
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

6

Iterative Method for Recreating a Binary Tree
from its Traversals

Nitin Arora

Assistant Professor
Dept. of Computer Sci. &

Engg.
Uttarakhand Technical

University
Women Institute of Technology

(WIT), Dehradun

Pradeep Kumar Kaushik
Assistant Professor

Dept. of Computer Sci. &
Engg.

Uttarakhand Technical
University

Shivalik College of Engineering
(SCE), Dehradun

Satendra Kumar
Assistant Professor

Dept. of Computer Sci. &
Engg.

Uttarakhand Technical
University

Seemant Institute of
Technology (SIT), Pithoragarh

ABSTRACT
Many reconstruction algorithms for binary tree have been

discussed in this paper. A particular focus of this paper is on

“A new Non-Recursive Algorithm for Reconstructing a Binary

Tree from its Traversals”. The computation time required for

executing the reconstruction algorithm are O(N) and space

complexity is O(NlogN) where N is the number of nodes in

the binary tree. This algorithm works well for most of the

input cases, but it has some drawbacks. There are some

sequences of pre-order and in-order for which no legitimate

tree can be constructed but the algorithm didn’t take these

cases into consideration and constructed a wrong tree for

these cases.

In this paper, we have proposed a solution to the problem in

the previous algorithm and designed an algorithm which is the

modified version of the previous algorithm for generating a

correct binary tree. The new modified algorithm is

implemented in C language and tested in GCC Compiler in

Linux, for all types of input cases. The New modified

algorithm works well for all types of input cases. We have

calculated the best case time complexity of modified

algorithm and show that a correct tree can be reported in O(N)

time in best case and O(NlogN) space where N is the number

of nodes in the tree. We have discussed some applications of

the new modified algorithm in Huffman Coding, compiler

design, text processing and searching algorithms.

Key words
Non-recursive; tree traversals; binary tree.

1. INTRODUCTION
A tree is a fundamental structure in computer science. Almost

all operating systems store files in trees or tree like structures.

It is well known that given the in-order traverse of a binary

tree, along with one of its pre-order or post-order traversals,

the original binary tree can be uniquely identified. It is not

difficult to write a recursive algorithm to reconstruct the

binary tree. Most text books and reference books present the

recursive [1, 2, 3, 4, 5] and non-recursive algorithms [6, 7, 8,

9, 10] for traversing a binary tree in in-order, post-order and

pre-order.

Many iterative methods [11, 12, 13, 14, 15] for reconstructing

a binary tree from its traversals have been proposed till date

for which computation time required is O(N) where N is the

number of nodes in the tree.

A binary tree is different recursively as either empty or

consists of a root, a left tree and a right tree. The left and

right trees may themselves be empty, thus a node with one

child could have a left or right child.

Figure 1: Binary Tree containing 9 nodes

Commonly there are three traversing methods: in-order, pre-

order and post-order traversal. In an in-order traversal, first the

left child is processed recursively, and then process the current

node followed by the right child. The output of an in-order

traversal algorithm of the binary tree shown in figure 1 is: B,

D, A, I, G, E, H, C, F and that of the pre-order is: A, B, D, C,

E, G, I. H, F.

It is well known that given the in-order traverse of a binary

tree, along with one of its pre-order or post-order traversals,

the original binary tree can be uniquely identified. It is not

difficult to write a recursive algorithm to reconstruct the

binary tree. Most text books and reference books present the

recursive and non-recursive algorithms for traversing a binary

tree in in-order, post-order and pre-order. The computation

time required is O(N2) where N is the number of nodes in the

tree. Many iterative methods for reconstructing a binary tree

has been proposed till date for which computation time

required is O(N). In this paper one of the proposed algorithms

has been examined. The proposed algorithm works well for

most of the input cases, but it has a drawback. There are some

sequences of pre-order and in-order traversals for which no

legitimate tree can be constructed but the proposed algorithm

didn’t take this case into consideration and constructed a

wrong tree for these cases. We have modified this algorithm

so that if for an in-order and pre-order sequence a correct tree

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

7

cannot be drawn then it is reported in O(N) best case time and

O(NlogN) space.

This paper is organized as follows: Section 2 includes the

related reconstruction algorithm; Section 3 introduces our

modified algorithm and its complexity analysis, performance

and result comparison in Section 4 and conclusion and future

aspects with applications of our algorithm are discussed in

section 5.

