
International Journal of Computer Applications (0975 - 8887)
Volume 57 - No. 20, November 2012

Multi-Objective Constrained Optimization using
Discrete Mechanics and NSGA-II Approach

Sneha Desai
M.Tech Control System

Department of Electrical Engineering,
Veermata Jijabai Technological Institute (VJTI), INDIA

Sushant Bahadure
M.Tech Control System

Department of Electrical Engineering,
Veermata Jijabai Technological Institute (VJTI), INDIA

Faruk Kazi
Faculty at Department of Electrical Engineering

Veermata Jijabai Technological Institute (VJTI), INDIA

Navdeep Singh
Faculty at Department of Electrical Engineering

Veermata Jijabai Technological Institute (VJTI), INDIA

ABSTRACT
A novel approach to solve multi-objective optimization problems
of complex mechanical systems is proposed based on evolution-
ary algorithm. Discrete mechanics derives structure preserving con-
straint equations and objective functions. Standard non-linear opti-
mization techniques used to obtain optimal solution to these equa-
tions fails to find global optimum solution and also requires system
satisfying initial guess. Multi-objective optimization technique like
non-dominated sorting genetic algorithm-II (NSGA-II) finds global
optimal solution without giving any initial guess for multiple con-
flicting objectives. This method is numerically illustrated by opti-
mizing an underactuated mechanical system called 2D SpiderCrane
system. In SpiderCrane, fast and precise payload positioning is to
be achieved while keeping payload swing minimum along the tra-
jectory. Minimizing the time of operation requires greater amount
of force which may lead to unacceptable payload sway, while de-
creasing forces increases the time of operation. Proposed control
law to optimize this conflicting multi-objectives is validated with
simulation results.

Keywords:
Optimization, Non-dominated sorting genetic algorithm, Dis-
crete mechanics optimal control, Bio-inspired 2D Spider-
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1. INTRODUCTION
In order to solve multi-objective optimization problem of me-
chanical systems, one is often interested in preserving certain
properties of the mechanical system for the approximated so-
lution and steer a mechanical system from an initial to a fi-
nal state under the influence of control forces such that a given
quantity, for example control effort or maneuver time is min-
imal i.e multiple conflicting objectives are needed to be opti-
mized. The presence of these multiple conflicting objectives for-
mulates the task as a (global) multi-objective optimization prob-
lem (MOP), which resorts to a number of trade-off optimal so-
lutions. Classical methods like the objective weighted method,
the hierarchical optimization, the constraint method, the goal
programming method and many more aggregates the multiple-
objective in a single, parametrized objective function. However,
for systematically varying the parameters, knowledge of problem
is very much necessary which may not be available [1]. Also,
there are possibilities of producing biased result by setting pri-
orities to objectives and finding one solution in one simulation
run. Because of which several optimization runs are required to
obtain approximate Pareto-optimal set. Evolutionary algorithms
(EAs), on the other hand, can find multiple optimal solutions

in one single simulation run due to their population-approach.
EAs are ideal for solving multi-objective optimization problems.
Although there exist a number of multi-objective evolutionary
algorithms (EMO), non-dominated sorting genetic algorithm II
(NSGA-II), have gained tremendous popularity in solving differ-
ent kinds of engineering problems [1], [2]. NSGA-II implements
elitism for multi-objective search which enhances the conver-
gence properties towards the true Pareto-optimal set. The con-
straint handling method does not make use of penalty parame-
ters. The algorithm implements a modified definition of domi-
nance in order to solve constrained multi-objective efficiently.
Discrete Mechanics and Optimal Control (DMOC) is used to
derive structure preserving constraint equations and objective
functions. These equations are then used by NSGA-II to obtain
global optimum solution. DMOC is introducesd in [4], [5]. In
the context of variational integrators [6], the discretization of
the Lagrange-d’Alembert principle leads to structure preserving
time stepping equations which serve as equality constraints for
the resulting finite dimensional non-linear optimization problem.
This problem can be solved by standard non-linear optimization
techniques such as Sequential Quadratic Programming (SQP)
leading to local optimal solutions dependent on the initial guess
[7]. Although this method works very successfully in many ap-
plications, they fail to find the global optimal solution for MOP
without using any initial guess. A remedy for these difficulty is
found in the MOEA.
In this paper, 2D SpiderCrane mechanism is considered and the
objective is to steer its payload from stable equilibrium point
with zero initial velocity to other stable equilibrium point with
minimum effort in minimum time, i.e. stabilization of the load
along with the time and force minimization by keeping the
payload swing minimum along the trajectory. This bio-inspired
mechanism is proposed by the Laboratory of Automatic Control
at École Polytechnique Fédérale de Lausanne [8], [9], [10].
The main contribution of this work is to provide a methodology
for performing multi-objective constrained optimization of com-
plex mechanical systems without providing any initial guess and
using equations derived from DMOC as objective function and
as constraint equations. The paper is organised as follows: Sec-
tion II includes brief introduction of DMOC. Section III summa-
rizes basic principles of NSGA-II. Section IV includes dynamics
and modelling of 2D SpiderCrane. Section V includes applica-
tion of NSGA-II to 2D SpiderCrane system and based on the
simulation results, the performances of NSGA-II and local op-
timization method are compared and discussed. Section VI out-
lines the conclusion and future research.
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2. DISCRETE MECHANICS OPTIMAL
CONTROL (DMOC)

