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ABSTRACT 

In most of the flow shop scheduling problem studies, the 

processing times of jobs are considered constant and 

deterministic. These assumptions obviously suggest a 

significant gap between theory and real-world production 

problems. In this study, the problem of flow shop scheduling 

with linear job deterioration is addressed. This problem is 

investigated in an uncertain environment, and fuzzy theory is 

applied to describe this situation. The considered objective is 

minimizing the sum of fuzzy earliness and tardiness penalties. 

The problem which is known to be NP-hard is compatible 

with the concepts of just-in-Time (JIT) production. To solve 

this complex problem, a novel integrating optimization 

approach based on fuzzy simulation and genetic algorithm is 

proposed. A set of random test problems with different 

structures are presented to evaluate the performance of this 

approach. The computational results demonstrate 

effectiveness of the proposed approach.  

General Terms 

Scheduling, simulation, metaheuristic approach, fuzzy 

environment. 

Keywords 

Fuzzy simulation, genetic algorithm, flow shop scheduling, 

just-in-time, deteriorating jobs. 

1. INTRODUCTION 
This paper considers a flow shop scheduling problem with 

earliness and tardiness penalties simultaneously that known as 

just-in-time problem. In classical flow shop scheduling 

problems, job processing times are assumed to be constant. 

However, this assumption may compatible with few number 

of real-world cases. There are many manufacturing situations 

in which a job processed later consumes more time than that 

same job processed earlier [1]. Firstly, Gupta and Gupta [2] 

investigated a scheduling problem in which the processing 

times depend on the jobs’ starting time with a polynomial 

function. This problem named as scheduling with 

deteriorating jobs. They gave an example of steel rolling mills 

where the temperature of an ingot, while waiting to enter the 

rolling machine, drops below a certain level, requiring the 

ingot to be reheated before rolling. Many of researchers 

presented a variety of models where the job processing times 

are depends on their starting times, but the multiple-machine 

scheduling problems with job deterioration, is relatively 

unexplored. Kononov and Gawiejnowicz [3] investigated the 

makespan minimization problems under linear deterioration 

and proved that the two- machine flow shop problems are  

NP-hard. Mosheiov [4] addressed the makespan minimization 

problems under simple linear deterioration. Wang and Xia [5] 

investigated no-wait flow shop scheduling problem with job 

deterioration. They showed that in this problem,     

polynomial-time algorithms exist to minimize the makespan. 

Ng et al. [6] considered a flow shop scheduling problem with 

deteriorating jobs to minimize total completion time. They 

proposed lower bounds and dominance properties to speed up 

the proposed branch and bound algorithm. Recently, Bank et 

al. [1] applied particle swarm optimization and simulated 

annealing algorithms in flow shop scheduling problem under 

linear deterioration. In other study, Bank et al. [7] investigated 

Two-machine flow shop total tardiness scheduling problem 

with deteriorating jobs and developed a branch and bound 

algorithm to solve this problem.  

The above studies have considered the scheduling problems in 

deterministic environments. However, in the real-world 

production problems, the time related parameters of jobs are 

often encountered with uncertainties. There are basically two 

approaches to deal with this situation including the stochastic 

theory and fuzzy set theory. In the stochastic approach, 

uncertain data are modeled by specifying the probability 

distributions, for example inferred from historical data [8]. 

The fuzzy approach represents an alternative way to model 

imprecision and uncertainty, which is more efficient than the 

latter, especially when no historical information is available 

[9].  

In this study, the problem of just-in-time flow shop scheduling 

with linear deterioration function is considered to minimize 

the total weighted earliness and tardiness of all jobs. In 

addition, fuzzy set theory is implemented to take into account 

the uncertainty in processing times and due dates. For solving 

this type of complex problem in reasonable computational 

time, using traditional approaches is extremely difficult. For 

this reason, in this study, a novel fuzzy simulation-based 

genetic algorithm is presented to dealing with real-sizes of 

considered problem. Fuzzy simulation technic has been used 

in simulation time advancement and therefore to handle 

uncertainty of processing times and completion times.  

