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ABSTRACT 
Many reconstruction algorithms for binary tree have been 

discussed in this paper. A particular focus of this paper is on 

“A new Non-Recursive Algorithm for Reconstructing a Binary 

Tree from its Traversals”. The computation time required for 

executing the reconstruction algorithm are O(N) and space 

complexity is O(NlogN) where N is the number of nodes in 

the binary tree. This algorithm works well for most of the 

input cases, but it has some drawbacks. There are some 

sequences of pre-order and in-order for which no legitimate 

tree can be constructed but the algorithm didn’t take these 

cases into consideration and constructed a wrong tree for 

these cases.  

In this paper, we have proposed a solution to the problem in 

the previous algorithm and designed an algorithm which is the 

modified version of the previous algorithm for generating a 

correct binary tree. The new modified algorithm is 

implemented in C language and tested in GCC Compiler in 

Linux, for all types of input cases. The New modified 

algorithm works well for all types of input cases. We have 

calculated the best case time complexity of modified 

algorithm and show that a correct tree can be reported in O(N) 

time in best case and O(NlogN) space where N is the number 

of nodes in the tree. We have discussed some applications of 

the new modified algorithm in Huffman Coding, compiler 

design, text processing and searching algorithms. 

Key words 
Non-recursive; tree traversals; binary tree.  

 

1. INTRODUCTION 
A tree is a fundamental structure in computer science. Almost 

all operating systems store files in trees or tree like structures. 

It is well known that given the in-order traverse of a binary 

tree, along with one of its pre-order or post-order traversals, 

the original binary tree can be uniquely identified. It is not 

difficult to write a recursive algorithm to reconstruct the 

binary tree. Most text books and reference books present the 

recursive [1, 2, 3, 4, 5] and non-recursive algorithms [6, 7, 8, 

9, 10] for traversing a binary tree in in-order, post-order and 

pre-order. 

Many iterative methods [11, 12, 13, 14, 15] for reconstructing 

a binary tree from its traversals have been proposed till date 

for which computation time required is O(N) where N is the 

number of nodes in the tree. 

A binary tree is different recursively as either empty or 

consists of a root, a left tree and a right tree.  The left and 

right trees may themselves be empty, thus a node with one 

child could have a left or right child. 

 
Figure 1: Binary Tree containing 9 nodes 

 

Commonly there are three traversing methods: in-order, pre-

order and post-order traversal. In an in-order traversal, first the 

left child is processed recursively, and then process the current 

node followed by the right child. The output of an in-order 

traversal algorithm of the binary tree shown in figure 1 is: B, 

D, A, I, G, E, H, C, F and that of the pre-order is: A, B, D, C, 

E, G, I. H, F. 

 

It is well known that given the in-order traverse of a binary 

tree, along with one of its pre-order or post-order traversals, 

the original binary tree can be uniquely identified. It is not 

difficult to write a recursive algorithm to reconstruct the 

binary tree. Most text books and reference books present the 

recursive and non-recursive algorithms for traversing a binary 

tree in in-order, post-order and pre-order. The computation 

time required is O(N2) where N is the number of nodes in the 

tree. Many iterative methods for reconstructing a binary tree 

has been proposed till date for which computation time 

required is O(N). In this paper one of the proposed algorithms 

has been examined. The proposed algorithm works well for 

most of the input cases, but it has a drawback. There are some 

sequences of pre-order and in-order traversals for which no 

legitimate tree can be constructed but the proposed algorithm 

didn’t take this case into consideration and constructed a 

wrong tree for these cases. We have modified this algorithm 

so that if for an in-order and pre-order sequence a correct tree 
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cannot be drawn then it is reported in O(N) best case time and 

O(NlogN) space. 

This paper is organized as follows: Section 2 includes the 

related reconstruction algorithm; Section 3 introduces our 

modified algorithm and its complexity analysis, performance 

and result comparison in Section 4 and conclusion and future 

aspects with applications of our algorithm are discussed in 

section 5. 

