
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.13, November 2012

25

A Review of Automatic Test Cases Generation

Ebrahim Shamsoddin-Motlagh

Computer Engineering Department, Faculty of Engineering, Science & Research Branch, Islamic
Azad University, Tehran, Iran

ABSTRACT

Manual testing is hard and time consuming and it maybe

impossible for large systems or tester mistake in the test. The

software testing is the rising cost of activities in development

software and the test case generation is important activity in

software testing. Hence researches performed to automate

testing such as automatic test case generation. This paper

reports a survey of recent research to generate test case

automatically. Those are presented from UML based, graph

based, formal methods, web application, web service, and

combined. Those needed future researches are presented.

General Terms

Testing, Test Case, Generate, Automatically, Dynamic

Testing, Review

Keywords

Automatic Test Case Generation, test automate

1. INTRODUCTION
Software systems have been expanded in many sections of our

life such as transportation, health, and media. Software

reliability is very important and software testing is a way for

verifying the right to work of a software system. Software

testing is one of the most expensive activities and time

consuming in development of software. A well tested

software system will be validated by the customer before

acceptance [1]. The effectiveness of this verification and

validation process depends upon the number of errors found

and rectified before releasing the system. This in turn depends

upon the quality of test cases generated.

Test case generation is the most important part of the test. To

cut down cost of manual testing and to increase reliability of

the test, researchers have attempted to automate it and the test

case generation automatically has been attempting of it [1].

Automatic test case generation is a good method for dynamic

testing.

The paper is structured as follows. Section 2 a review related

work of automatic test case generation. Finally, Section 3

outline suggests future research steps.

2. AUTOMATIC TEST CASE

GENERATION

2.1 UML based testing
The number of researches performed system testing with

using UML diagrams.

The research [2] is proposed a framework for automatic test

case generation in black box testing for Java methods. In

reference [3] is provided an approach to convert UML

sequence diagram into a sequence diagram graph (SDG) and

completed SDG nodes with different information necessary in

combination of the test vectors, the SDG is used to generate

test cases.

In a sample research generates test cases used to logic control

and information of the state diagrams UML. In reference [5],

is provided an approach to convert UML use case diagram

into a use case diagram graph (UDG) and UML sequence

diagram into a SDG, then combined UDG and SDG to

generate a system testing graph (STG), finally traversed STG

to generate test cases [4].

In the paper [6] is proposed the behavior models of the test

sequences on statechart based and FSM based. The production

environment is produced of several test methods, such as

covering the switch, procedures DS and UIO for FSM and

produced test coverage criteria in SCCT family for statechart

based.

2.2 Graph based
Numbers of existing researches performed to generate test

cases automatically with system graph.

In sample work is proposed an algorithm on random paths

(WalkTest) to solve the structural problem of test case

generation. WalkTest obtains high quality solutions in the

situations of random function calls walk operator repeats. The

first WalkTest turns solutions in gray code instead of the usual

binary code, and turns test goals to minimize the objective

function. Then selects and edits possible solutions on a

continuous search space of in the gray code walk operator.

Next step sorts the test objectives (objective) by analyzing the

related control flow graph with reduction cost in run-time

based. Finally WalkTest collects statistical data and test cases

[7].

In the paper [8] is proposed used to rules to generate test cases

automatically and test policies is expressed, the algorithm

completes to search the tree for the reuse of test cases.

In a study to test automation, generates test case dynamically

on genetic algorithms based. The system architecture consists

of two subsystems [9]. Subsystems are program analyzer

system (BPAS) and test case generator (ATCGS). BPAS

subsystem analyzes the system under test. ATCGS subsystem

searches in the input space and gets set of test cases optimized

of test coverage criteria based on the edge / state.

2.3 Formal methods
Functional testing automatically is a potentially effective

approach for software reliability, but it is a challenge due to

the automation difficulties deriving adequate test cases and

test oracle from informal or semi-formal specifications that

often used to in practice [10]. Numbers of existing researches

performed to generate test cases automatically with formal

methods.

A paper is proposed a decompositional approach to automatic

test case generation of model-based formal specifications. The

approach offers a functional scenario based test method, a set

of test case generation criteria, a set of test case generation

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.13, November 2012

26

algorithms automatically and test oracle is well defined for

test result analysis automatically [10].

