
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

1

A Novel Approach of Speedy-Highly Secured Data
Transmission using Cascading of PDLZW and

Arithmetic Coding with Cryptography

Sankalp Prakash
Research Scholar

State Govt. Technical Education,
Jaipur (Rajasthan)

Mridula Purohit
Reader, Dept. of Mathematics

Vivekanand Institute of Tech. (East),
Jaipur (Rajasthan)

Abhishek Raizada
Research Scholar
Jaipur (Rajasthan)

ABSTRACT

The spread of computing has led to an outburst in the volume

of data in the communication world. The paper proposes the

cascading of two algorithms PDLZW and Arithmetic Coding

with cryptography. With the hierarchical parallel dictionary

set, the search time can be reduced significantly and all these

dictionaries are operated independently. While the results

generated by Arithmetic Coding are close to the optimal

value. Since cascaded compression may achieve the higher

compression ratio for the file but does not provide required

security aspects. Therefore, the advantage of cryptography has

been taken by XORing the compressed data with the one-time

key, providing compression and security simultaneously. This

paper proposes a new system JDCE, where compression is

provided to the data twice before encrypted it for getting it

ready for transmission.

General Terms

Arithmetic Coding, Cascaded Compression, Cryptography,

Parallel Dictionary LZW (PDLZW), One-Time Pad

Keywords

Arithmetic Coding, Cascaded Compression, Cryptography,

Parallel Dictionary LZW (PDLZW), One-Time Pad

1. INTRODUCTION

The field of Information Technology has grown up abruptly in

last decade, which pivots around data/message transmission.

There are two important factors to be considered firstly

transmission speed i.e. time taken from source to destination

and secondly data security or integrity of the data which

means to ensure that the receiver is receiving the original

message send by the sender. The length of the data/ message

may vary from a few bytes to gigabytes. Therefore it becomes

crucial to compress and cipher the data/message before

transmission. Data compression is the process of encoding the

data, so that fewer bits will be needed to represent the original

data whereby the size of the data is reduced. Cryptography is

an art of protecting information by transforming it (encrypting

it) into an unreadable format, called cipher text. Only those

who possess a secret key can decipher (or decrypt) the

message into plain text. So, a new system JDCE (Joint Double

Compression and Encryption) has been proposed in which

compression is attained by cascading of PDLZW and

Arithmetic Coding and then result of the compression is

encrypted to provide rapid transmission and triple layer

security.

Data compression has important applications in the area of

data transmission as well as data storage despite of large

capacity storage devices are available these days. Therefore,

there is need for an efficient way to store and transmit

different type of data such as text, image, audio and video to

reduce execution time and memory size [11]. The general

principle of data compression algorithm on text files is to

conjures up an assortment of ad hoc techniques such as

compression of spaces in text to tabs, creation of special codes

for common words or run length coding of picture data to

produce new text file which contains the same information but

with new length as small as possible [7]. The effective data

compression algorithm is chosen according to some scales

like: Compression Size, Compression Ratio, Compression

Time and Entropy [12]. Compression size means size of new

compressed file. Compression ratio refers to the percentage

that results from dividing the compression size by the original

uncompressed file size and then multiply it by 100. Entropy is

the number that results from dividing the compression size in

bits by the number of symbols in the original file and scales as

bits/symbol [11]. Shannon’s fundamental theorem of coding

states that, given messages randomly generated from a

model, it is impossible to encode them into less bits (on

average) than the entropy of that model [1].

LZW and the Arithmetic Coding (AC) are two of the most

appropriate compression algorithms for communication

because firstly, both are adaptive i.e. they do not require a

prior knowledge on the text to be compressed and secondly,

during the compression process they do not require transfer of

extra information from the sender to the receiver in addition to

the compressed text [5]. Many researchers published

comparative studies on the data compression techniques such

LZW, Huffman, FLC, AC, LZ-77, etc. and found LZW and

AC are the best in their own territory. LZW is appropriate

when aim is raw speed rather than compression performance.

