
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.12, November 2012

6

Two Way Counting Position Sort

Nitin Arora
Dept. of Computer Sci. &

Engineering

Uttarakhand Technical

University, Dehradun

Anil Kumar
Dept. of Computer Sci. &

Engineering

Uttarakhand Technical

University, Dehradun

Pramod Mehra

Dept. of Computer Sci. &

Engineering

Uttarakhand Technical

University, Dehradun

ABSTRACT
Sorting is an algorithm that arranges all elements of an

array, orderly. Sorting Technique is frequently used in a

large variety of important applications to arrange the data

in ascending or descending order. Several Sorting Algorithms

of different time and space complexity are exist and used.

This paper provides a novel sorting algorithm Two Way

Counting Position sort, which is a modified version of

Counting Position Sort Algorithm and is based on counting

the position of each element in array from both the ends. We

have also compared the Two Way Counting Position sort

algorithm with Counting Position Sort, Bubble Sort and

Selection Sort. We have used the MATLAB 8.0 for

implementation and Analysis of CPU time taken by all the

four Sorting Algorithms. We have checked the algorithms

with random input sequence of length 10, 100, 1000,

5000, 10000, 50000. Result shows that for the small length of

input sequence the performance all the three techniques is

all most same, but for the large input sequence Selection

sort is faster than all the three sorting techniques. Results

show that Two Way Counting Position Sort is better than

Counting Position Sort for all lengths of inputs.

Keywords
Bubble Sort; Position Sort; Selection Sort; Two Way

Counting Position Sort.

1. INTRODUCTION
Sorting algorithms can be categories in two ways: Internal

Sort and External Sort. In Internal sort the data can fit entirely

into the main memory and in External Sort the data cannot fit

in main memory all at once but reside in secondary storage

(e.g. disk). Sorting is a technique for arrangement of objects

according to some ordering criteria. Assume we have a

collection of information concerning some set of objects.

Assume this collection of information is organized in records.

Within a record, information is structured into a number of

units called fields. The data structure of a record depends on

the application. There are many sorting algorithms. No single

sorting technique is “best” for all applications. The sorting

problems are to find a permutation such that if the ordering

relations is “>” then Key(i-1) < Key(i). A sorting technique is

called stable if Key(i) = Key(j), element ‘i’ precedes element

‘j’ then in the sorted list element ‘i’ also precedes element ‘j’.

Rest of the paper is organized as follows: section 2 describes

the Related work in this we have discussed many sorting

algorithms. Section 3 describes our new sorting algorithm.

Performance analysis and comparison is described in section

4. Followed by conclusion and future scope in section 5 and

used references are described in section 6.

2. RELATED WORK

2.1.Bubble Sort
The bubble sort is an exchange sort. It involves the repeated

comparison and, if necessary, the exchange of adjacent

elements. The elements are like bubbles in a tank of water-

each seeks its own level [1, 3, 4]. For example, if the Bubble

Sort were used on the array, 9, 1, 10, 7, 3, 11, 2, 4, each pass

would be like as shown in Table 1.

Table1. Bubble Sort for the input values 9, 1, 10, 7, 3, 11,

2, 4

Initial 9 1 10 7 3 11 2 4

Pass1 1 9 7 3 10 2 4 11

Pass2 1 7 3 9 2 4 10 11

Pass3 1 3 7 2 4 9 10 11

Pass4 1 3 2 4 7 9 10 11

Pass5 1 2 3 4 7 9 10 11

With the Bubble Sort, the number of comparisons is always

the same because the two for loops repeat the specified

number of times whether the list is initially ordered or not.

This means that the bubble sort always performs ½(n2 – n)

Comparisons, where n is the number of elements to be sorted

[4, 5].

2.2.Selection Sort
Input: a list of records: R0, R1, R2Rn-1.

Output: an order list of records:

 Rk0, Rk1, Rk2

............................Rkn-1. , Where K0<=K1<=K2<=.......KN-1.

Algorithm:

Step 1: i=0;

Step 2: find the largest item R from list

 R0........ RN-1-i,

0<=j<=N-1-i

Step 3: swap Rj and RN-1-I to produce a sequence of ordered

records RN-1-i, RN-i,......,RN-1.

Step 4: increment ‘i’, repeat step 2 until i=N-1.

In each round, select the largest one and place it to the end.

For example, if the selection method were used on the array,

9, 1, 10, 7, 3, 11, 2, 4, each pass would be like as shown in

Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.12, November 2012

7

Table2. Selection Sort for the input values 9, 1, 10, 7,

3,11,2, 4

Initial 9 1 10 7 3 11 2 4

Pass1 1 9 10 7 3 11 2 4

Pass2 1 2 10 9 7 11 3 4

Pass3 1 2 3 10 9 8 7 4

Pass4 1 2 3 4 10 9 8 7

Pass5 1 2 3 4 7 10 9 8

Pass6 1 2 3 4 7 8 10 9

Pass7 1 2 3 4 7 8 9 10

The selection sort requires ½ (n2 – n) Comparisons, where n is

the number of elements to be sorted [4, 5].

