
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

9

An Efficient Bee-inspired Auto-configuration Algorithm

for Mobile Ad Hoc Networks

Filomena de Santis

Dipartimento di Informatica
University of Salerno

84081 Fisciano (Salerno), Italy

ABSTRACT

The infrastructure-less and dynamic nature of mobile ad hoc

networks (MANETs) requires the implementation of a new set

of networking technologies in order to provide efficient

end-to-end communication according to the principles of the

standard TCP/IP suite. Routing and IP address auto-

configuration are among the most challenging tasks in the ad

hoc network domain. Swarm intelligence is a relatively new

approach to problem solving that takes inspiration from the

social behaviors of insects, such as ants and bees.

Selforganization, decentralization, adaptivity, robustness, and

scalability make swarm intelligence a successful design

paradigm for routing and IP address distribution for

MANETs. In this paper it is proposed BeeAdHocAutoConf, a

new IP address allocation algorithm based on the bee

metaphor. Both the protocol operation and the simulation

experiments are presented showing that BeeAdHocAutoConf

guarantees an even address distribution in large scale

MANETs at the cost of low complexity, low communication

overhead, and low latency with respect to other known

algorithms. Eventually, future research suggestions are

outlined with the aim to extend the use of swarm intelligence

paradigms for the redefinition or modifications of each layer

in the MANET TCP/IP suite.

General Terms
Wireless networking, combinatorial optimization, network

control algorithms, non conventional computing.

Keywords
Mobile ad hoc network, routing algorithms, IP auto-

configuration algorithms, swarm intelligence.

1. INTRODUCTION
A mobile ad-hoc network is a set of mobile nodes which

communicate over radio and do not need any infrastructure.

The limited transmission range of wireless interfaces makes

the communication multi-hop. Nodes accomplish the

functionality of hosts, as well as that of routers forwarding

packets for other nodes, [1]. MANETs are very flexible and

suitable for several situations and applications since they

allow to establish temporary communication without

preinstalled infrastructure. Remarkable installations for

mobile ad-hoc networks are made in calamity and military

areas; with the increasing diffusion of radio technologies, e.g.,

IEEE 802.11a and Bluetooth, many multimedia applications

take also advantages from running over mobile ad hoc

networks. MANETs suffer from a variety of problems:

routing and IP (Internet Protocol) address auto-configuration

are among the most challenging ones. In the literature many

different approaches dealing with these problems do exist,

even though there are not algorithms which fit in all cases.

In this paper a new approach for an auto-configuration

algorithm based on swarm intelligence is presented. More

precisely the proposal is inspired by a bee colony behavior

involved with a food site search when simple individuals

show great ability to solve a complex problem by cooperation.

The interesting point is that the bees do not need any direct

communication: they use a form of visual communication

expressed by meaningful and differentiating dances. Such an

event corresponds to the notion of stigmergy, that is the

indirect communication of individuals through changes in the

environment. Several algorithms based on bee colony

behavior have been introduced in recent years to solve

optimization problems in the domain of multi-hop ad hoc

network routing; in none of them the auto-configuration

problem was considered.

The remainder of this paper is organized as follows. In section

2 the basics of bee colony optimization meta-heuristic and

BeeAdHoc, a well known routing algorithm derived from it,

are presented. In section 3 the necessary literature about IP

address allocation for MANET are briefly reviewed. In

section 4 BeeAdHocAutoConf, the new proposal for the

solution of the problem at hand is introduced. In section 5

some simulation results to validate the quality of the

algorithm are discussed. Eventually, in section 6 conclusions

and ideas for future works are drawn.