2. BACKGROUND AND RELATED 

WORK 

In computer science, a data structure is a particular way of 

storing and organizing data in a computer so that it can be 

used efficiently. Different kinds of data structures are suited to 

different kinds of applications, and some are highly 

specialized to specific tasks. For example, B-trees are 

particularly well-suited for implementation of databases, 

while compiler implementations usually use hash tables to 

look up identifiers [2, 16]. 

Data structures are used in almost every program or software 

system. Data structures provide a means to manage huge 

amounts of data efficiently, such as large databases and 

internet indexing services. Usually, efficient data structures 

are a key to designing efficient algorithms. Some formal 

design methods and programming languages emphasize data 

structures, rather than algorithms, as the key organizing factor 
in software design [2, 16]. 

2.1 Related reconstruction algorithm 

It is well known that given the in-order traverse of a binary 

tree, along with one of its pre-order or post-order traversals, 

the original binary tree can be uniquely identified. Most  

textbooks  and  reference  books  present  the  traversal  

algorithm  as  a  recursive algorithm [1, 2, 3, 4, 5, 8, 10]. It is 

not difficult to write a recursive algorithm to reconstruct the 

binary tree. The computation time required is O(N2) where N 

is the number of nodes in the tree.  

 

2.1.1 Recursive Algorithm 

If we know the sequences of nodes obtained through in-

order/pre-order/post-order traversal it may not be feasible to 

reconstruct the binary tree. This is because two different 

binary trees may yield same sequence of nodes when 

traversed using post-order traversal. Similarly in-order or pre-

order traversal of different binary trees may yield the same 

sequence of nodes. However, a unique binary tree can be 

constructed if the result of in-order and pre-order traversal are 

available. The recursive algorithm for reconstruct a binary tree 

from its traversals is as follows:  

In-order traversal: 4, 7, 2, 8, 5, 1, 6, 9, 3 

Pre-order traversal: 1, 2, 4, 7, 5, 8, 3, 6, 9 

 

The first value in the pre-order traversal gives us the root of 

the binary tree. So the node with data 1 becomes the root of 

the binary tree. In in-order traversal, initially the left sub-tree 

is traversed then the root node and then the right sub-tree. So 

the data before 1 in the in-order list (i.e. 4, 7, 2, 8, 5) forms 

the left sub-tree and the data after 1 is the in-order list (i.e. 6, 

9, 3) forms the right sub-tree. Figure 2(a) shows the structure 

of the tree after separating the tree in left and right sub-trees. 

 

 
Figure 2(a): Reconstruction of a binary tree. 

 

The next data in the pre-order list is 2 so the root node of the 

left sub-tree is 2. Hence the data before 2 in the in-order list 

(i.e. 4, 7) forms the left sub-tree of the node that contains a 

value 2. The data that comes to the right of 2 in the in-order 

list (i.e. 8, 5) forms the right sub-tree of the node with value 2. 

Figure 2(b) shows structure of tree after expanding the left 

and right sub-tree of the node that contains a value 2. 

 
Figure 2(b): Reconstruction of a binary tree (contd.) 

 

Now the next data in pre-order list is 4, so the root node of the 

left sub-tree of the node that contains a value 2 is 4. The data 

before 4 in the in-order list forms the left sub-tree of the node 

that contains a value 4. But as there is no data present before 4 

in in-order list, the left sub-tree of the node with value 4 is 

empty. The data that comes to the right of 4 in the in-order list 

(i.e. 7) forms the right sub-tree of the node that contains a 

value 4. Figure 2(c) shows structure of tree after expanding 

the left and right sub-tree of the node that contains a value 4.  

 

 
Figure 2(c): Reconstruction of a binary tree (contd.) 

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Web_indexing
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Programming_language
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We are now left with only one value 7 in both the pre-order 

and in-order form we simply represent it with a node as 

shown in figure 2(d). 

 

 
Figure 2(d): Reconstruction of a binary tree (contd.) 