The rest of this paper is structured as follows: Section 2 

provides a description of the problem. A review on related 

fuzzy set theory is given in the section 3. In section 4, the 

proposed fuzzy simulation-based genetic algorithm is 

presented. Computational results are reported in Section 5 and 

finally conclusions are followed in section 6. 
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2. PROBLEM DESCRIPTION 
We consider the problem as follows. n Jobs from a set 

},...,2,1{ nj  will be sequentially processed on machine 1, 

machine 2, and so on until machine m .preemption and 

machine idle time is not allowed.  At any time, each machine 

can process at most one job and each job can be processed on 

at most one machine. The sequence in which the jobs are to be 

processed is the same on all the machines. The capacity of 

each intermediate buffer is assumed infinite. Given that the 

release time of all jobs is zero and the setup time on each 

machine is included in the processing time. The jobs are also 

assumed to be deteriorating. The processing times of jobs are 

considered as linear function of their starting process times on 

machines. Processing times and due dates are also assumed to 

be triangular and trapezoidal fuzzy numbers respectively. 

Transportation times between machines are negligible and 

Processors are available with no breakdowns. The aim is to 

find a sequence for processing all jobs on all machines so that 

the weighted sum of fuzzy earliness and tardiness penalties is 

minimized. The notations that used in this paper are as 

follows: 

Indices  

i  index for machines        

j  index for jobs 

k  index for job position in a sequence   

Parameters  
n  number of jobs 
m  number of machines 

j  Fuzzy deterioration rate of job j 

je  Earliness penalty of job j 

jt  Tardiness penalty of job j 

jip ,
~  Fuzzy normal processing time of job j on 

machine i 

jd
~

 Fuzzy due date of job j 

Decision variables  

kiC ,

~
 Fuzzy completion time of kth job on machine 

i 

jC
~

 Final fuzzy completion time of job j 

jE
~

 Fuzzy earliness of job j 

jT
~

 Fuzzy tardiness of job j 

jkx  If job j is selected for sequence position k, it 
is 1, otherwise it is 0. 

The objective function and constraints can be formulated as 

follows: 





n

j

jjjj TtEez
1

)
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(min                                                    (1) 
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1
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k
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)
~~

,0(x~ma
~

jjj CdE       nj ,...,2,1                                   (10) 

)
~~

,0(x~ma
~
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 1,0jkx    kj,                                                                  

(12) 
Equation (1) shows the objective function which is the 

minimization of the sum of fuzzy earliness and tardiness 

penalties of all jobs. Constraint (2) ensures that each job is 

assigned to exactly one sequence position and constraint (3) 

ensures that in each sequence position, one and only one job is 

processed. Constraints (4) determines the fuzzy completion 

time of the first job on machine 1. Constraints (5) illustrates 

the fuzzy completion time of the first job on machine i. 

Constraint (6) is related to the fuzzy completion time of the 

kth job on the first machine. Constraint (7) gives the fuzzy 

completion time of the kth job on machine i taking into 

account fuzzy starting time and deterioration rate.  

The actual fuzzy processing times of the jobs that have to wait 

before being processed on a machine i will be calculated in 

accordance with the fuzzy starting time and the fuzzy 

deterioration rate. In other words, as shown in following 

equation, the processing time of each job on each machine is a 

linear function of its starting time: 

)~(~~
,,],[ jijjiji spp                                                     

Where ],[
~

jip  is the fuzzy actual processing time of job j on 

machine i and jis ,
~

 is the fuzzy starting time of job j on 

machine i.  

Obviously, the longer a job has to wait for being processed, 

the longer its actual processing time becomes. In constraints 

(4), (5), and (6), disregarding the deterioration of jobs, the 

normal processing times have been applied because the 

mentioned jobs will not wait before being processed. 

The fuzzy completion time of the kth job on the last machine 

is calculated in constraints (8) considering deterioration rate. 

Constraint (9) determines the final fuzzy completion time of 

job j after passing all the stages of the flow shop system. For 

each job, constraints (10) and (11) give the fuzzy earliness 

and tardiness values respectively. Finally, constraint (12) 

indicates that the variable jkx  is binary.     

