as approximate half sample property, Per-
fect Reconstruction (Orthogonal or Biorthogonal), Finite support
(FIR filters), and Vanishing moments/good stop band and Linear
phase[21].

3.3 Double Density Wavelet Transform
The structure of the double density wavelet transform is shown
in the following figure. It consists of one low pass filter and two
distinct high pass filters represented with h0(−n), h1(−n) and
h2(−n) respectively. After passing through the system the signal
to be analysed is processed by the low pass filter and downsam-
pled by 2 to produce the approximation coefficients which will
contain the average information of the signals. Simultaneously
the signal is processed by the two distinct high pass filters and
downsampled by 2 to produce the two detail coefficients. In the
synthesis section the three signals are upsampled and processed
by the synthesis filters which are inverse to the analysis filter to
reconstruct the original signal . The two wavelet filters in the
analysis section are designed to be offset from one another by
one half- the integer translates of one wavelet fall midway be-
tween the integer translates of the other wavelet [23].

ψ2 (t) = ψ1 (t− 0.5) (18)

In this way the double density DWT approximates the contin-
uous wavelet transform (having more wavelets than necessary
gives a closer spacing between adjacent wavelets within the same
scale).
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Fig. 4. Double Density DWT

The 2D double density DWT can be implemented by applying
the 1D double density DWT to the image first along the rows
and then applying along the columns. The drawback of the dou-
ble density discrete wavelet transform is chekerbaord effect i.e it
can not discriminate the +450 and −450. One of the solution to
resolve this problem is combining the characteristics of dual tree
transform and double density transform.
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Fig. 5. double density dual tree wavelet transform

The double-density complex wavelet transform is implemented
by following the design rules of dual tree complex wavelet trans-
forms.

(1) The main design consideration is one wavelet pair is de-
signed to be approximate Hilbert transforms of the other pair
of wavelets

(2) The second constraint is integer translates of one wavelet
pair fall midway between the integer translates of the other
pair. To achieve this one pair of the four wavelets is designed
to be offset from the other pair of wavelets.

The design is based on two distinct scaling functions and four
distinct wavelets

ψh,i (t) , ψg,i (t) , i = 1, 2

Where the two wavelets ψh,i (t) are offset from one another by
one half as is ψg,i (t) :

ψh,1 (t) ≈ ψh,2 (t− 0.5) , ψg,1 (t) ≈ ψg,2 (t− 0.5) (19)

and where the two wavelets ψg,1 (t) and ψh,1 (t) form an ap-
proximate Hilbert transform pair as do ψg,2 (t) and ψh,2 (t) :

ψg,1 (t) ≈ H {ψh,1 (t)} , ψg,2 (t) ≈ H {ψh,2 (t)}

The filters in this paper are designed based on the design pro-
cedure given in [23]. The detailed study on the filter design for
double density dual tree complex wavelet transform can be found
in [20]. The first stage filters in the implementation are different
from the filters of the remaining stages in the tree. The analysis
filters in the first tree will become the synthesis filters to the sec-
ond tree and vice versa. The mathematical background on com-
plex dual tree DWT is well presented in the papers [20, 21]. The
filters designed for this work from the above design procedure is
given in the tables one to four.

3.4 Denoising Procedure using Multiscale
Transforms

(1) Compute the forward Variance Stabilization Transform of
the image to be denoised using Square root, Freeman &
Tukey or Anscombe transforms.

(2) Compute the forward (Multiscale) transform of the above
transformed image and decompose the image into subbands.

(3) Compute the threshold from the first scale HH (vertical de-
tails) band using the MAD (median absolute deviation) us-
ing the following formula considering that most of the noise

is present in that band.

σ̂(mad) =
median

{
|wj | : j = 1, 2, ... k

2

}
0.6745

(20)

(4) Apply the shrinkage step (modifying the wavelet coeffi-
cients in the subbands) using the following shrinkage rules
[18]
Hard Thresholding

DT
H(w) =

{
w forall |w| > T
0 otherwise

(21)

Soft Thresholding

Ds
H(w) = sgn(w) max (0; |w| − T ) (22)

Semi-soft Thresholding

DTT1
SS (w) =


0 |w| ≤ T

sgn(w)T1(|w|−T )
T1−T T < |w| ≤ T1

w |w| > T1
(23)

(5) After modifying the wavelet coefficients in the subbands
take the inverse transform to reconstruct the image.

(6) Compute the inverse variance stabilization transform of the
above reconstructed image to get denoised image which is
an estimation of the original one.