In the study [11] is showed a static analysis feedback and unit

test case generation framework (KUnit). Abilities shown in

the framework include:

1) Full coverage extension methods to reach all the

small stack structure

2) Competitive tool to improve the coverage, the size

of test set and time is generated test set.

In the paper [12] is proposed an approach to generate test case

on Object-Z specification based of a class, it is formalization

based of the test case generation.

2.4 Web application
Numbers of existing researches performed to generate test

cases automatically for web based applications.

In the research [13] is proposed the tow-phase approach to

generate test cases automatically by analyzing web

application structure. that is defined the dependence related to

data dependence and control dependence in the web

application, and detected their relationship with the source

code, and improved to generate test cases by analyzing the

results.

In reference [14], with respect to the test of multi-tier web

have challenges and a defect in the activity of the intermediate

layers, maybe spread to other layers, and web applications are

often continuously, that is proposed an approach on the inter-

connection dependence model to generate the web pages

sequences are more prone to failure.

2.5 Web service
Web Services deploy among distributed applications. To

ensure the quality of the services are published, bound,

invoked and integrated at runtime, test cases are generated

automatically and the test executed, monitored and analyzed

at runtime [15]. For this reason Numbers of investigations

have been active for test automation, in their attempted to

automate process or processes of testing. Number of existing

researches performed unit testing on WSDL file and generated

test cases automatically [15, 16, and 17].

In the research [15] proposes an approach to generate test

cases in the web services automatically. First that parses the

WSDL file and transforms the DOM tree structure, then

generates test cases from test data and test operation. In the

research [16] proposes a formal approach to generate test case

automatically for the web service single operation. In the

research [17] focuses on Abstract Test Suite and Executable

Test Suite to analyze WSDL and proposes to test WSDL

based automatically.

Numbers of existing researches performed integration testing

on BPEL file in the service oriented systems with operations

graph.

In the research [18] proposes an approach to generate test

cases on the process definition model a web service. First it

creates a graph of processes in Web services. Then follow

what the user is doing with the system, and finally provides

the needed test cases.

In the research [19 and 20] proposes an approach to generate

test cases for BPEL process Stream X-machine (SXM) based.

Those define SXM [19]: "The SXM describes a system as a

finite set of states, an internal memory and a number of

transitions between the states." It used to SXM to convert

BPEL to activity flow (activity graph).

You can automatically generate test cases from web service

automata (WSA), WSA can be used for define the operational

logic in BPEL [21].

The research [22] is provided an approach to design test cases

based on functional properties of high-level business process

model.

Researches [23 and 24] implemented an approach identifies

the changes by performing control flow analysis and

comparing the paths in a new version of composite service

with those in the old use to extensible BPEL flow graph

(XBFG).

TASSA is a framework for testing and validation in functional

and non-functional behavior of service-based applications

[25]. TASSA provides end-to-end testing of Service layer,

Service Composition and coordination and business process

of service-based applications. Another tool for automated

testing is presented WSOTF [26]. WSOTF is an automatic

conformance testing tool with timing constraints from a

formal specification of web services composition that is

implemented by an online testing algorithm.

In a study is expressed test approach described in BPEL web

service composition [27]. The paper [28] is proposed an

approach to generate a testbed for service-oriented systems.

That takes a mobility model of nodes in the network which

the accessed services are deployed.

The study [29] is expressed a framework is supporting tool for

generating and executing web service requests and analyzing

the subsequent request-response pairs automatically.

The study [30] is proposed an approach combines

accessibility technologies for accessing and controlling

graphical applications (GAPs) in a uniform way with a

visualization mechanism that enables nonprogrammers to

generate test cases for web services by performing drag-and-

drop operations on graphical user interface (GUI) elements of

GAPs.

Approaches described in Table 1 with different levels of test

coverage service based system testing. In a service may be

provided in the composition of services used to BPEL file, the

reason test on the parts in this table is on the BPEL file also

put some unit testing capabilities.

2.6 Combined
Numbers of existing researches propose to combine the

number of test case generation methods and achieving better

method for automatic test case generation.