In order to locally solve optimal control problems, DMOC is
used which relies on a direct discretization of the variational for-
mulation of the system dynamics. For convenience, we briefly
summarize the basic idea, the more elaborate discussion can be
found in [11], [4].
A mechanical system with configuration spaceM is to be moved
on a curve x(t) ∈M, t ∈ [0, T ], form an initial state (q0, q̇0) to a
final state (qT , q̇T ) under the influence of a force f : TM×U →
T ∗M, where TM and T ∗M are the tangent and cotangent space
of the configuration space M , respectively. This force depends
on a time-dependent control effort u(t) ∈ U . The curves q and
u shall minimize a given objective functional J : TM ×U → R

J(q, q̇, u) =

∫ T

0

C(q(t), q̇(t), u(t))dt (1)

with the cost function C : TM × U → R. If L : TM → R
denotes the Lagrangian of the system, its motion q(t) satisfies
the Lagrange-d’Alembert principle, which requires that

δ

∫ T

0

L(q(t), q̇(t))dt+

∫ T

0

f(q(t), q̇(t), u(t))dt = 0 (2)

for all variations δq with δq(0) = δq(T ) = 0. This principle
leads to a system of second order differential equations denoted
as the forced Euler-Lagrange equations

d

dt

[
∂

∂q̇
L(q, q̇)

]
− ∂

∂q
L(q, q̇) = f(q, q̇, u) (3)

Final state is given by final time constraint
r(q(t), q̇(t), qT , q̇T ) = 0 with r : TM × TM → Rnr ,
where (qT , q̇T ) ∈ TM is fixed for desired final state. The
minimization of (1) subject to the equations (3) and initial and
final state conditions constitutes the optimal control problem in
the continuous setting. Formulation of optimal control problem
for a Lagrangian system is as follows:
Minimise cost function J

min
(q(·),q̇(·),u(·),T )

J(q, q̇, u) =

T∫
0

C(q(t), q̇(t), u(t))dt, (4)

subjected to

δ

T∫
0

L(q(t), q̇(t))dt+

T∫
0

fLC(q(t), q̇(t), u(t)) · δq(t)dt = 0,

q(0) = q0, q̇(0) = q̇0,

h(q(t), q̇(t), u(t)) ≥ 0,

r(q(T )), q̇(T ), qT , q̇T ) = 0.

In this paper, we pose our optimization problem as moving the
payload from an initial position to a given desired position with
minimum swing, time and minimum control effort. Here, initial
and final positions of the payload are considered as fixed bound-
ary conditions.

Fixed Boundary Conditions. This is the special case of opti-
misation problem with fixed initial and final velocities and con-
figuration without path constraints,

min
q(·),q̇(·),u(·)

J(q, q̇, u) =

T∫
0

C(q(t), q̇(t), u(t))dt, (5)

subjected to

δ

T∫
0

L(q(t), q̇(t))dt+

T∫
0

fLC(q(t), q̇(t), u(t)) · δq(t)dt = 0,

q(0) = q0, q̇(0) = q̇0, q(T ) = qT , q̇(T ) = q̇T .