2. BACKGROUND AND RELATED

WORK

In computer science, a data structure is a particular way of

storing and organizing data in a computer so that it can be

used efficiently. Different kinds of data structures are suited to

different kinds of applications, and some are highly

specialized to specific tasks. For example, B-trees are

particularly well-suited for implementation of databases,

while compiler implementations usually use hash tables to

look up identifiers [2, 16].

Data structures are used in almost every program or software

system. Data structures provide a means to manage huge

amounts of data efficiently, such as large databases and

internet indexing services. Usually, efficient data structures

are a key to designing efficient algorithms. Some formal

design methods and programming languages emphasize data

structures, rather than algorithms, as the key organizing factor
in software design [2, 16].

2.1 Related reconstruction algorithm

It is well known that given the in-order traverse of a binary

tree, along with one of its pre-order or post-order traversals,

the original binary tree can be uniquely identified. Most

textbooks and reference books present the traversal

algorithm as a recursive algorithm [1, 2, 3, 4, 5, 8, 10]. It is

not difficult to write a recursive algorithm to reconstruct the

binary tree. The computation time required is O(N2) where N

is the number of nodes in the tree.

2.1.1 Recursive Algorithm

If we know the sequences of nodes obtained through in-

order/pre-order/post-order traversal it may not be feasible to

reconstruct the binary tree. This is because two different

binary trees may yield same sequence of nodes when

traversed using post-order traversal. Similarly in-order or pre-

order traversal of different binary trees may yield the same

sequence of nodes. However, a unique binary tree can be

constructed if the result of in-order and pre-order traversal are

available. The recursive algorithm for reconstruct a binary tree

from its traversals is as follows:

In-order traversal: 4, 7, 2, 8, 5, 1, 6, 9, 3

Pre-order traversal: 1, 2, 4, 7, 5, 8, 3, 6, 9

The first value in the pre-order traversal gives us the root of

the binary tree. So the node with data 1 becomes the root of

the binary tree. In in-order traversal, initially the left sub-tree

is traversed then the root node and then the right sub-tree. So

the data before 1 in the in-order list (i.e. 4, 7, 2, 8, 5) forms

the left sub-tree and the data after 1 is the in-order list (i.e. 6,

9, 3) forms the right sub-tree. Figure 2(a) shows the structure

of the tree after separating the tree in left and right sub-trees.

Figure 2(a): Reconstruction of a binary tree.

The next data in the pre-order list is 2 so the root node of the

left sub-tree is 2. Hence the data before 2 in the in-order list

(i.e. 4, 7) forms the left sub-tree of the node that contains a

value 2. The data that comes to the right of 2 in the in-order

list (i.e. 8, 5) forms the right sub-tree of the node with value 2.

Figure 2(b) shows structure of tree after expanding the left

and right sub-tree of the node that contains a value 2.

Figure 2(b): Reconstruction of a binary tree (contd.)

Now the next data in pre-order list is 4, so the root node of the

left sub-tree of the node that contains a value 2 is 4. The data

before 4 in the in-order list forms the left sub-tree of the node

that contains a value 4. But as there is no data present before 4

in in-order list, the left sub-tree of the node with value 4 is

empty. The data that comes to the right of 4 in the in-order list

(i.e. 7) forms the right sub-tree of the node that contains a

value 4. Figure 2(c) shows structure of tree after expanding

the left and right sub-tree of the node that contains a value 4.

Figure 2(c): Reconstruction of a binary tree (contd.)

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Web_indexing
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Programming_language

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

8

We are now left with only one value 7 in both the pre-order

and in-order form we simply represent it with a node as

shown in figure 2(d).

Figure 2(d): Reconstruction of a binary tree (contd.)

Figure 2(e): Reconstruction of a binary tree (contd.)

Figure 2(f): Reconstruction of a binary tree (contd.)

Figure 2(g): Reconstruction of a binary tree (contd.)

Figure 2(h): Reconstruction of a binary tree (contd.)

Figure 2(i): Reconstruction of a binary tree (contd.)