3. FUZZY SET THEORY  
In this section, some related concepts of fuzzy set 

theory, which are necessary for the considered problem and 

fuzzy simulation approach, are reviewed. Subsections 3.1 and 

3.2 are assigned to the definition of fuzzy numbers and fuzzy 

ranking method respectively.  
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3.1. Fuzzy Numbers 

The fuzzy subset  a~  of real numbers R is defined by a 

function ],1,0[:~ Ra called membership function of a~ . 

The level   set of a~ , denoted by a~ , is defined by   

}:{~
~   aRxa  for all ]1,0( . It is seen that if 

a~  is a fuzzy number, then the level  set of a~  is a 

closed, bounded and convex subset of R, namely a closed 

interval in R. In this case, it is denoted by ].~,~[~ UL aaa     

Proposition 3.1.1. Let a~  and b
~

 be two fuzzy numbers. Then 

a~   b
~

and a~  b
~

 are also fuzzy numbers. Furthermore, 

Furthermore:  

]
~~,

~~[)
~~( uull bababa    

]
~~,

~~[)
~~( luul bababa    

In the application of fuzzy theory, the triangular and 

trapezoidal fuzzy numbers are utilized the most frequently. In 

this study, processing times and due dates are considered as 

triangular and trapezoidal fuzzy numbers, respectively.  

The triangular fuzzy number a~  is denoted by 

),,(~ ul aaaa  and its membership function is defined by: 















otherwise

axifaaaxa

axifaaaax

r uuu

lll

a

0

)/()(

)/()(

)(~

 

The level set (a closed interval) of a~  is then:  

])1(,)1[(~ aaaaa ul   That is, 

aaaandaaa uull    )1(~)1(~
   

(13)
 

It can be shown that ba
~~ calculated through Eq. (14) is 

also a triangular fuzzy number. 

),,(

),,(),,(
~~
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ulul
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bbbaaaba




                             

(14)
 

The trapezoidal fuzzy number is also introduced for using to 

describe the fuzzy due dates. For a trapezoidal fuzzy number 

denoted as ),,,(~
21

ul aaaaa  , the membership function 

is given by: 


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It can be seen that: 

21 )1(~)1(~ aaaandaaa uull   
 
(15) 

Where  ]~,~[~ ul aaa   .  

In this study, processing times are considered as 

),,(~ U

ijij

L

ijij pppp   and ),,,( 21

U

jjj

L

jj ddddd 
 

respectively.  

3.2. Ranking Method 
To advance time and calculate completion times in fuzzy 

simulation, fuzzy numbers need to be ranked and compared, 

which becomes further complicated in case fuzzy numbers 

overlap. Tran and Duzkstein [10] method is applied in this 

study. This method defines a maximum border and a 

minimum border in the form of Eq.16 so that fuzzy numbers 

are compared according to their distance from these borders:  

))(inf(
1


I

i

iasMin


 , ))(sup(
1


I

i

iasMax




                     (16)

 

where )( ias  is the support of fuzzy numbers ia (i = 1,…,I) 

to be ranked. maxD and minD  for the trapezoidal fuzzy 

number ),,,( 4321 aaaaa are computed as follows: 

 

)])([(
9

1

])()[(
9

1
)](

))[(
2

(
2

1
)

2
(),~(

22

22
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LUL

U

aaaa

aaaaaa

aaM
aa

M
aa

MaD













    

                                                                                             (17)

 

 

M is either Max or Min. Hence, ),(2

min MinADD  and

),(2

max MaxADD  .  To comprehensively consider 

minD  and 
maxD  in ranking fuzzy times, two steps are adopted. 

The first step is to compute 
minD  for the fuzzy numbers and 

then decide that a fuzzy number with a smaller 
minD  is 

smaller, or a fuzzy number with a larger 
minD  is larger. When 

this step fails to rank the fuzzy numbers, that is, the 
minD  of 

the fuzzy times are equal, the second step is used. The 
maxD  is 

computed in the second step and then decide that a fuzzy 

number with a smaller 
maxD  is larger, or a fuzzy number with 

a larger 
maxD  is smaller. If the 

maxD  of the fuzzy times are 

still found to be equal, these fuzzy times are considered to be 

equal. 