2. ROUTING WITH THE BEE MODEL
A challenging task in the MANET domain is the routing

where a path between a source and its destination must be

found, possibly in an efficient way. Proactive routing,

reactive routing and hybrid routing, [2], are the most popular

classes of MANET routing protocols. In a proactive routing

protocols (e.g. Destination Sequenced Distance Vector,

DSDV, [3]) nodes continuously evaluate routes towards all

reachable destinations and maintain consistent, up-to-date

routing information even though network topology changes

occur. In a reactive routing protocol (e.g. Dynamic Source

Routing, DSR, [4]), routing paths are searched only when

needed by means of a route discovery operation established

between the source and destination node. Hybrid routing

protocols (e.g. Core Extraction Distributed Ad Hoc Routing,

CEDAR, [5]) combine the merits of both proactive and

reactive protocols and overcome their shortcomings. While

referring to the specialized literature for an exhaustive

coverage of the topics, in the sequel a short description of the

bee labor in a hive, and of BeeAdHoc, one of the most

efficient swarm inspired routing algorithms for MANETs is

given; BeeAdHoc will have, indeed, a fundamental role in the

auto-configuration algorithm that is going to be introduced.

Bee colonies (Apis Mellifera) and the majority of ant colonies

(Argentine ant, Linepithema humile) [6] show similar

structural characteristics, such as the presence of a population

of minimalist social individuals, and must face analogous

problems for what is concerned with distributed foraging, nest

building and maintenance. A honey bee colony consists of

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

10

morphologically uniform individuals with different temporary

specializations. The benefit of such an organization is an

increased flexibility to adapt to the changing environments.

Thousands of worker bees perform all the maintenance and

management jobs in the hive. There are two types of worker

bees, namely scouts and foragers. The scouts start from the

hive in search of a food source randomly keeping on this

exploration process until they are tired. When they return back

to the hive, they convey to the foragers information about the

odor of the food, its direction, and the distance with respect

to the hive by performing dances. A round dance indicate that

the food source is nearby whereas a waggle dance indicate

that the food source is far away. Waggling is a form of dance

made in eight-shaped circular direction and has two

components: the first component is a straight run and its

direction conveys information about the direction of the food;

the second component is the speed at which the dance is

repeated and indicates how far away the food is. Bees repeat

the waggle dance again and again giving information about

the food source quality. The better is the quality of food, the

greater is the number of foragers recruited for harvesting. The

Bee Colony Optimization (BCO) meta-heuristic has been

derived from this behavior and satisfactorily tested on many

combinatorial problems [7], [8].

BeeAdHoc is a reactive source routing algorithm based on the

use of four different bee-inspired types of agents: packers,

scouts, foragers, and bee swarms. [9], [10], [11]. Packers

mimic the task of a food-storekeeper bee, reside inside a

network node, receive and store data packets from the upper

transport layer. Their main task is to find a forager for the data

packet at hand. Once the forager is found and the packet is

handed over, the packer will be killed. Scouts discover new

routes from their launching node to their destination node. A

scout is broadcasted to all neighbors in range using an

expanding time to live (TTL). At the start of the route search,

a scout is generated; if after a certain amount of time the

scout is not back with a route, a new scout is generated with a

higher TTL in order to incrementally enlarge the search radius

and increase the probability of reaching the searched

destination. When a scout reaches the destination, it starts a

backward journey on the same route that it has followed while

moving forward toward the destination. Once the scout is

back to its source node, it recruits foragers for its route by

dancing. A dance is abstracted into the number of clones that

could be made of the same scout. Foragers are bound to the

bee hive of a node. They receive data packets from packers

and deliver them to their destination in a source-routed

modality. To attract data packets foragers use the same

metaphor of a waggle dance as scouts do. Foragers are of two

types: delay and lifetime. From the nodes they visit, delay

foragers gather end-to-end delay information, while lifetime

foragers gather information about the remaining battery

power. Delay foragers try to route packets along a minimum

delay path, while lifetime foragers try to route packets in such

a way that the lifetime of the network is maximized. A

forager is transmitted from node to node using an unicast,

point-to-point modality. Once a forager reaches the searched

destination and delivers the data packets, it waits there until it

can be piggybacked on a packet directed to its original source

node. In particular, since TCP (Transport Control Protocol)