In the same way one by one all the data are picked from the

pre-order list and are placed and their respective sub-trees are

constructed and the whole tree is constructed. Figure 2(e) to

2(i) shows each step of construction of nodes one by one.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

9

2.1.2 Parallel Algorithms

V. Kamakoti and C. Pandu Rangan [17] presents an

optimal algorithm for reconstructing a binary tree. They

presents a parallel EREW PRAM algorithm using O(n/log log

n) processors to reduce the reconstruction process to parallel

merging. Their algorithms runs in O(log n) time.

Stephan Olariu and Michael Overstreet [18] present

reconstructing algorithm with the best parallel merging

algorithms, their algorithm can be implemented in O(log log

n) time using O(n/log log n) processors on CREW PRAM or

in O(log n) time using O(n/log n) processors in EREW

PRAM.

2.1.3 Non-Recursive Algorithms

H. A. Burgdorff [12] presented a non-recursive algorithm for

reconstructing a binary tree from its in-order and pre-order

sequences (in short i-p sequences) and their algorithm takes

O(N2) computation time.

G. H. Chen [13] has also proposed a non-recursive algorithm

for reconstructing a binary tree from its traversals from its i-p

sequence array of time complexity O(N) and inefficient space.

In the algorithm proposed by G H Chen [13] the non-recursive

algorithm for reconstructing the original binary tree from its

in-order and pre-order traversal is done in two stages [13].

First, the i-p sequence is constructed from the in-order and

pre-order traversals. Then the original binary tree is

reconstructed from the i-p sequence array. Let I[1...n] and

P[1…n] be the two sequences that represents the in-order and

pre-order traversal respectively of the given binary tree with n

nodes. Also, let IP[1…N] represent the corresponding i-p

sequence. In fact IP[i] = I-1 [P[i]], 1≤ i ≤N.

G H Chen has proposed a non-recursive algorithm by

proving following two lemmas [13].

Lemma 1: Let P[i] be a non-leaf node and s (s > 0) be the

number of its descendants. Then, IP[i] > IP[j] for i < j <k

and IP[i] < IP[j] for k ≤ j ≤ i+s iff P[i+1],…P[K-1] are the

left descendants of P[i] and P[k],…P[i+s] are the right

descendants of P[i]. Moreover, P[i + 1] is the left child of P[i]

and P[k] is the right child of P[i].

According to Lemma 1, the binary tree can be reconstructed

by sequentially examining array P. For each non leaf node

P[i], if s is known, then left and right child can find (if they

exist) as stated by lemma 1. Let S[i], 1 ≤ i ≤ n, denote the

cardinality of the set { j | j < i and IP[j] < IP[i] }. S[i]

is the number of nodes that precede P[i] in both the in-order

and the pre-order sequences. Arrays S will be used in the

reconstruction algorithm and can be computed according to

the following lemma, with S[1] = 0 initially.

Lemma 2: Let P[j] be the parent of P[i]. If P[i] is the left child

of P[j], then S[i] = S[j]. If P[i] is the right child of P[j],

then S[i] = IP[j].

Let [L1[i]……..L2[i]] be the range of array P where the left

descendants of P[i] are located and [R1[i]….R2[i]] be the

range of array P where the right descendants of P[i] are

located. If L1[i] > L2[i] (R1[i] > R2[i]), then P[i] has no left

(right) descendants. Initially, L1[1]=2, L2[i]=IP[1], and

R2[1]=n. Also, R1[1]=L2[1] + 1, if L1[1] ≤ L2[i], R1[1]=2

otherwise. Let P[j] (j<1) be the parent of P[i], L1[i], L2[i],

R1[i] and R2[i] are computed as follows:

L1[i] = i+1;

L2[i] = I+IP[i]-S[i]-1;

R1[i] = if(L1[i] ≤ L2[i]) then

L2[i]+1

else
i + 1

R2 [i] = if(P [i] is the right child of P[j]) then

R2[j]

else
L2[j]

This algorithm is meant for only binary trees implemented

using arrays.

The computations of L1[i], R1[i], and R2[i] are

straightforward; the computation of L2[i] is based on the

following lemma [13].

Lemma 3: The number of left descendants of P[i] equals

IP[i]-S[i]-1.

The nodes that precede P[i] in the in-order sequence fall into

two classes. The left descendants of P[i] belong to the first

class. The others belong to the second class. Each node in the

first class follows P[i] in the pre-order sequence; each node in

the second class precedes P[i] in the pre-order sequence.