The conventional LZW is a dictionary based compression so

it requires large amount of processing time for adjusting and

searching through the dictionary [3]. The parallel dictionary

LZW (PDLZW) has designed to overcome this problem. AC

has its own limitations. Though PDLZW and AC work on

different principles, they can be cascaded yielding higher

compression ratio while being appropriate for communication

purpose, but does not provide the full security of transmitting

data. The proposed mechanism will overcome this issue by

incorporating cryptography with the cascading of PDLZW

and AC.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

2

2. PARALLEL DICTIONARY LZW

(PDLZW)

The basic idea of dictionary based compression technique

given by Lempel and Ziv as LZ-77. The main disadvantage of

LZ-77 is the size of buffers is very small so in 1984, Terry

Welch suggested LZW algorithm. LZW is general

compression algorithm capable of working on almost any type

of data [11]. LZW compression creates a table of string

commonly occurring in the data being compressed, searches

the table to identify the longest possible input data string that

exists in the table, and replaces the actual data with references

into the table. The table is formed during the compression at

the same time at which the data is encoded and during

decompression at the same time as the data is being decoded

[8]. It can typically compress large English text to about half

of the original sizes. However, the limit is imposed in the

conventional LZW by the fact that once the 4K dictionary is

complete, no more strings can be added; and requires large

amount of processing time for adjusting and searching

through the dictionary [7].

To improve the limitations of conventional LZW, the

dynamic LZW (DLZW) and word-based DLZW (WDLZW)

algorithms were proposed. In DLZW, the dictionary has been

initialized with different combinations of characters. It is

organized in hierarchical string tables. The baseline idea is to

store the most frequently used strings in the shorter table,

which requires fewer bits to identify the corresponding string.

The tables are updated using the move-to-front and weighting

system with associated frequency counter. During the

compression time, after the longest matching string is

recognized in the table, it is moved to the first position of its

block. The table updating process is based on the least

recently used (LRU) policy to ensure that frequently used

strings are kept in the smaller tables. This is to minimize the

average number of bits required to code a string when

compare with a single table implementation [2, 3, 7].

The WDLZW algorithm is a modified version of DLZW

that focuses on text compression by identifying each word in

the text and make it a basic unit (symbol). The algorithm

encodes the input word into literal codes and copy codes. If

the search for a word has failed, it is sent out as a literal code,

which is its original ASCII code preceded by other codes for

identification. The copy code is the address of the matching

string in the string table. However, both algorithms are too

complicated. To improve this, parallel dictionary LZW

(PDLZW) was proposed. Since not all entries of the DLZW

dictionary contains the same word size, this leads to the need

of the entire dictionary search for every character.

Consequently, the PDLZW has designed to overcome this

problem by partitioning the dictionary into several

dictionaries of different address spaces and sizes. With the

hierarchical parallel dictionary set, the search time can be

reduced significantly since these dictionaries can operate

independently and thus can carry out their search operation in

parallel [2].

2.1 Compression Algorithm for PDLZW

The PDLZW compression algorithm is based on a parallel

dictionary set that consists of m small variable-word-width

dictionaries, numbered from 0 to m-1, each of which increases

its word width by 1 byte (1B). More precisely, dictionary0 has

1B word width; dictionary1 has 2B, and so on. The actual size

of the dictionary set used in a given application can be

determined by the information correlation property of the

application.

In the algorithm, two variables and one constant are used. The

constant max_dict_no denotes the maximum number of

dictionaries, excluding the first single-character dictionary

(i.e., dictionary0), in the dictionary set. The variable

max_matched_dict_no is the largest dictionary number of all

matched dictionaries and the variable matched_addr identifies

the matched address within the max_matched_dict_no

dictionary. Each compressed codeword is a concatenation of

max_matched_dict_no and matched_addr.

Input: The string to be compressed.

Output: The compressed code words with each being a log2k-

bit codeword, which consists of max_matched_dict_no and

matched_ addr, where k is the total number of entries of the

dictionary set.

Begin:

1: Initialization.

1.1. string-1← null.