acknowledges received packets, BeeAdHoc piggybacks the

returning foragers in the TCP acknowledgments. This reduces

the overhead generated by control packets, saving at the same

time energy. Bee swarms are the agents that are used to

explicitly transport foragers back to their source node when

the applications are using an unreliable transport protocol like

UDP (User Datagram Protocol). The algorithm reacts to link

failures by using special hello packets and informing other

nodes through Route Error Messages (REM). In BeeAdHoc,

each MANET node contains at the network layer a software

module called hive, which consists of three parts: the packing

floor, the entrance floor, and the dance floor, (see Figure 1),

The entrance floor is an interface to the lower MAC layer; the

packing floor is an interface to the upper transport layer; the

dance floor contains the foragers and the routing information.

Fig 1: The network layer architecture of BeeAdHoc

BeeAdHoc has been implemented and evaluated both in

simulation and in real networks. Results demonstrate a very

substantial improvement with respect to congestion handling,

for example due to hello messages overhead and flooding, and

prove the algorithm far superior to common routing protocols,

both single and multipath.

3. MANET ALLOCATION
Before a path between the nodes can be found, the nodes must

be identified according to an uniform address scheme, and an

unique address assignment policy in sight of an IP correct

operation [12], [13]. The major requirement of ad hoc

addressing schemes, indeed, is ensuring the uniqueness of

node addresses so that no ambiguity appears when they try to

communicate. This is not as trivial task because of the

dynamic topology of an ad hoc network. A MANET can be

split into several parts, and several MANET can merge into

one. A great number of nodes coexisting in a single network

may participate concurrently in the configuration process.

Moreover, the wireless nature, such as limited bandwidth,

power, and high error rate makes the problem even more

challenging. Besides handling a dynamic topology, the

protocols must take into account scalability, robustness, and

effectiveness. Finally, in IPv6, a protocol is expected to tackle

not only the local addressing, but also the global addressing

since, even though a MANET is basically supposed to work

by itself, the Internet connectivity might be useful in many

contexts. The strong centralization of DHCP (Dynamic Host

Configuration Protocol) and the local broadcast of IPv4 Link-

Local Addresses are not suited for MANETs. Several

approaches have been proposed to solve this problem,

generally classified into categories reflecting the allocation

features of protocols. Stateful, stateless, and hybrid

approaches are the most popular classes of MANET address

assignment protocols. For stateful approaches, the state of

each address is held in such a way that the network has a

vision of assigned and non assigned IPs, and the address

Packing Floor

Dance Floor

Entrance Floor

Transport Layer

MAC Layer

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

11

duplication is not a possible occurrence; Agent Based

Addressing [14], MANETconf [15] , Prophet [16] , and

Buddy [17] are the most popular among the stateful protocols.

For stateless approaches, each node randomly chooses its own

address and performs a duplicate address detection test to

ensure that the chosen address is not already used; Strong

Duplicate Address Detection (SDAD) [12], Weak Duplicate

Address Detection (WDAD) [18], Passive Duplicate Address

Detection (PDAD) [19] are the most popular among the

stateless protocols. Hybrid approaches combine mechanisms

from both stateful and stateless approaches, in order to

improve reliability and scalability; Hybrid Centralized Query-

based Auto-configuration (HCQA) is one of them [20]. The

swarm approach was also tried for MANET auto-

configuration, [21]. It is worthy noticing that the literature is

very lacking in swarm-based auto-configuration algorithms,

whereas it has plentiful of algorithms based on traditional

approaches. In the sequel the Buddy protocol in subsection

3.1 and the ant based protocol in subsection 3.2 will be

described, soon after a brief resume of the ant characterizing

behavior.