Thus, the number of left descendants of P[i] equals the

number of nodes preceding P[i] in the in-order sequence

minus the number of nodes preceding P[i] in both the in-order

and the pre-order sequences, which is IP[i]-S[i]-1.

In the following, G. H. Chen presents the reconstructing

algorithm.

L1[1]:=2; L2[1]:=IP[1];

R1[1]:=if L1≤L2[1] then L2[1] +1 else 2;

R2[1]:= N; S[1]:=0;

if L1[1]≤L2[1]

then P[L1[1]] is the left child of P[1];

if R1[1]≤R2[1]

then P[R1[1]] is the right child of P[1];

for i:= 2 to N do

begin {Assume P[j] is the parent of P[i]

 S[i]:= if P[i] is the left child of P[j] then S[j] else

IP[j];

 L1[i]:= i+1;

 L2[i]:= i+IP[i] –S[i] -1;

 R1[i]:= if L1[i]≤L2[i] then L2[i] + 1 else i+1;

 R2[i]:= if P[i] is the right child of P[j] then R2[j]

else L2[j];

 if L1[i]≤L2[i] then P[L1[i]] is the left child of

P[i];

 if L1[i]≤L2[i] then P[L1[i]] is the left child of

P[i];

 if R1[i]≤R2[i] then P[R1[i]] is the right child of

P[i];

end

The computation time and space required for executing the

reconstructing algorithm are O(N).

Vinu V Das [11] presented a non-recursive algorithm for

reconstructing a binary tree from its in-order and pre-order

traversals and their algorithm takes O(N) computation time

and space complexity is O(NlogN).

The proposed non-recursive algorithm by Vinu V Das [11] is

to reconstruct the binary tree, implemented using linked list,

from its in-order and pre-order traversals [11]. Let P[1….N]

and I[1….N] be the pre-order and in-order traversal of the

given binary tree with N nodes. From this sequence a binary

tree will be reconstructed using linked list and root node

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

10

address will be returned for any further use. This non-

recursive algorithm works on the following lemma [11]:

Lemma: Let P[j] be the parent of P[i], (where j < i) then Lp[j]

be the corresponding index in the in-order sequence of node

P[j] and Lp[i] be the corresponding index in the in-order

sequence of node P[i]. If Lp[j] is greater than Lp[i] then P[i] is

the left child of P[j] otherwise it is the right child. The binary

tree can be reconstructed by exploiting the following three

properties of the above lemma [11].

1. First node in the pre-order sequence will be the root of

the binary tree.

2. The node(s) which comes to the left of root node in the

in-order sequence will be the nodes in the left sub tree

and node(s) in the right are the nodes in the right sub tree

of the reconstructed root node.

3. Apply the second property recursively to the left and

right sub tree of the root node to obtain the complete

binary tree.

For example in Figure 3, the first node of the pre-order

sequence is A, which is a root node of the reconstructed tree.

The nodes B and D are the only two nodes to the left of A in

in-order sequence, and they are the nodes in the left sub tree

of the root node A.

Figure 3: Binary Tree

The new Non-Recursive Algorithm for Reconstructing a

Binary Tree from its Traversals presented by Vinu V Das is

based on the following [11]:

The left and right are the two variables and any of them will

be set to one when a new node needs to be placed to the left or

right of the present node. If left = 1 and right = 0 then the new

node will be left child of the present node. Let LL be a linear

linked list where all visited nodes are stored pre-order and

unvisited nodes in in-order sequence. Whenever a node is

visited in in-order it will be removed from the LL.

PresentNode is a pointer variable that holds the address of the

present node.

Following is the reconstruction algorithm [11]:

Left = 0; Right = 0; count1=0; count2=0; data=P[0];

root=NULL;

for(count1=0;count1<n;count1++)

{

Create a NewNode

NewNode->info = data

NewNode->lChild = NULL

NewNode->rChild = NULL

if(root == NULL)

root = NewNode

while (I[count2] is present in the LL)

{

PresentNode= address of

I[count2];

remove the I[count2] from the

LL;

right = 1;Left=0;count2++;

}

if(data != I[count2])

{

Add the “data” into the linear list LL

If(Left == 1)

Place the NewNode as a left child of

PresentNode

else if(Right == 1)

Place the NewNode as a right child of

PresentNode

Left=1; Right=0;

}

else

{

If(Left == 1)

Place the NewNode as a left child of

PresentNode

else if(Right == 1)

Place the NewNode as a right child of

PresentNode

Left=0; Right=1; count2++;

}

data = P[count1];

PresentNode=NewNode;

}

The computation time required for executing the

reconstruction algorithm are O(N) and space complexity is

O(NlogN) [11].