 

 
Figure 2(e): Reconstruction of a binary tree (contd.) 

 

 
Figure 2(f): Reconstruction of a binary tree (contd.) 

 

 
Figure 2(g): Reconstruction of a binary tree (contd.) 

 

 
Figure 2(h): Reconstruction of a binary tree (contd.) 

 

 
Figure 2(i): Reconstruction of a binary tree (contd.) 

 

In the same way one by one all the data are picked from the 

pre-order list and are placed and their respective sub-trees are 

constructed and the whole tree is constructed. Figure 2(e) to 

2(i) shows each step of construction of nodes one by one.  
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2.1.2 Parallel Algorithms 

V.  Kamakoti and C.  Pandu Rangan [17] presents an 

optimal algorithm for reconstructing a binary tree. They 

presents a parallel EREW PRAM algorithm using O(n/log log 

n) processors to reduce the reconstruction process to parallel 

merging.  Their algorithms runs in O(log n) time. 

Stephan Olariu and Michael Overstreet [18] present 

reconstructing algorithm with the best parallel merging 

algorithms, their algorithm can be implemented in O(log log 

n) time using O(n/log log n) processors on CREW PRAM or 

in O(log n) time using O(n/log n) processors in EREW 

PRAM. 

 

2.1.3 Non-Recursive Algorithms 

H. A. Burgdorff [12] presented a non-recursive algorithm for 

reconstructing a binary tree from its in-order and pre-order 

sequences (in short i-p sequences) and their algorithm takes 

O(N2) computation time.  

G. H. Chen [13] has also proposed a non-recursive algorithm 

for reconstructing a binary tree from its traversals from its i-p 

sequence array of time complexity O(N) and inefficient space. 

 

In the algorithm proposed by G H Chen [13] the non-recursive 

algorithm for reconstructing the original binary tree from its 

in-order and pre-order traversal is done in two stages [13]. 

First, the i-p sequence is constructed from the in-order and 

pre-order traversals. Then the original binary tree is 

reconstructed from the i-p sequence array. Let I[1...n] and 

P[1…n] be the two sequences that represents the in-order and 

pre-order traversal respectively of the given binary tree with n 

nodes. Also, let IP[1…N] represent the corresponding i-p 

sequence. In fact IP[i] = I-1 [P[i]], 1≤ i ≤N.  

G H Chen has proposed a non-recursive algorithm by 

proving following two lemmas [13]. 

Lemma 1: Let P[i] be a non-leaf node and s (s > 0) be the 

number of its descendants. Then,  IP[i] > IP[j] for i < j <k 

and IP[i] < IP[j] for k ≤ j ≤ i+s iff P[i+1],…P[K-1] are the 

left descendants of P[i] and P[k],…P[i+s] are the right 

descendants of P[i]. Moreover, P[i + 1] is the left child of P[i] 

and P[k] is the right child of P[i].  

According to Lemma 1, the binary tree can be reconstructed 

by sequentially examining array P. For each non leaf node 

P[i], if s is known, then left and right child can find (if they 

exist) as stated by lemma 1. Let S[i], 1 ≤ i ≤ n, denote the 

cardinality of the set { j | j < i and           IP[j] < IP[i] }. S[i] 

is the number of nodes that precede P[i] in both the in-order 

and the pre-order sequences. Arrays S will be used in the 

reconstruction algorithm and can be computed according to 

the following lemma, with S[1] = 0 initially. 

Lemma 2: Let P[j] be the parent of P[i]. If P[i] is the left child 

of P[j], then S[i] = S[j]. If P[i] is the right child of P[j],                 

then S[i] = IP[j]. 