2.1 Discretization
During discretization the state space TM of the continuous sys-
tem is replaced by R and consider the grid ∆t = {tk = kh|k =
0, ...,N}, Nh = T, where N is a positive integer and h the
step size. The path q : [0, 1] → Q is replaced by discrete
path qd : [0, h, 2h, ..., (Nh = 1)] → M. Similarly continu-
ous force f : [0, 1] → T ∗M is approximated by discrete force
fd : [0, h, 2h, ..., (Nh = 1)]→ T ∗M.
Notations used qk = qd(kh) and fk = fd(kh). An approx-
imation of the action integral in (2) over small time interval
[kh, (k + 1)h], by a discrete Lagrangian Ld : Q × Q → R
yields

Ld(qk, qk+1) ≈
(k+1)h∫
kh

L(q(t), q̇(t))dt, (6)

and discrete forces expressed as

f−k ·δqk+f+
k ·δqk+1 ≈

(k+1)h∫
kh

f(q(t), q̇(t), u(t))·δq(t)dt, (7)

where f−k and f+
k ∈ T ∗Q are called left and right discrete

forces respectively. Now depending on (qk, qk+1, uk), the dis-
crete Lagrange-d’Alembert principle is obtained in (8). This re-
quires to find discrete paths {qk}Nk=0 such that for all variations
{δqk}Nk=0 with δq0 = δqN = 0, one has

δ

N−1∑
k=0

Ld(qk, qk+1) +

N−1∑
k=0

f−k · δqk + f+
k · δqk+1 = 0. (8)

which is equivalent to the forced discrete Euler-Lagrange equa-
tions

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
k−1 + f−k = 0, (9)

where k = 1, 2, ...,N − 1, Di denotes the derivative w.r.t.
the ith slot. In the same manner approximation of the objec-
tive functional (1) is done and the discrete objective functional
Jd(qd, ud), is obtained such that the Discrete Constrained Opti-
mization Problem is

minqd,ud
Jd(qd, ud) =

N−1∑
k=0

Cd(qk, qk+1, uk) (10)

subject to the discretized boundary constraints and the discrete
Euler-Lagrange equations (9).

Discrete Cost Function. Approximation of the cost functional
in short interval of time [kh, (k + 1)h] is given as

Cd(qk, qk+1, uk) ≈
(k+1)h∫
kh

C(q(t), q̇(t), u(t))dt (11)

results in discrete cost function

Jd(qd, ud) =

N−1∑
k=0

Cd(qk, qk+1, uk) (12)
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In our case we select the following cost function.

J1d(ud) =

N∑
k=0

u2
k, J2d(θd) =

N∑
k=0

θ2k, (13)

J3d = Total time required for operation = T

The cost function depends on the forces, Theta (θ) and T.

Boundary Conditions. All the initial and final conditions,
configurations and velocities need to be assigned in discrete
form in discrete fixed boundary optimisation problem. q(0) =
q0, q̇(0) = q̇0 and q(1) = q1, q̇(1) = q̇1 as initial condition.
q(N −1) = qN−1, q̇(N −1) = q̇N−1 and q(N) = qN , q̇(N) =
q̇N these two points lead to two discrete boundary conditions as
discussed in [12] using standard Legendre transformation

D2L(q0, q̇0) +D1Ld(q0, q1) + f−0 = 0, (14)

−D2L(qN , q̇N ) +D2Ld(qN−1, qN ) + f+
N−1 = 0. (15)

Equation (14) is applied to initial discrete point and at final point
(15) is applied. Equation (14) and (15) describes a non-linear
optimization problem with equality constraints, which can be
solved by standard optimization methods. With a local solver,
for example, the SQP-method, one can find a local optimum. The
initial guess of the optimization is chosen in a simple way. SQP is
an iterative method for non-linear constrained optimization, used
on problems for which the objective function and the constraints
are twice continuously differentiable.

2.2 Advantages of The Proposed Approach
The SQP method used alongwith DMOC [13], have some no-
table drawback:

1. SQP is local optimal solver so the obtained result is not the
global optimal solution.

2. It is a single objective problem.
3. This technique requires an excellent initial guess and the rate

of convergence of the solution are very sensitive to these
guesses. The wrong selection of initial guess misleads the
search.

To overcome the above drawbacks, Multi-objective optimization
techniques like NSGA II can be used in place of SQP. The ad-
vantages of Evolutionary techniques are as follows:

1. They are population based search algorithms, so global op-
timal solution is possible. Population-based search techniques
give multi-directional search. Therefore, they search whole so-
lution space for global optimum solution.

2. Optimizing all the objectives simultaneously and generating
a set of alternative solutions offers more flexibility. The si-
multaneous optimization can fit nicely with population-based
approaches such as EAs, because they generate multiple solu-
tions in a single run.