1.2. max_matched_dict_no ← max_dict_no.

1.3. update_dict_no ← max_matched_dict_no;.

update_string ← ∅{empty}.

2: while (the input buffer is not empty) do

2.1. Prepare next max_dict_no + 1 character for

searching.{max_matched_dict_no is reset to

max_dict_no initially and the dictionary number of

the dictionary set counts from 0 up to a constant

max_dict_no}

2.1.1. string-2 ← read next

(max_matched_dict_no+1) characters from

the input buffer.

2.1.2. string ← string-1║string-2. (Where ║ is the

concatenation operator.)

2.2. Search string in all dictionaries in parallel and set

the max_matched_dict_no and matched_addr.

2.3. Output the compressed codeword containing

max_matched_dict_no║matched_addr.

2.4. if (max_matched_dict_no < max_dict_no and

update_string ≠ ∅) then add the update_string to

the entry point by UP[update_dict_no] of

dictionary[update_dict_no].(UP[update_dict_no]

is the update pointer associated with the

dictionary).

2.5. Update the update pointer of the

dictionary[max_matched_dict_no + 1].

2.5.1. UP[max_matched_dict_no + 1] =

UP[max_matched_dict_no + 1] + 1

2.5.2. if UP[max_matched_dict_no + 1] reaches its

upper bound then reset it to 0. {FIFO update

rule.}

2.6. update_string ← extract out the first

(max_matched_dict_no + 2) bytes from string;

update_dict_no ← max_matched_dict_no + 1.

2.7. string-1 ← shift string out the first

(max_matched_dict_no + 1) bytes.

End {End of PDLZW Compression Algorithm.}[2]

Here is an example to illustrate the operation of the PDLZW

compression algorithm. It is assumed that the alphabet set ∑ is

{a,b,c,d} and the input string is ababbcabbabbabc . The

address space of the dictionary set is 16. The dictionary set

initially contains only all single characters: a,b,c and d. The

input string is grouped together by characters. These groups

are denoted by a number with or without parenthesis. The

number without parenthesis denotes the order to be searched

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

3

(5)

(1)

2 6

(2)

(4) (6)

4

of the group in the dictionary set and the number with

parenthesis denotes the order to be updated of the group in the

dictionary set. After the algorithm exhausts the input string,

the contents of the dictionary set and the compressed output

code words will be {a,b,c,d,ab,ba,bc,ca,abb,,,,,abba,,,} and

{0,1,4,1,2,8,8,4,2} respectively [2, 3].

Directory 0

00 00 0 a

00 01 1 b

00 10 2 c

00 11 3 d

Directory 1

01 00 4 a b (1)

01 01 5 b a (2)

01 10 6 b c (4)

01 11 7 c a (5)

Directory 2

10 00 8 a b b (3)

10 01 9

10 10 10

10 11 11

Directory 3
110 0 12 a b b a (6)

110 1 13

Directory 4
111 0 14

111 1 15

Input: a b a b b c a b b a b b a b c

 1 5 9

 3

 4

 (3) 7

 8

Output: 0 1 1 2 8 8 4 2

Figure 1: Example to illustrate the operation of PDLZW

compression algorithm.

2.2 PDLZW Decompression Algorithm:

To recover the original string from the compressed one,

reverse the operation of the PDLZW compression algorithm.

This operation is called the PDLZW decompression

algorithm. By decompressing the original substrings from the

input compressed code words, each input compressed

codeword is used to read out the original substring from the

dictionary set. To do this without loss of any information, it is

necessary to keep the dictionary sets used in both algorithms,

the same contents. Hence, the substring concatenated of the

last output substring with its first character is used as the

current output substring and is the next entry to be inserted

into the dictionary set. The PDLZW decompression algorithm

has three variables and one constant. As in the PDLZW

compression algorithm, the constant max_dict_no denotes the

maximum number of dictionaries in the dictionary set. The

variable last_dict_no memorizes the dictionary address part of

the previous codeword. The variable last_output keeps the

decompressed substring of the previous codeword, while the

variable current_output records the current decompressed

substring. The output substring always takes from the

last_output that is updated by current_output in turn.