3. OUR MODIFIED NON-RECURSIVE

ALGORITHM

The algorithm proposed by Vinu V Das [11] is implemented

in C language and checked for some different input

sequences. The algorithm works correctly for some

sequences but on the other side it generated a wrong binary

tree for some other input sequences. We made some

modification in the algorithm and proposed the solution. The

proposed solution is based on the following checks:

1. First construct the tree and if the height of the tree is less

than N, where N is the number of nodes then the tree is

always correct.

2. Otherwise, if the height of the tree is equal to n, then

there is a chance that the constructed tree may be wrong.

3. In this case where is the height of the tree is equal to the

number of nodes, the tree is traversed in an in-order

fashion and it is compared with the given in-order

sequence.

4. If the sequence matches then the tree formed is correct.

5. Otherwise, the in-order and pre-order sequences cannot

combine to form a legitimate tree.

The left and right are the two variables and any of them will

be set to one when a new node needs to be placed to the left or

right of the present node. If left = 1 and right = 0 then the new

node will be left child of the present node. Let LL be a linear

linked list where all visited nodes are stored pre-order and

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

11

unvisited nodes in in-order sequence. Whenever a node is

visited in in-order it will be removed from the LL.

PresentNode is a pointer variable that holds the address of the

present node.

An extra variable m is used in our algorithm which keeps a

count of the number of nodes having two children.

Following is the modified Non-Recursive algorithm for

generating a tree from its in-order and pre-order traversals:

/*Variable Declarations*/

left=0; right=0; count1=0; count2=0; data=P[0]; root=NULL;

m=0; /* New variable in our program which keeps a count of

the number of nodes having two children */

for (count1 = 0 ; count1<n ; count1++)

{

 /* create a new node*/

 newnode->info = data;

 newnode->lchild = NULL;

 newnode->rchild = NULL;

 If (root == NULL)

 root=newnode;

 /*Intially the linked list is empty*/

 while (I[count2] is present in the linked list)

 {

 presentnode = address of I[count2];

 remove the I[count2] from the linked list;

 right=1;left=0;count2++;

 /*Here a small modification is done*/

 m++;

 }

 If(data != I[count2])

 {

 Add the data into the linked list;

 If (left == 1)

 Place the newnode as left child of

presentnode

 If(right == 1)

 Place the newnode as right child of

presentnode

 left=1;right=0;

 }

 else

 {

 If(left == 1)

 Place the newnode as a left child of

presentnode

 elseif(right == 1)

 Place the newnode as right child of

presentnode

 left=0;right=1;count2++;

 }

 data=P[count1+1];

 presentnode = newnode;

} /*for loop end*/

If (m is greater than zero or check if the in-order traversal of

the tree formed matches with the given in-order sequence)

{

 Print the tree;

}

else

{

 Print that a legitimate tree cannot be constructed with the

sequences;

}

The best case time complexity of our modified algorithm

is O(N) where N is the number of nodes.

3.1 Complexity analysis

By the performance analysis of a program, we mean the

amount of computer memory and time needed to run a

program.

On analysis of the algorithm we find out the recurrence

relation that can be formed is

 (3.1)

We can solve this recurrence relation by iterative method as

follows:

On adding the subsequent terms of (3.1), we get

… … …

… … …

Summing up all these terms we get

 (3.2)

From the Sterling approximation [1, 19]

 (3.3)

Taking log at base e on both the sides of (3.3)

 (3.4)

From (3.2) and (3.4) we get,

So the time complexity of the algorithm is of order of

 .

For the best case scenario the loop runs for n times

only, it does not have to search the link list for a parent

address. Hence the time complexity will be n.

… … …

… … …

Hence is of the order of .