Let [L1[i]……..L2[i]] be the range of array P where the left 

descendants of P[i] are located and [R1[i]….R2[i]] be the 

range of array P where the right descendants of P[i] are 

located. If L1[i] > L2[i] (R1[i] > R2[i]), then P[i] has no left 

(right) descendants. Initially, L1[1]=2, L2[i]=IP[1], and 

R2[1]=n. Also, R1[1]=L2[1] + 1, if L1[1] ≤ L2[i], R1[1]=2 

otherwise. Let P[j] (j<1) be the parent of P[i], L1[i], L2[i], 

R1[i] and R2[i] are computed as follows: 

L1[i] = i+1; 

L2[i] = I+IP[i]-S[i]-1; 

R1[i] = if(L1[i] ≤ L2[i]) then  

L2[i]+1  

else  
i + 1 

R2 [i] = if(P [i] is the right child of P[j]) then  

R2[j]  

else  
L2[j] 

This algorithm is meant for only binary trees implemented 

using arrays. 

The computations of L1[i], R1[i], and R2[i] are 

straightforward; the computation of L2[i] is based on the 

following lemma [13]. 

 

Lemma 3: The number of left descendants of P[i] equals 

IP[i]-S[i]-1. 

The nodes that precede P[i] in the in-order sequence fall into 

two classes. The left descendants of P[i] belong to the first 

class. The others belong to the second class. Each node in the 

first class follows P[i] in the pre-order sequence; each node in 

the second class precedes P[i] in the pre-order sequence. 

Thus, the number of left descendants of P[i] equals the 

number of nodes preceding P[i] in the in-order sequence 

minus the number of nodes preceding P[i] in both the in-order 

and the pre-order sequences, which is IP[i]-S[i]-1. 

In the following, G. H. Chen presents the reconstructing 

algorithm. 

 

L1[1]:=2; L2[1]:=IP[1]; 

R1[1]:=if L1≤L2[1] then L2[1] +1 else 2; 

R2[1]:= N; S[1]:=0; 

if L1[1]≤L2[1]  

then P[L1[1]] is the left child of P[1]; 

if R1[1]≤R2[1]  

then P[R1[1]] is the right child of P[1]; 

for i:= 2 to N do 

begin {Assume P[j] is the parent of P[i] 

    S[i]:= if P[i] is the left child of P[j] then S[j] else 

IP[j]; 

   L1[i]:= i+1; 

   L2[i]:= i+IP[i] –S[i] -1; 

        R1[i]:= if L1[i]≤L2[i] then L2[i] + 1 else i+1; 

   R2[i]:= if P[i] is the right child of   P[j] then R2[j] 

else L2[j]; 

   if L1[i]≤L2[i] then P[L1[i]] is the left child of 

P[i]; 

   if L1[i]≤L2[i] then P[L1[i]] is the left child of 

P[i]; 

   if R1[i]≤R2[i] then P[R1[i]] is the right child of 

P[i]; 

end 

The computation time and space required for executing the 

reconstructing algorithm are O(N). 

Vinu V Das [11] presented a non-recursive algorithm for 

reconstructing a binary tree from its in-order and pre-order 

traversals and their algorithm takes O(N) computation time 

and space complexity is O(NlogN). 

 

The proposed non-recursive algorithm by Vinu V Das [11] is 

to reconstruct the binary tree, implemented using linked list, 

from its in-order and pre-order traversals [11]. Let P[1….N] 

and I[1….N] be the pre-order and in-order traversal of the 

given binary tree with N nodes. From this sequence a binary 

tree will be reconstructed using linked list and root node 
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address will be returned for any further use. This non-

recursive algorithm works on the following lemma [11]: 

 

Lemma: Let P[j] be the parent of P[i], (where j < i) then Lp[j] 

be the corresponding index in the in-order sequence of node 

P[j] and Lp[i] be the corresponding index in the in-order 

sequence of node P[i]. If Lp[j] is greater than Lp[i] then P[i] is 

the left child of P[j] otherwise it is the right child. The binary 

tree can be reconstructed by exploiting the following three 

properties of the above lemma [11]. 

1. First node in the pre-order sequence will be the root of 

the binary tree. 