Input: The compressed codewords with each containing

log2k-bits, where k is the total number of entries of the

dictionary set.

Output: The original string.

Begin:

1: Initialization.

1.1. if (input buffer is not empty) then

current_output ← empty; last_output ← empty;

addr ← read next log2k-bit codeword from input

buffer. {Where codeword = dict_no ║ dict_addr

and ║ is the concatenation operator.}

1.2. if (dictionary[addr] is defined) then

current_output ← dictionary[addr];

last_output ← current_output;

output ← last_output;

update_dict_no ← dict_no[addr] + 1.

2: while (the input buffer is not empty) do

2.1. addr ← read next log2k-bit codeword from input

buffer.

2.2. {output decompressed string and update the

associated dictionary.}

2.2.1. current_output ← dictionary[addr].

2.2.2. if (max_dict_no ≥ update_dict_no) then

add (last_output ║ the first character of

current_output) to the entry pointed by

UP[update_dict_no] of

dictionary[update_dict_no].

2.2.3. UP[update_dict_no]←UP[update_dict_no]+

1.

2.2.4. if UP[update_dict_no] reaches its upper

bound then reset it to 0.

2.2.5. last_output ← current_output;

Output ← last_output;

update_dict_no dict_no(addr) + 1.

End {End of PDLZW Decompression Algorithm.}

The operation of the PDLZW decompression algorithm can be

illustrated by the following example. Assume that the

alphabet set ∑ is and input compressed codewords are {0, 1,

4, 1, 2, 8, 8, 4, 2}. Initially, the dictionaries numbered from 1

to 3 shown in Figure 1 are empty. By applying the entire input

compressed codewords to the algorithm, it will generate the

same content as is shown in Figure 1 and output the

decompressed {a, b, ab, b, c, abb, abb, ab, c}substring [2, 3].

3. Arithmetic Coding Algorithm (AC)

In Arithmetic Coding, method for lossless data compression, a

message is represented by an interval of real numbers between

0 and 1. As the message becomes longer, the interval needed

to represent it becomes smaller, and the number of bits needed

to specify that interval grows. Successive symbols of the

message reduce the size of the interval in accordance with the

symbol probabilities generated by the model. The more likely

symbols reduce the range by less than the unlikely symbols

and hence add fewer bits to the message [1]. This method is

adaptive and does not need the probabilities of the symbols in

the input in advance. These probabilities could be

dynamically updated as input is read, and mapped into the

interval [5].

The AC has advantages over Huffman Coding method (HC).

HC indeed achieves “minimum redundancy.” In other words,

it performs optimally if all symbol probabilities are integral

powers of ½. But this is not normally the case in practice;

indeed, Huffman coding can take up to one extra bit per

symbol. The worst case is realized by a source in which one

symbol has probability approaching unity. Symbols

emanating from such a source convey negligible information

on average, but require at least one bit to transmit [1].

Arithmetic coding dispenses with the restriction that each

symbol must translate into an integral number of bits, thereby

coding more efficiently. It actually achieves the theoretical

entropy bound to compression efficiency for any source

max_matched_dict_n

o

matched_addr

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

4

[13].In this article, the coding algorithm is adapted from an

algorithm originally presented in C by Mark Nelson [16].

In order to construct the output number, the symbols being

encoded have to have a set probabilities assigned to them. In

general, using AC depends on creating a statistical model of

the data. For example, to encode the random message “BILL

GATES”, would have a probability distribution. Once the

character probabilities are known, the individual symbols

need to be assigned a range along a probability line, which is

nominally 0 to 1. It doesn’t matter which characters are

assigned which segment of the range, as long as it is done in

the same manner by both the encoder and the decoder. The

nine character symbol set use here would look like this:

Table 1. Initial Assignment

Character Probability Range

SPACE 1/10 0.00 – 0.10

A 1/10 0.10 – 0.20

B 1/10 0.20 – 0.30

E 1/10 0.30 – 0.40

G 1/10 0.40 – 0.50

I 1/10 0.50 – 0.60

L 2/10 0.60 – 0.80

S 1/10 0.80 – 0.90

T 1/10 0.90 – 1.00

 Each character is assigned the portion of the 0-1

range that corresponds to its probability of appearance. Note

also that the character “owns” everything up to, but not

including the higher number. So the letter ‘T’ in fact has the

range 0.90 – 0.9999….The most significant portion of an

arithmetic coded message belongs to the first symbol to be

encoded. When encoding the message “BILL GATES”, the

first symbol is “B”. In order for the first character to be

decoded properly, the final coded message has to be a number

greater than or equal to 0.20 and less than 0.30. To encode

this number is to keep track of the range that this number

could fall in. So after the first character is encoded, the low

end for this range is 0.20 and the high end of the range is 0.30.

After the first character is encoded, range for output number is

now bounded by the low number and the high number. What

happens during the rest of the encoding process is that each

new symbol to be encoded will further restrict the possible

range of the output number. The next character to be encoded,

‘I’, owns the range 0.50 through 0.60. If it was the first

number in the message, set low and high range values directly

to those values. But ‘I’ is the second character. So ‘I’ owns

the range that corresponds to 0.50-0.60 in the new sub range

of 0.2 – 0.3. This means that the new encoded number will

have to fall somewhere in the 50th to 60th percentile of the

currently established range. Applying this logic will further

restrict number to the range 0.25 to 0.26.

The algorithm to accomplish this for a message of any length

is shown below:

Set low to 0.0

Set high to 1.0

While there are still input symbols do

 get an input symbol

 code_range = high - low.

 high = low + range*high_range(symbol)

 low = low + range*low_range(symbol)

End of While

output low

So the final low value, 0.2572167752 will uniquely encode

the message “BILL GATES” using present encoding scheme.

Given this encoding scheme, it is relatively easy to see how

the decoding process will operate. Find the first symbol in the

message by seeing which symbol owns the code space that the

encoded message falls in. Since the number 0.2572167752

falls between 0.2 and 0.3, the first character must be “B”. So

remove the “B” from the encoded number. Since the low and

high ranges of B, their effects can be removed by reversing

the process that put them in. First, subtract the low value of B

from the number, giving 0.0572167752. Then divide by the

range of B, which is 0.1. This gives a value of 0.572167752.

Now it can be calculated where that lands, which is in the

range of the next letter, “I” and so on.

The algorithm for decoding the incoming number looks like

this:

get encoded number

Do

 find symbol whose range straddles the encoded number

 output the symbol

 range = symbol low value - symbol high value

 subtract symbol low value from encoded number

 divide encoded number by range

until no more symbols

In summary, the encoding process is simply one of narrowing

the range of possible numbers with every new symbol. The

new range is proportional to the predefined probability

attached to that symbol. Decoding is the inverse procedure,

where the range is expanded in proportion to the probability

of each symbol as it is extracted.

3.1 Practical Matters

The process of encoding and decoding a stream of symbols

using AC is not too complicated. But at first glance, it seems

completely impractical. Most computers support floating

point numbers of up to 80 bits or so. As it turns out, AC is the

best accomplished using standard 16-bit and 32-bit integer

math. No floating point math is required, nor would it help to

use it. What is used instead is an incremental transmission

scheme, where fixed size integer state variables receive new

bits in at the low end and shift them out the high end, forming

a single number that can be as many bits long as are available

on the computer’s storage medium.

The previous section has shown how the algorithm works by

keeping track of a high and low number that bracket the range

of the possible output number. When the algorithm first starts

up, the low number is set to 0.0, and the high number is set to

1.0. The first simplification made to work with integer math is

to change the 1.0 to 0.999…., or .111… in binary.