 

4. FUZZY SIMULATION-BASED 

GENETIC ALGORITHM 
Genetic algorithm (GA) is a well-known meta-heuristic 

approach inspired by the natural evolution of the living 

organisms. Generally, the input of the GA is a set of solutions 

called population of individuals that will be evaluated. A 

fitness value is assigned to each solution (chromosome) 

according to its performance. In our proposed approach, 

evaluation of fitness value is provided by the fuzzy simulation 

method embedded in the optimization loop. The population 

evolves by a set of operators until some stopping criterion is 

visited. General flowchart for the proposed fuzzy    

simulation-based genetic algorithm is shown in Fig. 1. A 

detailed description of main factors for the proposed GA is 

reported as follows: 

 

4.1. Initialization 
The initial population consists of Pop_size chromosomes of 

solutions that each chromosome is related to a candidate 
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solution of the problem. The most frequently used encoding 

scheme for the flow shop problem, is a simple permutation of 

jobs [11]. The relative order of jobs in the permutation 

illustrates the processing order of jobs on the all machines in 

the shop. 

 

 
 

Fig. 1. General flowchart for fuzzy simulation-based genetic algorithm. 

 
 

 

 

 

 

 

 

To qualify encoding scheme, the permutation of jobs is shown 

through random keys (RK). Each job has a random number 

between 0 and 1and these RKs show the relative order of the 

jobs. In this paper, the largest RK value is firstly handled and 

assigned a smallest rank value 1, and the second largest RK 

value is addressed and assigned a rank value 2, and so on.  For 

example, the encoded solution {0.33, 0.254, 0.81, 0.62, 0.78, 

0.42} represents the permutation {3, 5, 4, 6, 1, 2} (Fig. 2). 

 

4.2. Fitness Evaluation by Fuzzy Simulator 
After generating solutions, they should be assigned fitness 

values. Considering the defined problem, the completion time 

of each job in the flow shop scheduling problem is calculated 

after passing all stages. Fuzzy comparisons, fuzzy ranking and 

fuzzy time advancement should occur due to fuzzy processing 

times. This leads to the simulation of job processes during 

flow shop stages as discrete events and therefore fuzzy 

completion times are obtained. This approach is referred to as 

fuzzy simulation. Unlike in the classic stochastic simulation, 

several runs are not needed in fuzzy simulation. On the 

contrary, after a single run, the completion time of each job is 

calculated and recorded as a fuzzy number. The fuzzy 

simulator algorithm that was used  

 

 

 

 

 

 

in the adapted GA has the following steps for each 

chromosome: 

1. Time advancement by considering fuzzy ranking          

method, and calculation of fuzzy completion time of each job 

by considering processing times, deterioration rate and job 

position in the sequence. Regarding triangular processing 

times, the completion times are also triangular

),,(
~ U

jj

L

jj CCCC  .  

 

2. Fuzzy earliness and tardiness calculation of each job. 

    Fuzzy earliness and tardiness are calculated through the 

following equations: 

   
}

~~
,0

~
{x~ma

~
},

~~
,0

~
{x~ma

~
jjjjjj dCTCdE 

 
3. Defuzzification of weighted sum of the fuzzy earliness and 

tardiness of each job. 

    In this paper, the considered objective function is the 

weighted sum of fuzzy earliness and tardiness penalties 

(Eq. 18):  

 

                             (18)                                                                                                              (18)  

For finding the optimal schedule 
* to minimize this fuzzy-

valued objective function, the defuzzification method 

proposed by Fortemps and Roubens [12] is applied. In this 

method, for any two fuzzy numbers a~ andb
~

, ba
~~  if and 

only if )
~

()~( ba   , where )~(a  is calculated through Eq. 

(19). 

).
~~

()(
~

1

jjjj

n

j

TtEef 




Fig. 2. Jobs permutation generation 
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and substituting Eq. (20) in Eq. (19), it is seen that 


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Considering the graph of jC
~

 as a triangle and the graph of 

jd
~

as a trapezoid, there will be five cases describing their 

positional relations [13]. The following five cases are 

supposed to be discussed to calculate 
jh  and .ju in Eq.  

(22): 
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Case (V): If L

j

U

j Cd  then the graph of 
jd

~
 is completely on 

the left of the graph of ,
~

jC which gives:  

)2(
2

1
21

U

jjj

L

j

U

jj

L

jjjjjj ddddCCChg    

For each job j, one of the above five cases (I)–(V) will be 

observed, and jjjj uthe  can be obtained. 