2. The node(s) which comes to the left of root node in the 

in-order sequence will be the nodes in the left sub tree 

and node(s) in the right are the nodes in the right sub tree 

of the reconstructed root node. 

3. Apply the second property recursively to the left and 

right sub tree of the root node to obtain the complete 

binary tree. 

For example in Figure 3, the first node of the pre-order 

sequence is A, which is a root node of the reconstructed tree. 

The nodes B and D are the only two nodes to the left of A in 

in-order sequence, and they are the nodes in the left sub tree 

of the root node A.  

 

 
Figure 3: Binary Tree 

 

The new Non-Recursive Algorithm for Reconstructing a 

Binary Tree from its Traversals presented by Vinu V Das is 

based on the following [11]: 

 

The left and right are the two variables and any of them will 

be set to one when a new node needs to be placed to the left or 

right of the present node. If left = 1 and right = 0 then the new 

node will be left child of the present node. Let LL be a linear 

linked list where all visited nodes are stored pre-order and 

unvisited nodes in in-order sequence. Whenever a node is 

visited in in-order it will be removed from the LL. 

PresentNode is a pointer variable that holds the address of the 

present node. 

Following is the reconstruction algorithm [11]: 

Left = 0; Right = 0; count1=0; count2=0; data=P[0]; 

root=NULL; 

for(count1=0;count1<n;count1++) 

{ 

Create a NewNode 

NewNode->info = data 

NewNode->lChild = NULL 

NewNode->rChild = NULL 

if(root == NULL) 

root = NewNode 

while (I[count2] is present in the LL) 

{ 

PresentNode= address of 

I[count2]; 

remove the I[count2] from the 

LL; 

right = 1;Left=0;count2++; 

} 

if( data != I[count2] ) 

{ 

Add the “data” into the linear list LL 

If( Left == 1) 

Place the NewNode as a left child of 

PresentNode 

else if(Right == 1) 

Place the NewNode as a right child of 

PresentNode 

Left=1; Right=0; 

} 

else 

{ 

If( Left == 1) 

Place the NewNode as a left child of 

PresentNode 

else if(Right == 1) 

Place the NewNode as a right child of 

PresentNode 

Left=0; Right=1; count2++; 

} 

data = P[count1]; 

PresentNode=NewNode; 

} 

The computation time required for executing the 

reconstruction algorithm are O(N) and space complexity is 

O(NlogN) [11].  
 

3. OUR MODIFIED NON-RECURSIVE 

ALGORITHM 
 
The algorithm proposed by Vinu V Das [11] is implemented 

in C language and checked for some different input 

sequences.  The algorithm works correctly for some 

sequences but on the other side it generated a wrong binary 

tree for some other input sequences. We made some 

modification in the algorithm and proposed the solution.  The 

proposed solution is based on the following checks: 

1. First construct the tree and if the height of the tree is less 

than N, where N is the number of nodes then the tree is 

always correct.  

2. Otherwise, if the height of the tree is equal to n, then 

there is a chance that the constructed tree may be wrong.  

3. In this case where is the height of the tree is equal to the 

number of nodes, the tree is traversed in an in-order 

fashion and it is compared with the given in-order 

sequence.  

4. If the sequence matches then the tree formed is correct.  

5. Otherwise, the in-order and pre-order sequences cannot 

combine to form a legitimate tree. 

The left and right are the two variables and any of them will 

be set to one when a new node needs to be placed to the left or 

right of the present node. If left = 1 and right = 0 then the new 

node will be left child of the present node. Let LL be a linear 

linked list where all visited nodes are stored pre-order and 
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unvisited nodes in in-order sequence. Whenever a node is 

visited in in-order it will be removed from the LL. 

PresentNode is a pointer variable that holds the address of the 

present node. 

 

An extra variable m is used in our algorithm which keeps a 

count of the number of nodes having two children. 