3.1 The Buddy protocol
Buddy is a stateful protocol where every node stores a

disjoint set of IP addresses which it can assign to a new node

without consulting any other node in the network. At the

beginning, only one node in the network has the entire pool

of IP addresses; this node detects no neighbors, thus it auto-

assigns itself with the first IP of the pool, entitles the network

with an ID (Identifier), and becomes the network initiator. A

new node, that wants to join the network, periodically sends

broadcast messages reclaiming an IP address. The initiator

assigns an address to it, divides the pool of IP addresses into

two sets, gives one half to the requesting node, and keeps the

other half with itself; the protocol agreement makes the

requesting node to auto-assign itself with the first address in

the received set. This process continues and eventually all the

nodes in the network have a set of addresses to assign to other

nodes. As a consequence, a requesting node can also receive

one or more responses; in such a case, it will choose the first

node that replies. If a node receives a request and has no

available addresses, it should request its neighbors. Three

different scenarios are possible: it searches its IP address table

for possible one hop neighbor candidates and increment by

one the radius of search if it finds no address availability; it

sends a broadcast message to its one hop neighbors and a 2

hop broadcast if it receives no reply; it searches its IP address

table for the node with the biggest block and contacts it

directly. The synchronization of the address tables makes each

node to periodically broadcast its address table. The detection

of address leaks is accomplished by buddy nodes: if one node

detects that another is missing, it merges its IP pool with its

own IP pool. When networks merge, conflicting nodes have to

give up their address space and acquire a new set of addresses.

The protocol guarantees address uniqueness, does not

generate unnecessary address changes, and is distributed, but

produces a scarce balanced address assignment, and requires

a consistent flooding that strongly increases the network

overhead [17].

3.2 The ant-based protocol
Many ant species (Argentine ant, Linepithema humile) are

able to discover the shortest path to a food source and to share

that information with other ants through stigmergy [22]. In

ant colonies, indeed, an odor substance, the pheromone, is

used as an indirect communication medium. When a source of

food is found, the ants lay some pheromone to mark the path.

The quantity of the laid pheromone depends upon the

distance, quantity and quality of the food source. While an

isolated ant that moves at random detects a laid pheromone, it

is very likely that it will decide to follow its path. This ant will

itself lays a certain amount of pheromone, and hence enforces

the pheromone trail of that specific path. Accordingly, the

path that has been used by more ants will be more attractive to

follow. The local intensity of the pheromone field, which is

the overall result of the repeated and concurrent path

sampling experiences of the ants, encodes a spatially
distributed measure of goodness associated with each possible

move. This form of distributed control based on indirect

communication among agents which locally modify the

environment and react to these modifications is called

stigmergy. These basic ingredients have been reverse-

engineered in the framework of Ant Colony Optimization

(ACO) , which exploits the ant behavior to define a nature-

inspired metaheuristic for combinatorial optimization. ACO

has been applied with success to a variety of combinatorial

problems, such as traveling salesman, routing, scheduling,

[22], [23 [24], [25], [26], [27], showing to be an effective

tool in finding good solutions.

The ant-based protocol presented in [21] is stateful and relies

on the Ant Colony meta-heuristic. Every node creates and

propagates through the network at least one originator ant.

The node may destroy, reproduce or duplicate the originator

ant that, on its own, has the exclusive right to initiate any

change involving its parent IP address when a conflict is

detected. The ants, usually identified by means of the

Medium Access Control (MAC) of their originator nodes,

spread their own node information, collect other node

information, and induce feedback within the network using

the environment as interchange means. The environment is

usually realized as a small segment of memory that nodes and

ants hold and employ during their mutual updating

interactions. Basically, the memory segments contain the

MAC address, the IP address and a timestamp for each of the

currently known nodes. Timestamp reflects the time elapsed

since the node initialization; in order to deal with a totally

distributed control, nodes do not need synchronization.

When the process begins, each memory segment would have

only one entry pointing to itself; as the algorithm progresses

information about other nodes will be brought in, and the

environment will be dynamically built. At the boot time, a set

of IP addresses is available for auto-configuration; each node

randomly picks up a unique address, and creates its originator

ant that starts its journey through the network. At each step

the next hop is chosen with respect to the optimization

criterion suggesting to reach the least recently updated node.