 4. Calculation of the weighted sum of earliness and tardiness 

for any given schedule through Eq. 21.  

  5. Fitness function calculation through Eq. 23. 







n

j

jjjj uthe
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12

1
1

1

                                         (23) 

 

4.3. Parent Selection Strategy 
The parent selection strategy means how to choose 

chromosomes in the current population that will create    off-

spring for the next generation. The most common method for 

the selection mechanism is the “roulette wheel” sampling. In 

this method each chromosome is selected based on probability 

proportionated to its fitness value (Eq.24).  

sizepopk

jf

kf
kPV

sizepop

j

_,...,1

)(

)(
)(

_

1






                   (24) 

Solutions with higher fitness value have more chance to be in 

the pool of parents for creation of off-springs. A chromosome 

can be selected as a parent one more time. 

 

4.4. Design of Genetic Operators 

4.4.1. Crossover Operator  

In this paper, uniform crossover namely position-based 

operator [14] is applied.  The steps of this method are 

introduced as follows: 

1. Randomly choose two sequences from the population as 

two parents.  
 

Parent 1 3 5 2 1 6 4 

 

Parent 2 4 3 1 5 2 6 

 

2. Create binary string (BS) and assign a randomly 

generated binary (0–1) to each cell. 

 
BS 0 1 0 1 1 0 

3. Copy the genes from the parent 1to the locations of the 

‘‘1’’s in the binary string to the same positions in the 

offspring. 

 
offspring  5  1 6  

4. The genes that have already been selected from the 

parent 1 are deleted from the parent 2, so that the 

repetition of a gene in the new offspring is avoided. 

 
Parent 2 4 3 - - 2 - 

 

5. complete the remaining empty gene locations with the 

undeleted genes that remain in the parent by preserving 

their gene sequence in parent 2. 

 
offspring 4 5 3 1 6 2 

 

 

4.4.2. Mutation Operator  
Mutation operator can also considered as a simple form of 

local search. In this study, a mutation operator, called single 

point mutation (SPO) is used [15]. The procedure of SPO can 

be defined as follows: the RK of a randomly selected job is 

randomly regenerated and then, the permutation of jobs is 

rewritten.  
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4.4.3 Reproduction Operator 

In this paper an elitism strategy is applied as reproduction 

operator. In this strategy, the best chromosomes are 

automatically copied to the next generation. 

4.5. Stopping Criteria 
The stopping criteria applied in this study are the same as the 

ones used by [16]: (1) maximum number of elapsed 

generation (Gmax), the common criterion and (2) standard 

deviation of the fitness value of chromosomes in the current 

generation. The latter criterion is computed by Eq. 25 and 

implies a degree of diversity or similarity in the current 

population in terms of the objective function value (OFV). 

The algorithm is stopped in case this parameter is smaller than 

an arbitrary constant, say 1. 

2/1
_

1

2 ])()_/1[( 



siazapop

k

g

k

gg FFsizepop         (25) 

Where  k

gF   is the fitness of the kth chromosome in generation 

g.  
gF   is the average fitness of all chromosomes in 

generation g that is computed as         





sizepop

k

k

gg FsizepopF
_

1

)_/1( . Therefore, if 
maxGg   or 

 g
  then the algorithm is stopped.  

 

5. COMPUTATIONAL RESULTS  

5.1. Data Generation  
To solve the presented mathematical model, and for the 

purpose of evaluating the effectiveness of the proposed  
GA, a number of test problems are randomly generated in 

different structures. Input data, such as number of jobs, 

number of machines, processing times, due dates, 

deterioration rates and buffer capacities, are generated as 

shown in Table 1. As you can see in table 1, the values of 
2jd   

were generated between MR )2/1(   and MR )2/1(  , 

where   and R are two parameters called tardiness factor and 

due date range. In this study, it is considered that 

6.0,2.0   and 6.1,6.0R  . These values typically cover 

various problems and hence, they are appropriate for the 

earliness/tardiness objective function. M is the maximum 

completion times of all jobs that are obtained from Johnson’s 

order [17]. To produce trapezoidal fuzzy numbers
jd

~
, and 

triangular fuzzy numbers 
ijp~    the following methods are 

used: 