 

Following is the modified Non-Recursive algorithm for 

generating a tree from its in-order and pre-order traversals: 

 

/*Variable Declarations*/  

left=0; right=0; count1=0; count2=0; data=P[0]; root=NULL;  

m=0; /* New variable in our program which keeps a count of 

the number of nodes having two children */  

for ( count1 = 0  ; count1<n  ;  count1++  ) 

{  

   /* create a new node*/  

   newnode->info = data;  

   newnode->lchild = NULL;  

   newnode->rchild = NULL;  

   If (root == NULL)  

    root=newnode;  

   /*Intially the linked list is empty*/  

   while ( I[count2] is present in the linked list )  

   {  

      presentnode = address of I[count2];  

      remove the I[count2] from the linked list; 

      right=1;left=0;count2++;  

      /*Here a small modification is done*/  

      m++;  

   }  

   If( data != I[count2] )  

   {  

      Add the data into the linked list;  

      If (left == 1)  

      Place the newnode as left child of 

presentnode 

      If( right == 1)  

     Place the newnode as right child of 

presentnode  

      left=1;right=0;  

   }  

   else  

   {  

      If( left == 1)  

      Place the newnode as a left child of 

presentnode   

      elseif( right == 1)  

      Place the newnode as right child of 

presentnode  

      left=0;right=1;count2++;  

   }  

   data=P[count1+1];  

   presentnode = newnode;  

} /*for loop end*/  

 

If (m is greater than zero or check if the in-order traversal of 

the tree formed matches with the given in-order sequence)  

{  

  Print the tree;  

}  

else  

{  

  Print that a legitimate tree cannot be constructed with the 

sequences;  

}   

The best case time complexity of our modified algorithm 

is O(N) where N is the number of nodes. 

 

3.1 Complexity analysis 

By the performance analysis of a program, we mean the 

amount of computer memory and time needed to run a 

program.    

On analysis of the algorithm we find out the recurrence 

relation that can be formed is    

                                 (3.1) 

                                                                                                 

We can solve this recurrence relation by iterative  method as 

follows: 

                 

 

On adding the subsequent terms of (3.1), we get  

                                                                                                                        
                                                                                                                 
                                                                                                                 
…             …           …  

…             …           …  

                                                                                              
Summing up all these terms we get 

____________________________________ 

                          
                            

 

                                           
 

                       (3.2)                                                                                                           

  

From the Sterling approximation [1, 19] 

        
 

 
 
 
     

 

 
     (3.3)  

                                                                                                                           

Taking log at base e on both the sides of (3.3) 

  

                    (3.4)                                                                                                          

 

From (3.2) and (3.4) we get,  

 

                    
 

So the time complexity of the algorithm is of order of 

        .  
 

For  the  best  case  scenario  the  loop  runs  for  n  times  

only,  it does  not  have  to  search  the  link  list  for  a  parent  

address. Hence the time complexity will be n.  

 

               

                  

                  
…  …  …  

…  …  … 

             

______________________________ 

 

             

 

Hence      is of the order of      . 
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4. PERFORMANCE ANALYSIS AND 

RESULTS COMPARISON 
The new Non-Recursive Algorithm for Reconstructing a 

Binary Tree from its Traversals presented by Vinu V Das [11] 

is implemented in C language and test for some input in-order 

and pre-order sequences. The algorithm works well for some 

input cases but it has a drawback. This algorithm generates 

wrong binary tree for some another input sequences. We have 

modified this algorithm and generate a new Modified non-

recursive reconstructing algorithm. The new modified 

algorithm is implemented in C language and test for some 

input in-order and pre-order sequences. Our new modified 

algorithm works well for all types of input cases. 

4.1  Performance comparison 

Both the algorithms presented by Vinu V Das [11] and our 

new modified Non-Recursive Algorithm for Reconstructing a 

Binary Tree from its Traversals is implemented in C language 

and test for different input cases. 