Many shrinkage rules are associated with the wavelet process-
ing. The threshold may be calculated globally, level dependent
or subband dependent. But here we are calculating the threshold
globally.

Table 1. Double Density Dual Tree First stage Wavelet filter
Coefficients (Tree 1)

h0(−n) h1(−n) h2(−n)
0 0 0

0.00069616789827 -0.00014203017443 0.00014203017443
-0.02692519074183 0.00549320005590 -0.00549320005590
-0.04145457368920 0.01098019299363 -0.00927404236573
0.19056483888763 -0.13644909765612 0.07046152309968
0.58422553883167 -0.21696226276259 0.13542356651691
0.58422553883167 0.33707999754362 -0.64578354990472
0.19056483888763 0.33707999754362 0.64578354990472
-0.04145457368920 -0.21696226276259 -0.13542356651691
-0.02692519074183 -0.13644909765612 -0.07046152309968
0.00069616789827 0.01098019299363 0.00927404236573

0 0.00549320005590 0.00549320005590
0 -0.00014203017443 -0.00014203017443
0 0 0

Table 2. Double Density Dual Tree First stage Wavelet filter
Coefficients (Tree 2)

g0(−n) g1(−n) g2(−n)
0 0 0
0 0 0

0.00069616789827 -0.00014203017443 0.00014203017443
-0.02692519074183 0.00549320005590 -0.00549320005590
-0.04145457368920 0.01098019299363 -0.00927404236573
0.19056483888763 -0.13644909765612 0.07046152309968
0.58422553883167 -0.21696226276259 0.13542356651691
0.58422553883167 0.33707999754362 -0.64578354990472
0.19056483888763 0.33707999754362 0.64578354990472
-0.04145457368920 -0.21696226276259 -0.13542356651691
-0.02692519074183 -0.13644909765612 -0.07046152309968
0.00069616789827 0.01098019299363 0.00927404236573

0 0.00549320005590 0.00549320005590
0 -0.00014203017443 -0.00014203017443
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Fig. 6. Denoising system using Multiscale Transform

The above filters are the first stage filters in the tree 1 and tree
2 of double density dual tree discrete wavelet transform. These
filters are only applied in the first stage decomposition only. The
filters for the remaining stages are given below.

Table 3. Double Density Dual Tree Wavelet filter
Coefficients from second stage onwards (Tree 1)
h0(−n) h1(−n) h2(−n)

0.00017870679071 -0.00012344587034 0.00001437252392
-0.02488304194507 0.01718853971559 -0.00200122286479
0.00737700819766 -0.00675291099550 0.00027261232228
0.29533805776119 0.02671809818132 0.06840460220387
0.59529279993637 -0.64763513288874 0.01936710587994
0.45630440337458 0.47089724990858 -0.68031992557818
0.11239376309619 0.16040017815754 0.42976785708978
-0.01971220693439 -0.01484700537727 0.11428688385011
-0.00813549683439 -0.00588868840296 0.05057805218407
0.00005956893024 0.00004311757177 -0.00037033761102

Table 4. Double Density Dual Tree Wavelet filter
Coefficients from second stage onwards (Tree 2)
g0(−n) g1(−n) g2(−n)

0.00005956893024 0.00004311757177 -0.00037033761102
-0.00813549683439 -0.00588868840296 0.05057805218407
-0.01971220693439 -0.01484700537727 0.11428688385011
0.11239376309619 0.16040017815754 0.42976785708978
0.45630440337458 0.47089724990858 -0.68031992557818
0.59529279993637 -0.64763513288874 0.01936710587994
0.29533805776119 0.02671809818132 0.06840460220387
0.00737700819766 -0.00675291099550 0.00027261232228
-0.02488304194507 0.01718853971559 -0.00200122286479
0.00017870679071 -0.00012344587034 0.00001437252392

4. EVALUATION CRITERIA FOR DENOISING
ALGORITHMS

To evaluate the quality of the image processing algorithms there
are several metrics proposed in the literature. The metrics are
classified as pixel difference based measures, correlation based
measures, edge based measures, spectral distance measures, con-
text based measures and Human visual system based measures.
Here we are comparing our denoising algorithms using a group
of metrics drawn from the above class and performance of the
algorithms was observed.