A research is proposed an approach combines techniques the

random test case generation and the invariant extraction and

achieved test case generation and selection automatically. The

result of this test program is smaller than random test case

generation [31].

A study is proposed an approach focuses on the theory of

Markov chains and a combination of functions to get test

cases for unexpected failure. It compares set of test cases

generated by the two approaches and combines them occurs a

more efficient of model-based testing system environment

[32].

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.13, November 2012

27

Table 1. Web service based systems testing approaches at levels testing

Approaches in web service

testing

Level Testing

Unit Testing Integration Testing Regression Testing
Non-Functional

Testing

 [15, 16, 17, 30]

To generate

test cases by

WSDL

- - -

SAT Solver [18] -

To generate test cases

by processes and user

activity

Use to save test

cases
-

 [27, 29] -
To generate test cases

for processes business
- -

SXM [19, 20], WSA [21],

Tabu [22]
BPEL testing

To generate test cases

for BPEL service
- -

TASSA [25]
Layer service

testing

to generate test cases of

orchestration and BPEL

service

-

Layers testing,

Coordination and

service composition

WSOTF [26]
Analysis

WSDL

To generate test cases of

specification system
- -

XBFG [23,24] - - To select test cases -

[28] - - -

To generate

specification in

mobile system model

2.7 Summarized
The paper [1] is presented a survey on automatic test case

generation approaches that are found literature in the before

2005 year. Several approaches are proposed to generate test

cases include mainly random, path-oriented, goal-oriented and

intelligent approaches and expressed researches on them.

These approaches can be classified to static and dynamic.

Static approaches are often symbolic execution based,

whereas dynamic approaches obtain the necessary data by run

of the program under test.

Table 2 shows relation any type of automatic test case

generation and levels of software testing. UML Based testing

can be used to all levels. Web service testing in the unit

testing level can be used to in the integration testing level, and

in the integration testing can be used to system testing and

vice versa because system can be created by BPEL process

and BPEL process used to integration of system.

Table 2. Type of automatic test case generation and levels

of software testing

Automatic

test case

generation

Level testing

Unit testing
Integration

testing

System

testing

UML Based [2, 3, 4, 5, 6] [2, 3, 4, 5, 6] [2, 3, 4, 5, 6]

Graph Based [7, 9] [8] [8]

Formal

method
[11, 12] [10] [10]

Web

application
- [13, 14] [13, 14]

Web service [15, 16, 17]
[15, 16, 17]

[18…30]
[18…30]

3. Conclusions
The part of 2 this paper was expressed automatic test case

generation at six parts include: UML based, graph based,

formal methods, web application, web service, and combined.

Those proposed approaches to generate test cases. In the UML

based approaches need UML file, and analyze that file, then

create a graph and generate test cases for cover graph. Graph

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.13, November 2012

28

based use to white box testing and need source file of

program. Web application and web service approaches use to

specific software and generate test cases. In the combined

approaches achieve better method in combination of the

number of test case generation methods.

Future works will propose specific approaches for specific

software in the software logic or improve existing approaches

for specific software. Another create test cases generation

framework for general software or specific software. Future

work can be integration of available tools.

4. ACKNOWLEDGMENTS
The author would like to thank specially Dr. Seyed Hasan

Mirian Hossienabadi who has extended his support for

successful completion of this paper.

5. REFERENCES
[1] Prasanna, M., Sivanandam, S.N., Venkatesan, R.,

Sundarrajan, R. (2005). A SURVEY ON AUTOMATIC

TEST CASE GENERATION. Academic Open Internet

Journal, Volume 15, http://www.acadjournal.com/.