3. In case of population-based techniques, the final solution does
not depend on the initial guess.

3. NON-DOMINATED SORTING GENETIC
ALGORITHM-II (NSGA-II)

A single objective optimization algorithm mostly terminates
upon obtaining an optimal solution. In a typical multi-objective
optimization problem, there exists a family of equivalent solu-
tions that are superior to the rest of the solutions and are con-
sidered equal from the perspective of simultaneous optimization
of multiple conflicting objective functions. Such solutions are
called non-inferior, non-dominated or Pareto-optimal solutions,

and are such that no objective can be improved without degrad-
ing at least one of the others, and, given the constraints of the
model, no solution exist beyond the true Pareto front.
The goal of NSGA-II actually consists of two parts as mentioned
in [1], namely that the solutions found must be: (i) close to the
Pareto-optimal front, and (ii) diverse. This is also illustrated in
Fig 1, where it is clear how solutions near the Pareto-optimal
front are first obtained followed by a search for diversity along
the front. The first requirement is obtained by using the dom-
inance concept and does not have a need for any niching or
crowding measures. Therefore, a good algorithm can find a set of
solutions as close to the Pareto-optimal front as possible. How-
ever, the second requirement can be more difficult to obtain. In
order to obtain a diverse set, it must be specified what can be
considered as a set of diverse solutions, but it must also be un-
derstood how dominance has influenced the diversity of the so-
lutions.

Fig. 1. Pareto-front and Non-domination illustration

The NSGA proposed by Srinivas and Deb (1994) has been suc-
cessfully applied to solve many problems, the main criticisms
of this approach has been its high computational complexity of
non-dominated sorting, lack of elitism, and need for specifying a
tunable parameter called sharing parameter [14]. Recently, Deb
et al. reported an improved version of NSGA, which they called
NSGA-II, to address all the above issues [2].
NSGA-II only differs from a simple genetic algorithm in the
selection process. The population is initialized as usual. Once
the population in initialized NSGA-II sorts the population based
on non-domination into each front. The first front is completely
non-dominant set in the current population and the second front
is dominated only by the individuals in the first front and the
front goes so on. Each individual in the each front are assigned
rank (fitness) values based on front in which they belong to. Indi-
viduals in first front are given a fitness value of 1 and individuals
in second are assigned fitness value as 2 and so on. In addition
to fitness value a new parameter called crowding distance is cal-
culated for each individual. The crowding distance is a measure
of how close an individual is to its neighbours. Large average
crowding distance means better diversity in the population. Par-
ents are selected from the population by using tournament selec-
tion based on the rank and crowding distance. When comparing
two individual, an individual belonging to lesser rank is given
priority but if both individual have same rank, extreme individ-
uals prevails over not extreme ones. If both individuals are not
extreme, the one with the bigger crowding distance wins. The se-
lected population then generates off-springs from crossover and
mutation operators.
The population with the current population and current off-
springs is sorted again based on non-domination and only the
best N individuals are selected, where N is the population size.
The selection is based on rank and the on crowding distance on
the last front.
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4. 2D SPIDERCRANE
The proposed method is applied to 2D SpiderCrane system. Spi-
derCrane is a pulley-cable system and cable systems are gener-
ally underactuated which works on tensile forces. This system
is similar to pendulum on a cart system where pendulum swing
is non actuated. SpiderCrane is a crane designed to reduce the
time required, for carrying loads, consider the 2D SpiderCrane
mechanism as illustrated in Fig 2 [8].
Crane operators moves the load in such a way that cable by
which load is attached remains vertical for safety reasons, this
strategy induces large economical loss due to additional time in-
volved in process. To improve work rate one should anticipate
swing of the load. The problem is to achieve fast and precise
payload positioning while minimizing the swing. This problem
has been approached by various control strategies [15]-[19].

Fig. 2. 2D SpiderCrane mechanism

In this model, the problem is to find the optimum effort path of
the payload of mass m suspended by the cable from the ring of
mass M on which the actuating forces Fx and Fy are applied.
This type of analysis of the 2D SpiderCrane is termed as decou-
pled SpiderCrane. The configuration variables for gantry crane
mechanism are

q = (Xr,Yr, θ)
T (16)

and Lagrangian may be defined as

L(q, q̇) =
1

2
q̇TM(q)q̇ − V (q) (17)

where,

M(q) =

 (M +m) 0 mL3 cos θ
0 (M +m) mL3 sin θ

ml3 cos θ mL3 sin θ mL2
3

 (18)

and

V (q) = (M +m)gYr −mgL3 cos θ (19)