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

12

4. PERFORMANCE ANALYSIS AND

RESULTS COMPARISON
The new Non-Recursive Algorithm for Reconstructing a

Binary Tree from its Traversals presented by Vinu V Das [11]

is implemented in C language and test for some input in-order

and pre-order sequences. The algorithm works well for some

input cases but it has a drawback. This algorithm generates

wrong binary tree for some another input sequences. We have

modified this algorithm and generate a new Modified non-

recursive reconstructing algorithm. The new modified

algorithm is implemented in C language and test for some

input in-order and pre-order sequences. Our new modified

algorithm works well for all types of input cases.

4.1 Performance comparison

Both the algorithms presented by Vinu V Das [11] and our

new modified Non-Recursive Algorithm for Reconstructing a

Binary Tree from its Traversals is implemented in C language

and test for different input cases.

4.1.1 Sample Input and Output

1. Supplied input sequence with total 9 nodes

Pre-order traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7

In-order traversal: 8, 4, 9, 2, 5, 1, 6, 3, 7

Both the algorithm generated the same output tree shown in

the figure 4

Fig. 4: The generated tree for input sequence Pre-order: 1, 2,

4, 8, 9, 5, 3, 6, 7 and In-order: 8, 4, 9, 2, 5, 1, 6, 3, 7

The tree generated in figure 4 for the input sequence Pre-order

traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7 and In-order traversal: 8, 4, 9,

2, 5, 1, 6, 3, 7 is the correct binary tree because we can

generate the same pre-order and in-order traversals as

supplied.

2. For the input sequence

Pre-order traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7

In-order traversal: 7, 3, 6, 1, 5, 2, 9, 4, 8

The output tree generated by the algorithm presented by Vinu

V Das [11] is shown in figure 5 and the output generated by

our algorithm is shown in figure 4.3.

Fig. 5: The generated tree for input sequence Pre-order: 1, 2,

4, 8, 9, 5, 3, 6, 7 and In-order: 7, 3, 6, 1, 5, 2, 9, 4, 8 by the

algorithm presented by Vinu V Das

The tree generated in figure 5 for the input sequence Pre-order

traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7 and In-order traversal: 7, 3, 6,

1, 5, 2, 9, 4, 8 is an incorrect binary tree because we cannot

generate the same pre-order and in-order traversals as

supplied.

Fig. 6: The generated output for input sequence Pre-order: 1,

2, 4, 8, 9, 5, 3, 6, 7 and In-order: 7, 3, 6, 1, 5, 2, 9, 4, 8 by our

new modified the algorithm

The output message that the tree cannot be constructed in

figure 6 for the input sequence Pre-order traversal: 1, 2, 4,

8, 9, 5, 3, 6, 7 and In-order traversal: 7, 3, 6, 1, 5, 2,

9, 4, 8 is generated.

Some other inputs supplied to our modified algorithm.

3. For the input

Pre-order Traversal: 1, 2, 3, 4, 5, 6

In-order Traversal: 1, 2, 3, 4, 5, 6

The correct generated binary tree is shown in figure 7.

Fig. 7: The generated output for input sequence Pre-order: 1,

2, 3, 4, 5, 6 and In-order: 1, 2, 3, 4, 5, 6 by our new

modified the algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.11, November 2012

13

4. For the input sequence

Pre-order Traversal: 1, 2, 3, 4, 5, 6, 7

In-order Traversal: 7, 6, 5, 4, 3, 2, 1

The correct generated binary tree is shown in figure 8.

Fig. 8: The generated output for input sequence Pre-order: 1,

2, 3, 4, 5, 6, 7 and In-order: 7, 6, 5, 4, 3, 2, 1 by our

new modified the algorithm

5. CONCLUSION AND FUTURE WORK
A tree is a fundamental structure in computer science. Almost

all operating systems store files in trees or tree like structures.

It is well known that given the in-order traverse of a binary

tree, along with one of its pre-order or post-order traversals,

the original binary tree can be uniquely identified. It is not

difficult to write a recursive algorithm to reconstruct the

binary tree. Most text books and reference books present the

recursive and non-recursive algorithms for traversing a binary

tree in in-order, post-order and pre-order. The computation

time required is O(N2) where N is the number of nodes in the

tree. Many iterative methods for reconstructing a binary tree

has been proposed till date for which computation time

required is O(N). The Non- Recursive algorithm presented by

Vinu V Das [11] is considered in this paper. This algorithm

works well for most of the input in-order and pre-order

traversals, but generates wrong binary tree for some another

in-order and pre-order sequences. In this paper a new modified

Non Recursive algorithm has been proposed which works well

for all the input cases.