The exchange of information between a node and an ant is

based on the timestamps the ants carry on a per entry basis.

On a network with n nodes, the ants carries n IP addresses,

one for each node, usually the most recent ones according to

its knowledge. When information exchange between the node

and the arriving ants takes places, either of them updates itself

based on the timestamps. Whenever an ant during the process

of its journey detects a conflict for the node it has originated

from, it takes responsibility to inform it and have it changed.

A conflict is detected when two or more nodes have chosen

the same IP address. Conflict resolution mechanism is based

on mechanisms followed in Zero-Configuration networks.

The node that has the least MAC address takes the

responsibility to have its node changes its IP address to a

different one. This is not a one step process but the result of

various interactions among the swarms. The conflict

resolution mechanism will continue until a state wherein all

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

12

the nodes have unique IP address is reached. Due to the

completely distributed control and feedback flow, the swarm

based system guarantees that, even in case of node or link

failure, only a partial component of information is lost so that

the system can quickly recover from it. An important feature

of the swarm based model is concerned with partitions which

do not need to be considered as special cases. On the contrary,

when partitions merge, there is a sudden increase in the

number of IP address conflicts and the system has to make a

large effort to respond to the new environmental change.

4. BEEADHOCAUTOCONF
Each node in the MANET has a hive, which consists of three

parts: packing floor, entrance floor, and dance floor. The

architecture is defined in [7],(see Figure 1), and it is the base

for the operation of the BeeAdHoc routing algorithm whose

services are supposed to be asked from BeeAdHocAutoconf as

far as possible. BeeAdHocAutoconf follows a decentralized

stateless approach and is made up by two components: the

address assignment and the Duplicate Address Detection

(DAD) procedure. Based on a predefined conflict probability,

an estimation of the number of nodes and a widespread

allocation table, the first component randomly selects an

address from this space. The selected address is assigned

immediately implying a fixed node configuration time.

However, the address might be duplicate. Such a circumstance

will be detected and resolved by the DAD component using a

bee-swarm approach. We will refer to it as Bee Swarm

Duplicate Address Detection (BSDAD) (see Figure 2).

Fig 2: Components of BeeAdHocAutoconf

Protocol operation. When a node wishes to join a network

(source node in the sequel), it randomly picks up an address,

starts setting up a local allocation table, and broadcasts a scout

to all neighbors in its range using an expanding TTL. The task

of such a TTL is to control the number of times a scout may

be re-broadcasted. Each scout is uniquely identified with a

key based on its source node identifier (ID) and a sequence

number. The task of the scout is twofold: it checks whether or

not other nodes on its route are using the same address of its

source node, and brings back useful information either if it

finds a duplicate address occurrence or not. The source node

broadcasts the scout after assigning a small TTL to it and

setting up a timer for itself. When the TTL expires, the scout

might increment it in order to enlarge the search radius and

increase the probability of reaching a node that might use a

duplicate address. A maximum TTL is also established with

respect to a reasonable size for an ad hoc network. Scouts

with exceeded TTL might be killed or not depending on the

information they have gathered until then. This mechanism

helps ensuring the address uniqueness when the TTL expires

and useful address information has not been collected

meaning that the source node is a network initiator. Scouts

that on their route have been seen already are deleted in order

to limit the overhead. More precisely, the algorithm proceeds

as follows.

1. The source node assigns to itself a random IP address,

broadcasts the scout with a small TTL, sets up a local

allocation table as well as a timer till the maximum fixed

TTL value.

2. In each node on its route the scout updates a list L

containing the just visited node and the nodes which

have already routes to destinations. In order to get these

routes, the scout asks the local hive to look for them by

demanding foragers from the dance floor. Eventually, it

compares the entries of L with the source node address.

If there is a match,

2.1. the scout goes immediately back to the source node by

means of the reverse route. The source node must pick

up a new address, update the allocation table and

restart from step 1 unless the new tentative address is

founded in the updated allocation table.