The resulting Euler-Lagrange equations are:

Fx = (M +m)Ẍr + (mL3 cos θ)θ̈ − (mL3 sin θ)θ̇2 (20)

Fy = (M+m)Ÿr+(mL3 sin θ)θ̈+(mL3 cos θ)θ̇2+(M+m)g
(21)

0 = (mL3 cos θ)Ẍr + (mL3 sin θ)Ÿr + (mL2
3)θ̈+mgL3 sin θ

(22)
As from Fig 3, Fx and Fy are control forces applied on the ring
of mass M on which payload of mass m is suspended with non
elastic cable. This subsystem is referred as gantry mechanism
or decoupled SpiderCrane, where pulleys, cables and pylons are
neglected for simplicity.

Fig. 3. Decoupled SpiderCrane model

4.1 Discretization
In this paper, a midpoint rule for integral approximation and
derivative approximation over small intervals h is considered as
follows

(k+1)h∫
kh

f(x)dx ≈ hf(
a+ b

2
).

We obtain velocity vector according to midpoint rule,

(qk+1 − qk)

h
≈ q̇

and position vector approximation according to midpoint rule,

qk+1 + qk
2

≈ qk

as well as in case for discrete forces, we obtain

(k+1)h∫
kh

f(t).δq(t)dt ≈ hfk+1 + fk
2

.
δqk+1 + δqk

2

=
h

4
(fk+1 + fk).δqk +

h

4
(fk+1 + fk).δqk+1, (23)

i.e.f−k = f+
k = h

4
(fk

k+1) were used as the left and right discrete
forces. Discrete Lagrange is equivalent to continuous Lagrange

Ld(qk, qk+1) = hL

(
qk+1 + qk

2
,
qk+1 − qk

h

)
, (24)

Using (17), (18), (19) and (24) Lagrangian is defined as

L =
1

2
[(M +m)(Ẋr

2
+ Ẏr

2
) + 2Ẋr

2
θ̇(mL3cosθ)

+2Ẏr
2
θ̇(mL3sinθ) + θ̇2(mL2

3)]− (M +m)gYr +mgL3cosθ

discrete Lagrangian is,

Ld(qk, qk+1)

=
h

2
(((M +m)[((Xrk+1

−Xrk )/h)2 + ((Yrk+1
− Yrk )/h)2])

+2((Xrk+1
−Xrk )/h)(θk+1 − θk/h)(mL3cos((θk+1 + θk)/2))

+2((Yrk+1
− Yrk )/h)((θk+1 − θk)/h)(mL3sin((θk+1 + θk)/2))

+((θk+1 − θk)/h)2(mL2
3))− (M +m)g((Yrk+1

+ Yrk )/2)

+mgL3cos((θk+1 + θk)/2) (25)
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Ld(qk−1, qk)

=
h

2
(((M +m)[((Xrk −Xrk−1)/h)2 + ((Yrk − Yrk−1)/h)2])

+2((Xrk −Xrk−1)/h)(θk − θk−1/h)(mL3cos((θk + θk−1)/2))

+2((Yrk − Yrk−1)/h)((θk − θk−1)/h)(mL3sin((θk + θk−1)/2))

+((θk − θk−1)/h)2(mL2
3))− (M +m)g((Yrk + Yrk−1)/2)

+mgL3cos((θk + θk−1)/2) (26)

and discrete cost function as

Cd(fk, fk+1) = hC(
fk+1 + fk

2
). (27)

In this 2D SpiderCrane problem as seen from (20) and (21) ac-
tuating discrete force fk can be represented as

uk = fk =

(
Fxk

Fyk

)
(28)

Now from (13) and (27) discrete cost function for 2D Spider-
Crane can be formulated. Since we formulated our problem
as constrained optimization problem, Forced discrete Euler La-
grange equation (9) and discrete boundary condition (14) and
(15) serves as constraints and are as follows.
Constraint for initial θ,

(M +m)((θ(2)− θ(1))/h) + ((mL)cos((θ(2) + θ(1))/2)

((Yr(2)− Yr(1))/h)) + h(((M +m)((θ(2)

−θ(1))/h)(−1/h)) + (((mL)((Yr(2)

−Yr(1))/h))((cos((θ(2) + θ(1))/2)(−1/h))

+(((θ(2)− θ(1))/h)sin((θ(2) + θ(1))/2)(−1/2))))

+((mL)((Xr(2)−Xr(1))/h)((Yr(2)

−Yr(1))/h)(cos((θ(2) + θ(1))/2))0.5)