 

 

),,,,'(
~

2222 jjjjjjjjj wddwdwwdd   

).,,(~
ijijijijijij wppwpp   

The values of controllable parameters for each type of 

numerical instance are presented in Tables 2.Table 3 shows an 

example in small size, for a given problem of type a with five 

jobs and three machines. The computational results of the 

given test problem is shown in Table 4. This table contains 

fuzzy completion time (
jC

~
), sum of the fuzzy earliness and 

tardiness and the assigned situation to each job (optimal jobs 

sequence) and finally, the obtained optimal value of objective 

function. As you can see in table 4, the optimal sequence of 

the given problem is                 (4, 2, 1, 5, 3) and the optimal 

value of objective function is 14.0375. 

Table 1: Information for the data generation. 

parameter values 

No. of jobs (n) 4, 5, 6, 8, 10, 20, 30, 50,80,100 
No. of machines (m) 3, 4, 5, 10, 15 

Processing time (
ijp ) U[10,100] 

Due date (
2jd ) U[ MR )2/1(  , MR )2/1(   ] 

Tardiness factor ( ) 0.2, 0.6 

due date range (R) 0.6, 1.6 

ijjj www ,',  U[1, 5] 

deterioration rate (
j
) U[0, 0.01] 

earliness and tardiness 

penalties (
jj te , ) U[0, 0.1] 

parameter values 

 

5.2. Experimental Results 
The proposed fuzzy simulation-based genetic algorithm is 

applied for 22 random type problems with different structures, 

where each of them is solved 10 times and the best solution 

was selected. Thus, there were 220 runs in total. For this 

reason, a personal computer including two Intel CoreTM2 

T5600@2.53GHz processors and 4 GB RAM is used. The 

considered test problems are solved by using two approaches: 

the optimal solution approach B&B under the LINGO9.0 

software and the proposed fuzzy GA. These approaches are 

compared with computational time and obtained objective 

function values. The associated computational results are 

shown in Tables 5.  As you can see in table 5, the proposed 

fuzzy GA is very suitable in having acceptable computational 

time and in finding the best solutions. Also, table 5 

demonstrates that B&B algorithm finds the global optimum 

solution of the small-sized problems in a short time. However, 

some of the problems cannot be solved in reasonable time. 

For the first 8 given test problems (small-sized problems), 

global optimum solutions were obtained after the implied 

computational time. No global optimum solution was obtained 

for medium and large-sized problems, even after number of 

hours. This fact reveals that a meta-heuristic approach is 

needed to tackle these problems. CPU times of the proposed 

fuzzy GA and the B&B is compared and illustrated in Fig. 3. 

However, as you can see in Fig. 3, these CPU times are not 

obviously comparable. The exponential trend of the B&B's 

CPU time by increasing the size of test problems is tangible. 

On the contrary, as can be observed in Fig. 4, the CPU time 

reported by the proposed fuzzy GA shows a polynomial 

behavior by the increase of the test problems size. 

 

6. CONCLUSIONS AND FUTURE WORK  
In this paper, a flow shop scheduling problem with 

deteriorating jobs is investigated in a fuzzy environment. For 

this problem, a mixed integer non-linear programming is 

proposed to minimize the weighted sum of fuzzy earliness and 

tardiness penalties considering a set of jobs that have non- 

identical fuzzy due dates. Due to              NP-hardness of the 

problem, an efficient integrated approach based on fuzzy 

simulation and genetic algorithm was designed to solve the 

mathematical model. The performance of the proposed GA 

has been verified by a number of numerical examples. 

Computational results demonstrated the superiority of the 

proposed approach in the jobs sequencing as compared with 

B&B method. In addition, the effectiveness of the proposed 

mailto:T5600@2.53GHz
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algorithm in having appropriate computational time has been 

proved. Future studies can focus on the other features of 

deterioration such as non-linear functions. In addition, 

designing other meta-heuristic approaches may be devised for 

the further works.    

 

 

Table 2: The values of controllable parameters for each type of numerical instance. 