2.2. otherwise, its TTL is checked. If the TTL has not

expired yet,

2.2.1. the scout is rebroadcasted and continues as in

step 2.

2.2.2. otherwise, it is checked if TTL= max. If it has

not reached such a maximum yet,

2.2.2.1. its TTL is incremented and the scout

continues as in step 2.

2.2.2.2. otherwise, it checks L. If L = Ф

2.2.2.2.1. it kills itself. The source node may

assume to be the network initiator

and, consequently, its allocation table

will have just one entry.

2.2.2.2.2. otherwise, it brings L to the source

node. The source node is not the

network initiator, but there is not

address conflict. Its allocation table

will have numerous entries.

When a network has been configured by means of

BeeAdHocAutoconf, each node will have a partial knowledge

about the network address distribution rising from the

allocation table it stores. Such a knowledge might be

recursively used by scouts when gathering as much

information is possible to bring back to their source node. At

the moment, the implementation of BeeAdHocAutoconf does

not provide for such a service. When a node leaves the

network, address reclamation is not trivially needed. When a

network becomes partitioned, the existing addresses are

different; thus the newly allocated addresses will still be

different inside the new partitions. The problem occurs when

different networks merge. Since there is not guarantee that the

addresses in the merged networks are different, address

duplicates might exist. The solution we have implemented is

the idea behind WDAD [18], that is duplicate addresses may

be tolerated as long as packets reach the destination node

intended by the sender, even if the destination node address is

being used by another node also. Thus each node selects an

identification key to make routing capable of differentiating

between potential duplicate IPs. Each node generates a key at

initialization phase, and distributes it with its IP address in all

routing messages. This key will be used to detect duplicate IP

addresses. Each node maintains keys along with IP addresses

in its routing table. When a node receives a routing message

with an IP address that exists in its table, it checks whether the

keys are different or not. If they are different, a duplicate

address is detected and the entry is marked as invalid; beacon

messages will inform other nodes about this duplication.

Address Assignment

BSDAD

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

13

5. SIMULATION
BeeAdHocAutoConf has been evaluated comparing its

performances with those of Buddy and the ant approach. We

have used a MASON (Multi-Agent Simulator of

Neighborhood…or Network…or something) [28] based

simulator. MASON does not allow to vary among different

routing protocols, but it “is a fast discrete-event multi-agent

simulation library core in Java, designed to be the foundation

for large custom-purpose Java simulation, and also to provide

more than enough functionality for many lightweight

simulation needs”. That has made it possible to design a

suitable environment for the scenarios which were needed.

Experiments were carried out varying parameters such as

simulation area, network size, mobility pattern, coverage

range, and simulation number among values reported in the

Table 1. As it is well known, the random walk mobility is an

individual mobility model indicating that a random walk with

very small steps gets an approximation to Brownian motion.

Despite the apparent limitations of a Brownian-type model, it

has been widely used in the MANET scenarios because of its

effectiveness in aggregating node movements in a very large

ad hoc networks.

Table 1. Parameters and related values used in the

simulation

Parameters Values

Simulation Area 35 m x 35 m - 200 m x 200

m Network size 50 - 1600

Mobility Pattern Random Walk 2d Mobility

Coverage Range 30 m

Simulation Number 288

Node and link failures were considered during burst intervals.

Every node was given a set of neighbor nodes to which it can

directly communicate in a duplex manner. Comparisons about

the connection numbers and relative operation times have

been made with a binary exponential increment of the node

number step by step as shown in Table 2 and 3, where each

result is the average of 8 simulations grouped by number of

nodes. As Tables 2 and 3 show, BeeAdHocAutoConf

performances appear promising with respect to the ant

approach and Buddy , both for the number of connected nodes

and the requested time to converge as the network size

increases. The ant-based algorithm holds good with respect to

the execution time suffering yet for the number of configured

nodes. Buddy behaves well with respect to configured nodes

suffering yet for the execution time as compared with both the

swarm-like algorithms.