+(mgL(−0.5)sin((θ(2) + θ(1))/2))) = 0 (29)

Constraint for final θ,

(−1)((M +m)((θ(11)− θ(10))/h)

+((mL)cos((θ(11) + θ(10))/2)((Yr(11)− Yr(10))/h)))

+h(((M +m)((θ(11)− θ(10))/h)(1/h))

+((mL)((Yr(11)− Yr(10))/h))((cos((θ(11) + θ(10))/2)(1/h))

+(((θ(11)− θ(10))/h)(−1/2)sin((θ(11) + θ(10))/2)))

+((mL)((Xr(11)−Xr(10))/h)((Yr(11)

−Yr(10))/h)(0.5)(cos((θ(11) + θ(10))/2)))

+((−mgL(0.5))(sin((θ(11) + θ(10))/2)))) = 0 (30)

Constraint for initial Xr ,

(((M +m)((Xr(2)−Xr(1))/h))

+((mL)((Yr(2)− Yr(1))/h)(sin((θ(2) + θ(1))/2))))

+h(((M +m)((Xr(2)−Xr(1))/h)(−1/h))

+(((−mL)/h)(sin((θ(2) + θ(1))/2))((Yr(2)− Yr(1))/h)))

+((h/2)(Fx(1))) = 0 (31)

Constraint for final Xr ,

(−1)(((M +m)((Xr(11)−Xr(10))/h))

+((mL)((Yr(11)− Yr(10))/h)(sin((θ(11) + θ(10))/2))))

+((M +m)((Xr(11)−Xr(10))/h))

+((mL)((Yr(11)− Yr(10))/h)(sin((θ(11) + θ(10))/2)))

+((h/2)(Fx(11))) = 0 (32)

Constraint for initial Yr ,

(mL)(cos((θ(2) + θ(1))/2))((θ(2)− θ(1))/h)

+(mL)(sin((θ(2) + θ(1))/2))((Xr(2)−Xr(1))/h)

+(mL2)((Yr(2)− Yr(1))/h)

+h(((mL)(cos((θ(2) + θ(1))/2))((θ(2)− θ(1))/h)(−1/h))

+((mL)(sin((θ(2) + θ(1))/2))((Xr(2)−Xr(1))/h)(−1/h))

+((mL)((Yr(2)− Yr(1))/h)(−1/h))

−((M +m)g0.5)) + ((h/2)(Fy(1))) = 0 (33)

Constraint for final Yr ,

(−1)(((mL)(cos((θ(11) + θ(10))/2))((θ(11)− θ(10))/h))

+((mL)(sin((θ(11) + θ(10))/2))((Xr(11)−Xr(10))/h))

+((mL2)((Yr(11)− Yr(10))/h)))

+h(((mL)(cos((θ(11) + θ(10))/2))((θ(11)− θ(10))/h)(1/h))

+((mL)(sin((θ(11) + θ(10))/2))((Xr(11)−Xr(10))/h)(1/h))

+((mL)((Yr(11)− Yr(10))/h)(1/h))

−((M +m)g0.5)) + ((h/2)Fy(11)) = 0 (34)

Constraint for mid values,
for i = 1 : 9
Constraint for mid θ,

h(((M +m)((θ(i+ 1)− θ(i))/h)(1/h))

+((mL)((Yr(i+ 1)− Yr(i))/h))((cos((θ(i+ 1)

+θ(i))/2)(1/h)) + (((θ(i+ 1)

−θ(i))/h)(−1/2)sin((θ(i+ 1) + θ(i))/2)))

+((mL)((Xr(i+ 1)−Xr(i))/h)((Yr(i+ 1)

−Yr(i))/h)0.5(cos((θ(i+ 1) + θ(i))/2)))

+((−mgL0.5)(sin((θ(i+ 1) + θ(i))/2))))

+h(((M +m)((θ(i+ 2)− θ(i+ 1))/h)(−1/h))

+(((mL)((Yr(i+ 2)− Yr(i+ 1))/h))((cos((θ(i+ 2)

+θ(i+ 1))/2)(−1/h)) + (((θ(i+ 2)

−θ(i+ 1))/h)sin((θ(i+ 1) + θ(i))/2)(−1/2))))

+((mL)((Xr(i+ 2)−Xr(i+ 1))/h)((Yr(i+ 2)

−Yr(i+ 1))/h)(cos((θ(i+ 1) + θ(i+ 2))/2))0.5)