In order to store these numbers in integer registers, first justify

them so the implied decimal point is on the left hand side of

the word. Then load as much of the initial high and low values

as will fit into the word size. The implementation uses 16-bit

unsigned math, so the initial value of high is 0xFFFF, and low

is 0. The high value continues with FFs forever, and low

continues with 0s forever, so those extra bits can be shifted in

with impunity when they are needed. If imagine the “BILL

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

5

GATES” example in a 5 digit register, the decimal equivalent

of setup would look like this:

HIGH: 99999

LOW: 00000

In order to find the new range numbers, it is needed to apply

the encoding algorithm from the previous section. First

calculate the range between the low value and the high value.

The difference between the two registers will be 100000, not

99999. This is because it is assumed the high register has an

infinite number of 9′s added on to it, so need to increment the

calculated difference. Then compute the new high value using

the formula from the previous section:

high = low + high_range(symbol)

In this case the high range was 0.30, which gives a new value

for high of 30000. Before storing the new value of high, it is

needed to decrement it, once again because of the implied

digits appended to the integer value. So the new value of high

is 29999. The calculation of low follows the same path, with a

resulting new value of 20000. So now high and low look like

this:

HIGH: 29999 (999…)

LOW: 20000 (000…)

At this point, the most significant digits of high and low

match. Due to the nature of the algorithm high and low can

continue to grow closer to one another without quite ever

matching. This means that once they match in the most

significant digit, that digit will never change. So the output

can be obtained of that digit as the first digit of the encoded

number. This is done by shifting both high and low left by one

digit, and shifting in a 9 in the least significant digit of high.

As this process continues, high and low are continually

growing closer together, and then shifting digits out into the

coded word.

This scheme works well for incrementally encoding a

message. There is enough accuracy retained during the double

precision integer calculations to ensure that the message is

accurately encoded. However, there is potential for a loss of

precision under certain circumstances.

The cumulative frequency table is stored in frequency orders

to minimize the number of updates to it after every symbol is

processed. Translation tables of character to index and index

to character are used to simplify the process of sorting the

cumulative frequency table. These translation tables are also

adjusted whenever the cumulative frequency table updated.

To overcome the overflow and underflow problems of the

integer arithmetic, frequencies are scaled down by a

normalization factor at regular interval [5].

4. Cascading of PDLZW and AC

Each compression algorithm has its own limitations and this is

true with PDLZW and AC too. So solution to overcome the

weakness of one compression technique has been found by

combining it to another compression technique. This process

is known as cascaded compression. In this process, the raw

data is given to the PDLZW encoding algorithm. The output

of the PDLZW is given to the AC for further compression.

The decompression process is totally reversing [9]. Figure 2

shows the block diagram of cascading of PDLZW and AC.

Figure 2: Block Diagram of Cascading of PDLZW and

Arithmetic Coding.

 Table 2 shows the results of implementation of

Cascading of PDLZW and Arithmetic Coding on various text

files.

Table 2. Implementation Results of Cascading of PDLZW

and AC

File Name Original

Size (Bytes)

After Cascading

Compression

File Size

(Bytes)

Compression

Ratio

new.txt 261 97 62.83

file1.txt 12288 948 92.88

file2.txt 68608 2560 96.26

file3.txt 88064 2867 96.74

main.txt 872448 4505 94.83

5. CRYPTOGRAPHY

In this fast-paced technological world the importance of

information and communication systems is escalating with the

increasing significance and quantity of data that is

transmitted. Unfortunately systems and data are increasingly

vulnerable to a variety of threats, such as unauthorized access

and use, misappropriation, alteration, and destruction.

Cryptography is the foundation of all data as well as

information security aspects. Classical cryptosystems is very

easy to understand, easily implemented and very easy to be

broken. New forms of cryptography came after the

widespread development of computer communications. In

data and telecommunications, cryptography is necessary when

communicating over any untrusted medium.

In the present scenario the cryptographic techniques have

become the immediate solution to protect information against

third parties. These techniques required that data and

information should be encrypted with some sort of

mathematical algorithm where only the party that shares the

information could possible decrypt to use the information.

Within the context of any communication, there are some

specific security requirements includes (1) Authentication

which means the process of providing one’s identity; (2)

Confidentiality that ensures no one can read the message

except the intended receiver; (3) Integrity for assuring the

receiver, the received message has not been altered in any way

from the original and (4) Non-repudiation is a mechanism to

prove that the sender really send this message [19].