Table 2. Network sizes and connection numbers

Size BeeAdHocAutoConf Ant-based Buddy

50 97,80 100,00 100,00

100 101,00 99,40 96,40

200 97,80 92,60 89,50

400 95,90 90,00 94,70

800 93,90 81,70 95,50

1600 93,80 74,80 92,60

Table 3. Network sizes and connection times

Size BeeAdHocAutoConf Ant-based Buddy

50 59,40 57,00 119,90

100 109,10 109,30 209,10

200 224,00 214,60 399,00

400 461,00 433,60 798,10

800 1141,50 1217,40 1994,40

1600 2442,50 3552,20 5857,10

6. CONCLUSIONS
BeeAdHocAutoConf has been presented; its simulation

showed that ideas inspired from natural systems provide a

sufficient motivation for designing and developing algorithms

for not only scheduling and routing problems, but for auto

configuration also. According to [7] an reengineering

approach has been followed that allowed to map concepts

from a bee colony to an IP address auto-configuration

algorithm. The algorithm has been evaluated in a simulation

environment; however, the simulation model was developed

in such a way that the constraints of a real network would be

taken into account. Extensive testing and evaluations under

various environmental parameters that represent real network

conditions have been done. The results from all experiments

reveal that the performance of BeeAdHocAutoConf is of the

order of the best auto-configuration algorithms known in

literature, even though it is achieved at a much less energy

expenditure. Future works would consider the extension of

the protocol to deal with the improvement of the network

merging management, the global connectivity with Internet,

security issues, the TCP congestion control, the exploration of

the honey bee colony behavior for its reengineering in other

problem frameworks as well as the exploration of different

swarm intelligence forms to be used in problem solving.

A last consideration about the amount of things that nature has

still to teach to everybody is strictly due. It has very recently

been discovered by two Stanford researchers that

Pogonomyrmex barbatus colonies, a species of harvester

ants, determine how many foragers to send out of the nest in

much the same way that TCP discovers how much bandwidth

is available for the transfer of data in Internet in order to avoid

or recover from network congestion. The researchers are

calling them the anternet. According to Prabhakar it is

worthwhile to conclude by saying "Ants have discovered an

algorithm that we know well, and they've been doing it for

millions of years", [29].

7. ACKNOWLEDGMENTS
Our thanks to doctors L. Caputo, C. Davino, V. Ferri, and S.

Piscitiello who have contributed towards the development of

the MASON-based simulator and relative results.

8. REFERENCES
[1] Siva Ram Murthy, C and Manoj. 2004 Ad Hoc Wireless

Networks: Architecture and Protocols. Prentice Hall.

[2] Royer, E. and Toh, C.K. 1999 A Review of Current

Routing Protocols for ad hoc Mobile Wireless

Networks. IEEE Personal Communications. 6 , 46-55.

[3] Perkins C. and. Bhagwat P. 1994 Highly dynamic

destination-sequenced distance vector routing (DSDV)

for mobile computers. Proceedings of SIGCOMM,

234–244.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.17, November 2012

14

[4] Johnson D. B. and Maltz D. A. 1996 Dynamic source

routing in ad hoc wireless networks. Mobile Computing,

153–181.

[5] Sinha P., Sivakumar R. and Bharghavan V. 1999

CEDAR: a core extraction distributed ad hoc routing

protocol. IEEE INFOCOM, 202-209.

[6] Bonabeau E., Dorigo, M. and Theraulaz, G. 1999

Swarm Intelligence. From Natural to Artificial Systems,

Oxford University Press, 0-19-513159-2.

[7] Wedde H.F. and Farooq M. 2005 Beehive: New ideas

for developing routing algorithms inspired honey bee

behavior. Handbook of Bioinspired Algorithms and

Applications, 21, 321-–339.

[8] Wedde H.F. and Farooq M. 2005 The wisdome of the

hive applied to mobile ad-hoc networks. Proceedings

IEEE Swarm Intelligence Symposium, 341–348.