+(mgL(−0.5)sin((θ(i+ 2) + θ(i+ 1))/2))) = 0 (35)

Constraint for mid Xr ,

(((M +m)((Xr(i+ 1)−Xr(i))/h))

+((mL)((Yr(i+ 1)− Yr(i))/h)(sin((θ(i+ 1) + θ(i))/2))))

+h(((M +m)((Xr(i+ 2)−Xr(i+ 1))/h)(−1/h))

+(((−mL)/h)(sin((θ(i+ 2) + θ(i+ 1))/2))((Yr(i+ 2)

−Yr(i+ 1))/h))) + (((h)(Fx(i+ 1)))) = 0 (36)

Constraint for mid Yr ,

h(((mL)(cos((θ(i+ 1) + θ(i))/2))((θ(i+ 1)− θ(i))/h)(1/h))

+((mL)(sin((θ(i+ 1) + θ(i))/2))((Xr(i+ 1)

−Xr(i))/h)(1/h)) + ((mL)((Yr(i+ 1)− Yr(i))/h)(1/h))

−((M +m)g0.5)) + h(((mL)(cos((θ(i+ 2)

+θ(i+ 1))/2))((θ(i+ 2)− θ(i+ 1))/h)(−1/h))

+((mL)(sin((θ(i+ 2) + θ(i+ 1))/2))((Xr(i+ 2)

−Xr(i+ 1))/h)(−1/h)) + ((mL)((Yr(i+ 2)

−Yr(i+ 1))/h)(−1/h))− ((M +m)g0.5))

+(((h)(Fy(2)))) = 0 (37)

end
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5. APPLICATION OF NSGA-II TO 2D
SPIDERCRANE SYSTEM

In 2D-space, a path is constructed by a series of points. The co-
ordinates of these points are taken as codes and arranged in terms
of its location in trajectory. If the initial point of path is (xi, yi)
and final point is (xf , yf ),the path can be expressed as follows :
(xs, xj1, ....xj(L−2), xe, ys, yj1, ...yj(L−2), ye) where, L is the
length of code and x co-ordinates of all path points are placed at
front followed by y co-ordinates [20].

5.1 Generation of Initial Population
The population is initialized based on the problem range and
constraints if any. In 2D SpiderCrane problem considered in this
paper, optimization of forces, θ and time is to be achieved while
finding optimized path. Consider the population size of N, then
based on the above coding rules chromosomes are generated as
follows: First gene of chromosome is set as initial point of x
co-ordinate, and as number of discrete points considered are 11,
11th gene is set as final point of x co-ordinate, remaining 9 in be-
tween points are set randomly. Similarly, 12th gene is set as first
point of y co-ordinate and so on. In chromosome representation
values of Fx and Fy are also represented based on coding rules.
Forces in x and y direction are generated by randomly choosing
values between starting force and ending force while total time is
randomly generated by choosing value between 1 sec and max-
imum time required, where maximum time is considered as 50
sec [13]. Then Ij can be expressed as

Ij = [Xs,X1, ...,X9,Xe, Ys, Y1, ..., Y9, Ye, θs, θ1, ...,

θ9, θe, Fxs , Fx1
, ..., Fx9

, Fxe , Fys , Fy1 , ..., Fy9 , Fye , T ] (38)

Non-Dominated Sort. The initialized population is sorted based
on non- domination. The fast sort algorithm is used for sort-
ing the population [2]. This algorithm is better than the original
NSGA since it works on the information about the set that an in-
dividual dominate (Sp) and number of individuals that dominate
the individual (np) [14].

Crowding Distance. Once the non-dominated sort is complete
the crowding distance is assigned. Since the individuals are se-
lected based on rank and crowding distance all the individuals in
the population are assigned a crowding distance value. Crowd-
ing distance is assigned front wise and comparing the crowding
distance between two individuals in different front is meaning
less. The basic idea behind the crowing distance is finding the
euclidean distance between each individual in a front based on
their objectives. The individuals in the boundary are always se-
lected since they have infinite distance assignment.

5.2 Fitness Function
Fitness function is an important factor to convergence and sta-
bility of a NSGA-II. In 2D SpiderCrane problem our objective is
to minimize forces, time, swing of load (θ) and generate smooth
path.
The fitness function is defined as:

F1 =

N∑
k=0

f2
k , F2 =

N∑
k=0

θ2k, (39)

F3 = Total time required for operation = T

subjected to constraint equations (29)-(37).