Cryptography itself splits into here main branches:

(1) Symmetric (or Private-Key) Algorithm: two parties

have an encryption and decryption method for which

they share a secret key.

Raw Data PDLZW

Encoder

Arithmetic

Coding Encoder

Compressed Data

Original

Data

PDLZW

Decoder

Arithmetic

Coding Decoder

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

6

(2) Asymmetric (or Public-Key) Algorithm: a user

possesses a secret key (private key) as in symmetric

cryptography but also a public key.

(3) Hybrid Cryptography: symmetric and asymmetric

algorithms (and often also hash functions) are all used

together.

Further the symmetric cryptography can be divided in stream

ciphers and block ciphers. Stream ciphers encrypt bits

individually. This is achieved by adding a bit from a key

stream to a plain bit. Block ciphers encrypt an entire block of

plain text bits at a time with the same key. In stream ciphers

each bit xi is encrypted by adding a secret key stream bit si

modulo 2. If arithmetic modulo 2 is done, the only possible

values are 0 and 1 because if a number is divided by 2 the

only possible remainders are 0 or 1. If the truth table of

modulo2 addition is drawn then it is found that it is similar to

the exclusive-OR (XOR) gate. So the XOR operation plays a

major role in modern cryptography.

Though how good the compression techniques are, they do

not provide security of data/message from intruders, hackers

and code-breakers. So the compressed data must be encrypted

to provide authenticity, confidentiality, integrity and non-

repudiation.

6. NEW PROPOSED 3-TIER SYSTEM

(JDCE)

This paper proposes a new 3-tier system that provides double

compression with cryptography for speedy-highly secured

data transmission. In this system, first compress the raw data

using PDLZW encoder (Tier-1), and the output of this

encoder is redirected to AC encoder (Tier-2). That is how the

highly compressed data is achieved. Since the compression

technique are not secured, so the cryptography has been

integrated with the compression techniques. The output of

Tier-2 is a number which is actually the compressed data. In

this paper a truly unbreakable cipher: the One-Time Pad

(OTP) is being used [21]. A stream cipher for which (1) the

key stream s0, s1,s2,… is generated by a true random number

generator (2) the key stream is only known to the legitimate

communicating parties, and (3) every key stream bit si is only

used once, is called a One-Time Pad. The OTP is

unconditionally secure [21]. Obtained number from Tier-2 is

encrypted using private key encryption technique by XORing

it with OTP which is a random key as long as message (Tier-

3). This one time key is used to encrypt and decrypt a single

message, and then discarded. Each new message requires a

new key of same length as a new message. The output is

highly compressed and secured. The Figure 2 has been

modified here to achieve JDCE as Figure 3.

Figure 3: Block Diagram of Proposed 3-Tier System

(JDCE).

7. CONCLUSION

The proposed technique 3-Tier System (JDCE) provides an

excellent integration of data compression by cascading of

PDLZW and Arithmetic Coding algorithms along with the

cryptography to enhance the data security and transfer rate

during data communication. In this technique the data size can

be reduced by using cascaded compression technique and

after that compressed data can be encrypted to provide the

data security. The present network scenario demands

exchange of information with reduction in both space

requirement for data storage and time for data transmission

along with security. The proposed technique fulfils all such

requirements as this technique use the concept of data

compression and encryption. This paper can be extended for

the storage of files.

8. REFERENCES

[1] Ian H. Witten, Radford M. Neal, and John G. Cleary.

Arithmetic coding for data compression. Commun.

ACM, 30(6):520–540, June 1987.

[2] Ming-Bo Lin, Jang-Feng Lee, and Gene Eu Jan. A

lossless data compression and decompression algorithm

and its hardware architecture. IEEE Trans. Very Large

Scale Integr. Syst., 14(9):925–936, September 2006.