[9] Wedde H.F. and Farooq M. 2005 A performance

evaluation framework for nature insired routing

algorithms. Applications of Evolutionary Computing,

LNCS (3449), 136–146.

[10] Wedde H.F. and Farooq M. 2004 BeeAdHoc–An

Energy-Aware Scheduling and Routing

Framework,.Technical report-pg439, LSIII, School of

Computer Science, University of Dortmund.

[11] Farooq M. 2006 Intelligent Network Traffic

Engineering through Bee-inspired Natural Protocol

Engineering. Natural Computing Series, Springer.

[12] Perkins C., Malinen J. T., Wakikawa R., Belding-Royer

E. M. and Sun Y. 2001 IP address auto-configuration

for ad hoc networks, IETF Draft.

[13] Jeong J., Park J., Kim H., Jeong H.and Kim D., 2005

Ad Hoc IP Address Autoconfiguration. IETF draft.

[14] Günes M.and Reibel J. 2002 An IP Address

Configuration Algorithm for Zeroconf Mobile Multihop

Ad Hoc Networks. Proceedings Broadband Wireless Ad

Hoc Networks and Services.

[15] Nesargi S. and Prakash R. 2002 MANETconf:

Configuration of Hosts in a Mobile Ad Hoc Network.

Proceedings IEEE INFOCOM

[16] Zhou H., Ni L. M. and M. W. Mutka Prophet Address

Allocation for Large Scale Manets. Proceedings IEEE

INFOCOM.

[17] Mohsin M., Prakash R. 2002 IP Address Assignment in

a Mobile Ad Hoc Network. Proceedings IEEE

MILCOM.

[18] Vaidya N. H. 2002 Weak Duplicate Address Detection

in Mobile Ad Hoc Networks. Proceedings ACM

MobiHoc, 206–16.

[19] Weniger K. 2003 Passive Duplicate Address Detection

in Mobile Ad Hoc Networks. Proceedings IEEE

WCNC.

[20] Sun Y. and Belding-Royer E. M. 2003 Dynamic

Address Configuration in Mobile Ad Hoc Networks.

UCSB tech. rep. 2003-11.

[21] Ring S., Kumar V., Cole M. E., 2004 Ant Colony

Optimization Based Model for Network

Zero.Configuration. Proceedings SPCOM, 423-427.

[22] Dorigo M. and Stützle T. 2004 Ant Colony

Optimization. MIT Press, 0-262-04219-3.

[23] Dorigo M., Maniezzo V. and Colorni A. 1996 Ant

system: optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics-

Part B, 26(1), 29-41.

[24] Di Caro G.A., 2004 Ant Colony Optimization and its

application to adaptive routing in telecommunication

networks. PhD thesis, Facultè des Sciences Appliquèes,

Universitè Libre de Bruxelles.

[25] Di Caro G.A. and Dorigo M. 1997 A mobile agents

approach to adaptive routing, Technical Report 97–12,

IRIDIA, Universitè Libre de Bruxelles.

[26] Di Caro G.A., Ducatelle F .and Gambardella L.M. 2004

AntHocNet: an ant-based hybrid routing algorithm for

mobile ad hoc networks. Proceedings PPSNVIII, LNCS

(3242), 461–470.

[27] Di Caro G.A., Ducatelle F., and Gambardella L.M.,

2005 AntHocNet: an adaptive nature-inspired algorithm

for routing in mobile ad hoc networks. European

Transaction on Telecommunications, 16(5), 443–455.

[28] Luke S., Cioffi-Revilla C., Panait L., Sullivan K., and

Balan G., 2005 MASON: A Multiagent Simulation

Environment. Simulation (81), 517-527.

[29] Prabhakar B., Dektar K. N., and Gordon D. M. 2012

The Regulation of Ant Colony Foraging Activity

without Spatial Information. PLOS Computational

Biology.