Type τ R Range of 
2jd   

a 0.2 0.6 [0.5M, 1.1M] 
b 0.2 1.6 [0, 1.6M] 

c 0.6 0.6 [0.1M, 0.7M] 

d 0.6 1.6 [0, 1.2M]  

 

Table 3: sample problem data. 

jt je 
j jd 

jp ,3
~ 

jp ,2
~ 

jp ,1
~ Job  

0.01336 0.063443 0.005981 (270.95, 286.00, 301.05, 316.11) (20.36, 21.43,22.50) (86.95, 91.52,9610) (79.16, 83.33,87.49) 1 
0.005929 0.054123 0.003949 (197.11, 208.06, 219.01, 229.96) (87.80, 92.42, 97.04) (45.56, 47.96, 50.36) (21.63,22.77,23.91) 2 
0.063437 0.074421 0.007356 (328.15, 346.38, 364.61, 382.84) (33.18, 34.92, 36.67) (12.22, 12.86, 13.51) (69.87, 73.54,77.22) 3 
0.079188 0.024753 0.003421 (278.59, 294.07, 309.54, 325.02) (64.76, 68.17, 71.58) (47.60, 50.10, 52.61) (51.37, 54.08, 56.78) 4 
0.009199 0.085104 0.00201 (270.39, 285.41, 300.43, 315.45) (52.76, 55.54, 58.31) (31.31, 32.96, 34.61) (73.73, 77.61, 81.49) 5 

 

Table 4: Results of the given problem. 

1jkx  )(*5.0 jjjj uthe   Positional relation jC  Job 

13x  136933 V (204374,  2..349 ,  3723.6 ) 1 

22x  739150 I (252310,  295345 ,  20.302 ) 2 

35x  437662 IV (392364,  3.2374 ,471314) 3 

41x  9347.7 II (193303 ,  102335 ,  1.7360 ) 4 

54x  736579 I (320335,  34435. ,  3913. ) 5 

 14.0375   Total 

 

 

 

 

 

 

 

 

 

Table 5: Comparison between results of the model solved by B&B with the proposed GA. 

No. 

Problem information  Fuzzy B&B  Fuzzy GA 

No. of jobs 
No. of 

machines 
type  Best solution Optimal solution 

Mean CPU 

timea  Best solution 
Mean CPU 

timea 

1 4 3 c  49.04 49.04 00:00:03  49.04 00:00:01 

2 4 4 a  64.93 64.93 00:00:11  64.93 00:00:01 

3 5 3 c  81.12 81.12 00:02:19  81.12 00:00:03 

4 5 4 d  200.17 200.17 00:03:08  200.17 00:00:04 

5 6 3 a  126.6 126.6 00:07:34  126.6 00:00:05 

6 6 4 b  210.7 210.7 01:27:21  210.7 00:00:06 

7 8 3 d  278.8 278.8 04:15:51  278.8 00:00:06 

8 8 4 c  474.4 474.4 09:02:33  474.4 00:00:09 

9 17 3 c  463.76 - 12:00:00  262.3 00:00:12 

10 17 4 a  1515.43 - 12:00:00  918.3 00:00:15 

Fig. 3. CPU time comparison between the B&B and 

the proposed GA. 

 

Fig. 4. Polynomial trend of the CPU time reported 

by the proposed GA. 
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11 15 5 b  2341.12 - 12:00:00  1814.74 00:00:23 

12 15 15 d  4513.43 - 12:00:00  3262.71 00:01:03 

13 20 5 a  - - 20:00:00  5476.58 00:01:24 

14 20 15 c  - - 20:00:00  27126.48 00:02:18 

15 30 5 c  - - 20:00:00  8083.81 00:02:37 

16 30 15 b  - - 20:00:00  37214.17 00:03:52 

17 50 5 d  - - 30:00:00  12554.75 00:04:03 

18 50 15 b  - - 30:00:00  54131.56 00:07:11 

19 80 5 a  - - 30:00:00  26641.48 00:10:33 

20 80 15 b  - - 30:00:00  107797.19 00:12:41 

21 100 5 d  - - 30:00:00  35509.83 00:14:23 

22 100 15 a  - - 30:00:00  115788.60 00:17:48 
a Computational time (hour: minute: second). 
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