[3] Ming-Bo Lin. A hardware architecture for the lzw

compression and decompression algorithms based on

parallel dictionaries. J. VLSI Signal Process. Syst.,

26(3):369–381, November 2000.

[4] Mark Nelson and Jean-Loup Gailly. The Data

Compression Book. M&T Books, 2nd edition, 1996.

[5] Yehoshua Perl, V. Maram, and N. Kadakuntla. The

cascading of the LZW compression algorithm with

arithmetic coding. In James A. Storer and John H. Reif,

editors, Data Compression Conference, pages 277–286.

IEEE Computer Society, 1991.

Raw Data
PDLZW

Encoder

Arithmetic Coding

Encoder

Compressed Data

(CD)

Original

Data

PDLZW

Decoder

Arithmetic Coding

Decoder

One-Time Pad (OTP)

Generator

XOR

(OTP and CD)

Encrypted Data

(ED)

XOR

(ED and OTP)

One-Time Pad (OTP)

Decrypted Data

(DD)

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

7

[6] Archana V. Nair. S, G. Kharmega Sundararaj and T.

Sudarson Rama Perumal. Simultaneous compression and

encryption using arithmetic coding with randomized bits.

International Journal of Computer Technology and

Electronics Engineering, 2:38–42, April 2012.

[7] P. Vichitkraivin and Orachat Chitsobhuk. An

Improvement of PDLZW implementation with a

Modified WSC Updating Technique on FPGA. World

Academy of Science, Engineering and Technology,

2009.

[8] David Salomon. Data compression-The Complete

Reference, 4th Edition. Springer, 2007.

[9] Nirali Thakkar and Malay Bhatt. Cascading of the

PDLZW compression algorithm with arithmetic coding.

International Journal of Computer Applications,

46(16):21–24, May 2012. Published by Foundation of

Computer Science, New York, USA.

[10] Ajit Singh and Rimple Gilhotra. Data security using

private key encryption system based on arithmetic

coding, May 2011.

[11] Haroon Altarawneh and Mohammad Altarawneh. Data

compression techniques on text files: A comparison

study. International Journal of Computer Applications,

26(5):42–54, July 2011. Published by Foundation of

Computer Science, New York, USA.

[12] Debra A. Lelewer and Daniel S. Hirschberg. Data

compression. ACM Comput. Surv., 19(3):261–296,

September 1987.

[13] Jiantao Zhou, Oscar C. Au, Xiaopeng Fan, and Peter H.

W. Wong. Joint security and performance enhancement

for secure arithmetic coding. In ICIP, pages 3120–3123,

2008.

[14] Raj S. Katti, Sudarshan K. Srinivasan, and Aida

Vosoughi. On the security of randomized arithmetic

codes against ciphertext-only attacks. IEEE Transactions

on Information Forensics and Security, 6(1):19–27,

2011.

[15] Helen A. Bergen and James M. Hogan. A chosen

plaintext attack on an adaptive arithmetic coding

compression algorithm. Computers & Security, pages

157–167, 1993.

[16] Mark R. Nelson. Arithmetic coding and statistical

modeling: achieving higher compression ratios. Dr.

Dobb’s J., 16(2):16–ff., December 1990.

[17] Whitfield Diffie & Martin E. Hellman. Privacy and

authentication: An introduction to cryptography, 1979.

[18] Tarek M Mahmoud, Bahgat A. Abdel-latef, Awny A.

Ahmed, Ahmed M Mahfouz, Tarek M. Mahmoud,

Bahgat A. Abdel-latef, Awny A. Ahmed, and Ahmed M.

Mahfouz. Hybrid compression encryption technique for

securing sms. International Journal of Computer Science

and Security, 2009.

[19] Gary C. Kessle. An overview of cryptography. [Online].

http://www.garykessler.net/library/crypto.html.

[20] William Stallings. Cryptography and Network Security:

Principles and Practice. Prentice Hall Press, Upper

Saddle River, NJ, USA, 5th edition, 2010.

[21] Christof Paar and Jan Pelzl. Understanding Cryptography

- A Textbook for Students and Practitioners. Springer,

2010.