5.3 NSGA-II Operator Design
In this paper, dominance-based selection scheme is used to in-
corporate constraints into the fitness function. The approach does
not require the use of penalty function to generate feasible solu-
tion. Tournament selection is used. While comparing first pref-

erence is given to feasible candidates irrespective of their front
and crowding distance.
Crossover operator used is two-point crossover. Crossover is per-
formed with probability of 0.85. Two individuals selected by
Tournament selection are further used as parent individual for
crossover. Two points are chosen randomly, then two new indi-
viduals of next generation are obtained by changing the parts of
the parent individuals between the two points. Crossover oper-
ator can find some good individuals from a global view. How-
ever, the searching space can’t be searched in details by using
crossover operator only. If mutation operator is used to adjust
some genes of each individual, the optimal solution is approx-
imated from the local view. In addition, mutation operator can
maintain the diversity of population and avoid premature phe-
nomenon effectively. In mutation operator, which can improve
the local search ability, the points chosen in individual are set
randomly. Mutation is performed with probability of 0.2.

5.4 Recombination
The offspring population is combined with the current genera-
tion population and selection is performed to set the individuals
of the next generation. Since all the previous and current best in-
dividuals are added in the population, elitism is ensured. Popula-
tion is now sorted based on non-domination. The new generation
is filled by each front subsequently until the population size ex-
ceeds the current population size. If by adding all the individuals
in front Fj the population exceeds N then individuals in front
Fj are selected based on their crowding distance in the descend-
ing order until the population size is N . And hence the process
repeats to generate the subsequent generations.

5.5 Implementation in MATLAB
To verify the correctness and validity of method, the simulation
is carried out in MATLAB R© with the following system parame-
ters: Ring mass M = 0.5 kg, Payload mass m = 1 kg, Time Steps
= 10 i.e 11 discrete points, Length of the cable L = 0.5 m, Initial
point = (0.7, 0.7), Final point = (0.5, 1), Max time required = 50
seconds, Initial θ = 0.1745 rad, Final θ = 0 rad.
In this paper, NSGA-II is used as an alternative to local solver
used for finding optimal solution in DMOC. Parameters for ap-
plication of NSGA-II are shown in Table 1. The terminal con-
dition is that the population has evolved to 2000th generation.
The aim of the NSGA-II was to minimize (i) forces required for

Table 1. Parameters for NSGA-II
Population Generations Pool Size Tour Size

200 2000 10 2

positioning payload, (ii) operational time and (iii) swing of pay-
load. Fig 4, Fig 5 and Fig 6 shows the simulation result using
NSGA-II and the results obtained indicates that our approach
is a viable alternative. The NSGA-II algorithm was able to find
minimum time without drastic increment in the forces required
for positioning. The result obtained for minimum time and for
maximum time required is presented in Table 2. For comparison

Table 2. Results Obtained By NSGA-II

Time Theta Force in X
direction

Force in Y
direction

No. of
con-
straints
violated

NSGA-II 4.245 0.0546 0.737 13.482 0
NSGA-II 50 0.0526 0.5125 11.8101 0
SQP 50 0.0526 0.5131 14.4398 2
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purpose result obtained by SQP solver is given. SQP solver finds
local optimal solution violating 2 strict constraints.

Fig. 4. (a) Load angle as function of time for maximum time (b)
Load angle as function of time for minimum time

Fig. 5. (a) The Xr position as a function of time for maximum
time (b) The Xr position as a function of time for minimum time (c)
The Yr position as a function of time for maximum time (d) The Yr

position as a function of time for minimum time

6. CONCLUSION
This paper proposes a new approach to solve optimal control
problems for mechanical systems. Discrete mechanics provides
constraint equations and objective function while preserving the
sympletic structure and the momentum maps corresponding to
symmetry groups for the discrete solution. SQP (non-linear op-
timization) method used to find local optimum to these equa-
tions performs single objective optimization using initial guess.
SQP method is applicable to smooth equations. This method can
be replaced by an efficient global multi-objective optimization
method, NSGA-II. The proposed approach is validated by find-
ing optimal operating conditions of 2D SpiderCrane, in carrying
a load over a distance. Using the simulation results obtained by
a single-objective SQP solver and multi-objective NSGA-II, we
have shown that NSGA-II is a viable alternative to SQP solver.

Fig. 6. (a) Control force in Xr direction for maximum time (b)
Control force in Xr direction for minimum time (c) Control force in
Yr direction for maximum time (d) Control force in Yr direction for

minimum time
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