4.1 Pixel difference based measures
4.1.1 Minkowski metrics. TheLγ norm of the dissimilarity of
two images can be calculated by calculating the minkowski av-
erage of the pixel differences spatially and then chromatically as
given below

εγ =
1

K

K∑
k=1

{
1

MN

M−1∑
x=0

N−1∑
x,y=0

∣∣∣fk (x, y)− f̂k (x, y)
∣∣∣γ}

1
γ

(24)

Where f(x, y) is the reference image,f̂(x, y) is the estimated
image of f(x, y) by our denoising algorithm with the input
g(x, y) which is a noisy version of f(x, y). For γ = 1 we obtain
the absolute difference (AD), for γ = 2 we will obtain the mean
square error (MSE). Along with these two measures we are cal-
culating minkowski measures for γ = 3 and γ = 4 in this paper
to observe the performance of our algorithms.

4.1.2 PSNR (Peak Signal to Noise Ratio). PSNR is the peak
signal-to-noise ratio in decibels (dB). The PSNR is only mean-
ingful for data encoded in terms of bits per sample, or bits per
pixel. For example, an image with 8 bits per pixel contains inte-
gers from 0 to 255.

PSNR = 20log10

(
2B − 1√
MSE

)
(25)

Where B represents bits per sample and MSE (Mean Squared
error) is the mean square error between a signal f(x, y) and an
approximation f̂(x, y) is the squared norm of the difference di-
vided by the number of elements in the signal.

MSE =
1

MN

M∑
x=0

N∑
y=0

[
f (x, y)− f̂ (x, y)

]2
(26)

RMSE =

√√√√ 1

MN

M∑
x=0

N∑
y=0

[
f (x, y)− f̂ (x, y)

]2
(27)

MSE and RMSE measures the difference between the original
and distorted sequences. PSNR measures the fidelity i.e how
close a sequence is similar to an original one.

4.1.3 Maximum Difference. Maximum difference is defined as

MD = max
(∣∣∣f (x, y)− f̂ (x, y)

∣∣∣) (28)

The large value of maximum difference means denoised image
is poor quality.

4.1.4 Normalised Absolute Error (NAE). The large value of
normalised absolute error means that denoised image is poor
quality and is defined as

NAE =

M−1∑
x=0

N−1∑
y=0

∣∣∣f (x, y)− f̂ (x, y)
∣∣∣

M−1∑
x=0

N−1∑
y=0

|f (x, y)|
(29)

4.1.5 Signal to Noise Ratio (SNR). Signal to noise ratio in an
image is calculated as

SNR =
µ

σ

Where µ is the average information in the signal and σ is the
standard deviation of the signal which represents the amount of
noise present in the image.
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4.2 Correlation based measures
The correlation between two images can also be quantified in-
terms of correlation function. These measures measure the simi-
larity between the two images hence in this sense they are com-
plementary to the difference based measures.

4.2.1 Structural content. For an M × N image the structural
content is defined as

SC =
1

K

K∑
k=1

M−1∑
x=0

N−1∑
y=0

fk(x, y)2

M−1∑
x=0

N−1∑
y=0

f̂k(x, y)2
(30)

4.2.2 Normalised cross correlation measure (NK). The nor-
malised cross correlation measure is defined as

NK =
1

K

K∑
k=1

M−1∑
x=0

N−1∑
y=0

fk (x, y) f̂k (x, y)

M−1∑
x=0

N−1∑
y=0

fk(x, y)2
(31)

4.3 HVS based metrics
4.3.1 Universal Image Quality Index (UQI). It is a measure
used to find the image distortion. It is mathematically defined
by making the image distortion relative to the reference image
as a combination of three factors: Loss of correlation, Lumi-
nance distortion and contrast distortion. If two images f (x, y)

and f̂ (x, y) are considered as a matrices with M column and N
rows containing pixel values f (x, y) and f̂ (x, y) respectively
the universal image quality index Q may be calculated as a prod-
uct of three components

Q =
σff̂
σfσf̂

· 2f̄̂̄ f

f2 + f̂2
·

2σfσf̂
σ2
f + σ2

f̂

(32)

Where f̄ = 1
MN

M−1∑
x=0

N−1∑
y=0

f (x, y) and

¯̂f = 1
MN

M−1∑
x=0

N−1∑
y=0

f̂ (x, y) σff̂ =

1
M+N−1

M−1∑
x=0

N−1∑
y=0

(
f (x, y)− f̄

) (
f̂ (x, y)−¯̂f

)
σ2
f = 1

M+N−1

M−1∑
x=0

N−1∑
y=0

(
f (x, y)− f̄

)2
and

σ2
f̂

= 1
M+N−1

M−1∑
x=0

N−1∑
y=0

(
f̂ (x, y)−¯̂f

)2
The first component is the correlation coefficient which mea-
sures the degree of linear correlation between images. It varies
in the range [-1,1]. The best value 1 is obtained when the images
are linearly related. The second component measures how close
the mean luminance is between images with a range [0, 1]. The
third component measures the contrasts of the images the value
range for this component is [0, 1]. The range of values for Q is
[-1, 1]. The best value 1 is achieved if and only if the images are
identical.