2.3.Counting Position Sort
Counting Position sort is a new sorting algorithm. It is based

on counting the smaller elements in the array and fixes the

position of the element. Counting Position sort uses the

following algorithm:

Algorithm: Counting_Position_SORT(array, n-1)

/* array is set of total n input elements */

for(i=1; i<=n;)

{

int count = 0; j = i+1;

while(j<=n)

{

if(array[i]>array[j]) then

count++;

j++;

}/* end while*/

if(count>0) then

swap(array[i] and array[i + count]);

else

i++;

} /*end for loop*/

For example, if the Counting Position method were used on

the array, 9, 12, 10, 7, 3, 11, 2, 4, each pass would be like as

shown in Table 3.

Table 3. Counting Position Sort for the input values 9, 1,

10, 7, 3, 11, 2, 4

Initial 9 1 10 7 3 11 2 4

Pass1 11 1 10 7 3 9 2 4

Pass2 4 1 10 7 3 9 2 11

Pass3 7 1 10 4 3 9 2 11

Pass4 3 1 10 4 7 9 2 11

Pass5 10 1 3 4 7 9 2 11

Pass6 2 1 3 4 7 9 10 11

Pass7 1 2 3 4 7 9 10 11

3. OUR MODIFIED TWO WAY

COUNTING POSITION SORT

ALGORITHM
Two ways counting Position Sort Algorithm is based on

counting the smaller elements from both the side i.e. forward

and backward and fixing the position of the elements.

Size of input array=MAX

Lower_Index=1;

Upper_Index=MAX;

count1=0;

count2=0;

while(Lower_Index<Upper_Index

z = 0;

 for j=Lower_Index+1:Upper_Index

 if(array(Lower_Index)>array(j))

 count1=count1+1;

 end // end if

 end // end for loop

 if(count1>0)

 t=array(Lower_Index);

array(Lower_Index)=array(count1+Lower_Ind

ex);

 array(count1+Lower_Index)=t;

 count1=0;

 z = 1;

 else

 Lower_Index=Lower_Index+1;

 end // end if else

 j=Upper_Index-1;

 while (j>=Lower_Index)

 if(array(Upper_Index)<array(j))

 count2=count2+1;

 end // end if

 j=j-1;

 end // end while loop

 if(count2>0)

 t=array(Upper_Index);

array(Upper_Index)=array(Upper_Index-

count2);

 array(Upper_Index-count2)=t;

 count2=0;

 z = 1;

 else

 Upper_Index=Upper_Index-1;

 end // end if else

 if(z==0)

 break;

 end

end // end outer while loop

Table 4: Two Way Counting Position Sort for the input

values 9, 1, 10, 7, 3, 11, 2, 4

Initial 9 1 10 7 3 11 2 4

Pass1 11 1 10 4 3 9 2 7

Pass2 7 1 10 4 3 9 2 11

Pass3 3 2 10 4 7 9 1 11

Pass4 1 2 3 4 7 9 10 11

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.12, November 2012

8

4. PERFORMANCE ANALYSIS
Bubble Sort, Selection Sort, CountingPosition Sort and our

TwoWayCountingPosition Sory were implemented in

MATLAB 8.0 and tested for the random sequence input

of length 10, 100, 1000, 10000, 50000. All the three

sorting algorithms were executed on machine with 32-bit

Operating System having Intel(R) Pentium (R) CPU P6200

@ 2.13 GHz, 2.13 GHz and installed memory (RAM) 3.00

GB. The time taken by the CPU at execution for different

inputs is shown in the table 5. The Plot of length of input

and CPU time taken (msec) is shown in figure 1. Result

shows that for the small length of input sequence the

performance all the four techniques is all most same, but

for the large input sequence Selection sort is faster than

Bubble sort, CountingPosition sort and

TwoWayCountingPosition Sort.

Table 5: CPU time(msec) for different lengths of input sequences.

Sorting Technique/# of

Nodes

10 100 1,000 5,000 10,000 50,000

TwoWayCountingPositionSort 0 0 0.0468 1.1232 4.5396 102.8543

CountingPositionSort 0 0 0.0624 1.4196 5.1480 110.3211

BubbleSort 0 0 0.0390 1.0980 4.2563 95.1534

SelectionSort 0 0 0.0156 0.7644 3.1044 77.3141

Figure 1. Plot of CPU Time (msec) and Input (length) for different sorting technique

5. CONCLUSION AND FUTURE SCOPE
From the results it can be concluded that

TwoWayCountingPosition Sorting algorithm is working well

for all length of input values. It takes lesser CPU time than

Counting position sort and larger CPU time than Bubble sort

and Selection sort. In the future work more effective sorting

algorithm can be proposed.

6. REFERENCES
[1] Arora, N., Tamta, V., and Kumar S. 2012. A Novel

Sorting Algorithm and Comparison with Bubble Sort and

Selection Sort. International Journal of Computer

Applications. Vol 45. No 1. 31-32

[2] Herbert Schildt Tata McGraw-Hill [2005], “The

Complete Reference C fourth Edition”

[3] Alfred V., Aho J., Horroroft, Jeffrey D.U.(2002) Data

Structures and Algorithms.

[4] Frank M.C. (2004) Data Abstraction and Problem

Solving with C++. US: Pearson Education, Inc

[5] Cormen T.H., Leiserson C.E., Rivest R.L. and Stein

C.(2003) Introduction to Algorithms MIT Press,

Cambridge, MA, 2nd edition

[6] Seymour Lipschutz (2009) Data Structure with C,

Schaum Series, Tata McGraw-Hill Education.