Also in the future better algorithm can be found out than

the above one which would further reduce the complexity of

the algorithm. The algorithm can be implemented using

suitable simulation tools.

5.1 Applications

The tree is fundamental structure in computer science. The

applications of new proposed algorithm in general are:

1. The optimality with the simplicity of the algorithm

makes this method an alternative to other methods for

temporary storage of a tree in secondary memory.

Almost all operating systems store files in trees or tree

like structures.

2. It may for instance be used on tree structures that are

expensive to construct, such as optimum search trees and

multidimensional trees.

3. Trees are also used in compiler design, text processing

and searching algorithms.

4. In Huffman Coding instead of sending the whole tree in

transmission, redundant sequences of in-order and pre-

order are send from the sender to the receiver. If a wrong

tree is accidently formed then the whole process of

compression may go wrong. The modified algorithm

prevents any wrong tree from forming.

6. REFERENCES

[1] Vinu V Das, “Principles of Data Structures Using C and

C++”, New Age International Publishers, Reading,

Mass., 2005.

[2] M. Weiss, “Data Structures & Problem Solving Using

Java”, 2nd ed., Addison Wesley, 2002.

[3] D. E. Knuth, “The Art of Computer Programming”, Vol.

3 (2nd ed.): Sorting and Searching, Addison Wesley,

1998.

[4] R. Sedgewick, “Algorithms in Java”, 3d edition,

Addison Wesley, 2003.

[5] D. E. Kunth, “The Art of Computer Programming”, Vol.

1: Fundamental Algorithm, Addison-Wesley, Reading,

Mass., 1973.

[6] Mark Allen Weiss, “Data Structures and Algorithm

Analysis in C”, Vol. 3 (2nd ed.), Addison-Wesley, 1997.

[7] Yedidyah Langsam, Moshe J. Augenstein, Aaron M.

Tanenbaum: “Data Structures using C and C++”, 2nd

Ed., Prentice-Hall India, July 2002.

[8] Sartaj Sahni: “Data Structures, Algorithms and

Applications in JAVA”, 2nd Ed., University Press.

[9] A. Anderson and S. Carlsson: “Construction of a tree

from its traversals in optimal time and space”,

Information Processing Letters, 34:21-25, 1990.

[10] N. Gabrani and P. Shankar: “A note on the reconstruction

of a binary tree from its traversals”, Information

Processing Letters, 42:117-119, 1992.

[11] Vinu V Das, “A new Non-Recursive Algorithm for

Reconstructing a Binary Tree from its Traversals”, IEEE

Comm., pp. 261-263, 2010.

[12] H. A. Burgdorff, S. Jojodia, F.N. Springsteel, and

Y.Zalcstein, “Alternative Methods for the Reconstruction

of Tree from their Traversals”, BIT, Vol. 27, No. 2, p.

134, 1987.

[13] G. H. Chen, M. S. Yu, and L.T. Liu: “Non-recursive

Algorithms for Reconstructing a Binary Tree from its

Traversals”, IEEE Comm., Vol. 88, pp. 490-492, 1988.

[14] C. C. Lee, D. T. Lee, C. K. Wong: “Generating Binary

Trees of bounded height”, Acta Inf., 23, 529-544, 1986.

[15] Seymour Lipschutz: “Theory and problem of Data

Structures”, International Edition, McGRAW-HILL,

1986.

[16] Glenn W. Rowe: “Introduction to Data Structure and

Algorithms with C++”, PHI, ISBN: 81-203-1277-5.

[17] Robert Sedgewick: “Algorithms in C++”, Ed. 3rd, 2001,

ISBN: 81-7808-249-7.

[18] C. P. Kruskal: “Searching, merging, and sorting in

parallel computation”, IEEE Transactions on Computers,

32:924-946, 1983.

[19] Lindstrom, G. Scanning: “List structures without stacks

or tag bits”. Inform. Proc. Letters 2, 1973, pp. 47-51.

[20] Arora N., Tamta V. and Kumar S: “Modified Non-

Recursive Algorithm for Reconstructing a Binary Tree

from its Traversals”, IJCA, volume 43-No.10, April

2012.