[2] Hu, Y.T., & Lin, N.W. (2010). Automatic Black-Box

Method-Level Test Case Generation Based on Constraint

Logic Programming. Computer Symposium (ICS), 977-

982. Doi: 10.1109/COMPSYM.2010.5685369

[3] Sarma, M., Kundu, D., Mall. R. (2007). Automatic Test

Case Generation from UML Sequence Diagrams. 15th

International Conference on Advanced Computing and

Communications, 60-65. Doi: 10.1109/ADCOM.2007.68

[4] Samuel, P., Mall, R., Bothra, A.K. (2008). Automatic test

case generation using unified modeling language (UML)

state diagrams. The Institution of Engineering and

Technology, IET Softw, Vol. 2, No. 2, pp. 79–93. Doi:

10.1049/iet-sen:20060061

[5] Sarma, M., & Mall, R. (2007). Automatic Test Case

Generation from UML Models. 10th International

Conference on Information Technology, 196-201. Doi:

10.1109/ICIT.2007.26

[6] Santiago, V., Vijaykumar, N. L., Guimaraes, D. (2008).

An Environment for Automated Test Case Generation

from Statechart-based and Finite State Machine-based

Behavioral Models. IEEE International Conference on

Software Testing Verification and Validation Workshop

(ICSTW'08).

[7] Xuan, J., Jiang, H., Ren, Z., Hu, Y., Luo, Z. (2009). A

Random Walk Based Algorithm for Structural Test Case

Generation. 2nd International Conference on Software

Engineering and Data Mining (SEDM), 583-588.

Retrieved from

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5542856

[8] Liu, Z., Gu, N., Yang, G. (2005). An Automate Test Case

Generation Approach Using Match Technique. The Fifth

International Conference on Computer and Information

Technology (CIT’05), 922-926. Doi:

10.1109/CIT.2005.64

[9] Sofokleous, A. A., Andreou, A. S. (2008). Automatic,

evolutionary test data generation for dynamic software

testing. The Journal of Systems and Software, 81, 1883–

1898. Doi:10.1016/j.jss.2007.12.809

[10] Liu, S., & Nakajima, S. (2010). A Decompositional

Approach to Automatic Test Case Generation Based on

Formal Specifications. 2010 Fourth International

Conference on Secure Software Integration and

Reliability Improvement, 147-155. Doi:

10.1109/SSIRI.2010.11

[11] Deng, X., Robby, Hatcliff, J. (2007). Kiasan/KUnit:

Automatic Test Case Generation and Analysis Feedback

for Open Object-oriented Systems. Testing: Academic

and Industrial Conference - Practice And Research

Techniques, 3-12. Doi: 10.1109/TAIC.PART.2007.32

[12] Ashraf, A., & Nadeem, A. (2006). Automating the

Generation of Test Cases from Object-Z Specifications.

Proceedings of the 30th Annual International Computer

Software and Applications Conference (COMPSAC'06),

101-104. Doi: 10.1109/COMPSAC.2006.120

[13] Tung, Y.H., Tseng, S.S., Lee, T.J., Weng, J.F. (2010). A

Novel Approach to Automatic Test Case Generation for

Web Applications. 10th International Conference on

Quality Software, 399-404. Doi 10.1109/QSIC.2010.33

[14] Dai, Z., & Chen, M.H. (2007). Automatic Test Case

Generation for Multi-tier Web Applications. 9th IEEE

International Workshop on Web Site Evolution (WSE),

39-43. Doi: 10.1109/WSE.2007.4380242

[15] Bai, X., Dong, W., Tsai, W. T., Chen, Y. (2005). WSDL-

Based Automatic Test Case Generation for Web Services

Testing. 2005 IEEE International Workshop on Service-

Oriented System Engineering (SOSE’05), 1-6. Doi:

10.1109/SOSE.2005.43

[16] Ma, C., Du, C., Zhang, T., Hu, F., Cai, X. (2008).

WSDL-Based Automated Test Data Generation for Web

Service. International Conference on Computer Science

and Software Engineering, 731-737. Doi:

10.1109/CSSE.2008.790

[17] Dong, W. (2009). Testing WSDL_based Web Service

Automatically. World Congress on Software

Engineering, 521-525. Doi: 10.1109/WCSE.2009.133

[18] Radhakrishnan, K., & Podorozhny, R. (2009, February

16). Automatic test case generation for web service

processes using a SAT solver (Report Number

TXSTATE-CS-TR-2009-13).

https://digital.library.txstate.edu/bitstream/handle/10877/

2581/fulltext.pdf

[19] Ma, C., Wu, J., Zhang, T., Zhang, Y., Cai, X. (2008)

Automatic Test Case Generation for BPEL Using Stream

X-Machine. International Journal of u- and e- Service,

Science and Technology, 27-36. Retrieved from

http://www.sersc.org/journals/IJUNESST/vol1_no1/pape

rs/04.pdf

[20] Ma, C., Wu, J., Zhang, T., Zhang, Y., Cai, X. (2008).