4.3.2 Structural similarity (SSIM) index. Structural similarity
(SSIM) index is a method for measuring the similarity between
two images [28]. The SSIM index is a full reference metric, in
other words, the measuring of image quality based on an ini-
tial uncompressed or distortion-free image as reference. SSIM is
designed to improve on traditional methods like peak signal-to-
noise ratio (PSNR) and mean squared error (MSE), which have
proved to be inconsistent with human eye perception. The SSIM
metric is calculated on various windows of an image. The mea-

sure between two windows x and y of common size NN is [19]:

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (
σ2
x + σ2

y + c2
) (33)

5. RESULTS & CONCLUSIONS
The performance of the algorithms was evaluated based on
the above quality metrics obtained from the original image
and the denoised image. The X-ray image was corrupted with
Poisson noise. The noise variance here is dependent on the
data present in the image. The brain image acquired under low
intensity levels is corrupted with Rician noise with sigma=20.
The algorithms designed are applied on these two images and
performances of the algorithms are evaluated using the above
metrics.

The results show that the denoising using discrete wavelet
transform is denoising the images but it fails to preserve the
edges with orientation because of its shift variance nature. The
undecimated wavelet transform will overcome this drawback in
little amount with the expense of high computational cost. So
we used the dual tree complex transforms and double density
complex wavelet transforms to overcome this drawbacks and to
reduce the computational cost. The denoised images by these
transforms are preserving the edge information excellently than
the discrete wavelet transforms. Here we used the universal
threshold for all the subbands in the image. The performance of
the algorithms can be improved using subband dependent and
level dependent thresholds in place of universal threshold used
in our work.

Table 5. VST:Anscombe, Noise:Poisson
Q.Metric DWT UDWT DTCDWT DDDWT DDDTCDWT
MSE 8.8750 4.8179 4.6285 5.4525 4.7981
SNR 33.6655 36.3168 36.4922 35.7759 36.3324
RMSE 2.9791 2.1950 2.1514 2.3351 2.1905
PSNR 40.3375 42.2906 43.1648 42.4533 43.2085
ME 4.3967 3.0643 2.9760 3.1915 2.9733
UQI 0.3216 0.3763 0.3858 0.3516 0.3590
SSIM 0.9328 0.9579 0.9609 0.9614 0.9633
AD -0.0679 -0.0588 -0.0659 -0.0239 -0.0375
SC 0.9999 1.0007 1.0002 1.0023 1.0017
NK 0.9996 0.9994 0.9997 0.9986 0.9989
MD 46.4963 30.6751 34.2788 30.4080 28.7097
LMSE 0.8060 0.4465 0.3945 0.3662 0.3562
NAE 0.0226 0.0177 0.0177 0.0189 0.0179

Table 6. VST:Anscombe, Noise:Rician
Q.Metric DWT UDWT DTCDWT DDDWT DDDTCDWT
MSE 534.5278 627.2978 477.5564 531.1959 451.2731
SNR 13.9667 13.3192 14.6172 14.1848 14.8262
RMSE 23.1199 25.0459 21.8531 23.0477 21.2432
PSNR 23.8614 23.1664 24.3509 23.8886 24.5967
ME 24.9412 27.9151 23.6174 25.3113 22.4808
UQI 0.3138 0.2864 0.3671 0.3612 0.3641
SSIM 0.3069 0.2756 0.3628 0.3528 0.3620
AD -14.9278 -15.1141 -16.0368 -16.3739 -15.6165
SC 1.0094 0.9876 0.9382 0.9258 0.9538
NK 0.9554 0.9594 0.9973 1.0004 0.9905
MD 122.0000 149.5525 72.0410 82.8858 74.7958
LMSE 0.6729 0.8269 1.0491 1.3970 0.5461
NAE 0.4853 0.5161 0.4454 0.4629 0.4442
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Fig. 7. a) Original Image b) Noisy Image

Fig. 8. a) Denoised using DWT b) Denoised using UDWT

Fig. 9. a) Denoised using DTCDWT b) Denoised using
DDDTCDWT

Fig. 10. a) Original Image b) Noisy Image

Fig. 11. a) Denoised using DWT b) Denoised using UDWT

Fig. 12. a) Denoised using DTCDWT b) Denoised using
DDDTCDWT
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