Testing BPEL with Stream X-machine. International

Symposium on Information Science and Engieering, 578-

582. Doi: 10.1109/ISISE.2008.201

[21] Zheng, Y., Zhou, J., Krause, P. (2007, September). An

Automatic Test Case Generation Framework for Web

Services. JOURNAL OF SOFTWARE, VOL. 2, NO. 3,

64-77. Retrieved from

http://epubs.surrey.ac.uk/1975/1/fulltext.pdf

[22] Bakota, T., Beszédes, Á., Gergely, T., Gyalai, M. I.,

Gyimóthy, T., Füleki, D. (2008). Semi-Automatic Test

Case Generation from Business Process Models. This

research was supported in part by the Hungarian national

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.13, November 2012

29

grants RET-07/2005, OTKA K-73688 and TECH_08-

A2/2-2008-0089 SZOMIN08. Retrieved from

http://www.inf.u-

szeged.hu/~beszedes/research/bakota09_semiautomatic.p

df

[23] Li, B., Qiu, D., Ji, S., Wang, D. (2010). Automatic Test

Case Selection and Generation for Regression Testing of

Composite Service Based on Extensible BPEL Flow

Graph. 26th IEEE International Conference on Software

Maintenance in TimiSoara, Romania, 1-10. Doi:

10.1109/ICSM.2010.5609541

[24] Li, B., Qiu, D., Leung, H., Wang, D. (2012). Automatic

test case selection for regression testing of composite

service based on extensible BPEL flow graph. The

Journal of Systems and Software Volume 85, Issue 6,

1300–1324. Doi:10.1016/j.jss.2012.01.036

[25] Ilieva, S., Pavlov, V., Manova, I. (2010). A Composable

Framework for Test Automation of Service-Based

Applications. 2010 Seventh International Conference on

the Quality of Information and Communications

Technology, 286-291. Doi: 10.1109/QUATIC.2010.54

[26] Cao, T.D., Felix, P., Castanet, R. (2010). WSOTF An

Automatic Testing Tool for Web Services Composition.

Fifth International Conference on Internet and Web

Applications and Services, 7-12. Doi:

10.1109/ICIW.2010.9

[27] Lallali, M., Zaidi, F., Cavalli, A., Hwang, I. (2008).

Automatic Timed Test Case Generation for Web

Services Composition. Sixth European Conference on

Web Services, 53-62. Doi: 10.1109/ECOWS.2008.14

[28] Bertolino, A., Angelis, G.D., Lonetti, F., Sabetta, A.

(2008). Automated Testbed Generation for Service-

oriented Mobile Applications. 34th Euromicro

Conference Software Engineering and Advanced

Applications, 321-328. Doi: 10.1109/SEAA.2008.33

[29] Martin, E., Basu, S., Xie, T. (2007). Automated Testing

and Response Analysis of Web Services. IEEE

International Conference on Web Services (ICWS), 647-

654. Doi: 10.1109/ICWS.2007.49

[30] Conroy, K. M., Grechanik, M., Hellige, M., Liongosari,

E. S., Xie, Q. (2007). Automatic Test Generation From

GUI Applications For Testing Web Services. Software

Maintenance, IEEE International Conference on ICSM,

345-354. Doi: 10.1109/ICSM.2007.4362647

[31] Zeng, F., Cao, Q., Mao, L., Chen, Z. (2009). Test Case

Generation based on Invariant Extraction. 5th

International Conference Wireless Communications,

Networking and Mobile Computing. WiCom '09, 1-4.

Doi: 10.1109/WICOM.2009.5302578

[32] Nakao, H., & Eschbach, R. (2008). Strategic usage of test

case generation by combining two test case generation

approaches. The Second International Conference on

Secure System Integration and Reliability Improvement,

213-214. Doi: 10.1109/SSIRI.2008.17