4.1.1 Sample Input and Output 

 
1. Supplied input sequence with total 9 nodes 

Pre-order traversal:  1, 2, 4, 8, 9, 5, 3, 6, 7 

In-order traversal:    8, 4, 9, 2, 5, 1, 6, 3, 7 

Both the algorithm generated the same output tree shown in 

the figure 4 

 

 
Fig. 4: The generated tree for input sequence Pre-order: 1, 2, 

4, 8, 9, 5, 3, 6, 7 and In-order: 8, 4, 9, 2, 5, 1, 6, 3, 7 

 

The tree generated in figure 4 for the input sequence Pre-order 

traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7 and In-order traversal: 8, 4, 9, 

2, 5, 1, 6, 3, 7 is the correct binary tree because we can 

generate the same pre-order and in-order traversals as 

supplied. 

 

2. For the input sequence 

Pre-order traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7 

In-order traversal: 7, 3, 6, 1, 5, 2, 9, 4, 8   

The output tree generated by the algorithm presented by Vinu 

V Das [11] is shown in figure 5 and the output generated by 

our algorithm is shown in figure 4.3. 

 

 
Fig. 5:  The generated tree for input sequence Pre-order: 1, 2, 

4, 8, 9, 5, 3, 6, 7 and In-order: 7, 3, 6, 1, 5, 2, 9, 4, 8 by the 

algorithm presented by Vinu V Das 

 

The tree generated in figure 5 for the input sequence Pre-order 

traversal: 1, 2, 4, 8, 9, 5, 3, 6, 7 and In-order traversal: 7, 3, 6, 

1, 5, 2, 9, 4, 8 is an incorrect binary tree because we cannot 

generate the same pre-order and in-order traversals as 

supplied. 

 

 
Fig. 6: The generated output for input sequence Pre-order: 1, 

2, 4, 8, 9, 5, 3, 6, 7 and In-order: 7, 3, 6, 1, 5, 2, 9, 4, 8 by our 

new modified the algorithm 

 

The output message that the tree cannot be constructed in 

figure 6 for the input sequence Pre-order traversal:  1,  2,  4,  

8,  9,  5,  3,  6,  7  and In-order traversal:    7,  3,  6,  1,  5,  2,  

9,  4,  8 is generated. 

 

Some other inputs supplied to our modified algorithm. 

 

3. For the input 

Pre-order Traversal: 1, 2, 3, 4, 5, 6 

In-order Traversal: 1, 2, 3, 4, 5, 6 

The correct generated binary tree is shown in figure 7. 

 
Fig. 7: The generated output for input sequence Pre-order: 1,  

2,  3,  4,  5,  6 and In-order: 1,  2,  3,  4,  5,  6 by our new 

modified the algorithm 
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4. For the input sequence 

Pre-order Traversal: 1, 2, 3, 4, 5, 6, 7  

In-order Traversal: 7, 6, 5, 4, 3, 2, 1 

  

The correct generated binary tree is shown in figure 8. 

 
Fig. 8: The generated output for input sequence Pre-order: 1,  

2,  3,  4,  5,  6,   7 and In-order: 7,  6,  5,  4,  3,  2,  1 by our 

new modified the algorithm 

 

5. CONCLUSION AND FUTURE WORK 
A tree is a fundamental structure in computer science. Almost 

all operating systems store files in trees or tree like structures. 

It is well known that given the in-order traverse of a binary 

tree, along with one of its pre-order or post-order traversals, 

the original binary tree can be uniquely identified. It is not 

difficult to write a recursive algorithm to reconstruct the 

binary tree. Most text books and reference books present the 

recursive and non-recursive algorithms for traversing a binary 

tree in in-order, post-order and pre-order. The computation 

time required is O(N2) where N is the number of nodes in the 

tree. Many iterative methods for reconstructing a binary tree 

has been proposed till date for which computation time 

required is O(N). The Non- Recursive algorithm presented by 

Vinu V Das [11] is considered in this paper. This algorithm 

works well for most of the input in-order and pre-order 

traversals, but generates wrong binary tree for some another 

in-order and pre-order sequences. In this paper a new modified 

Non Recursive algorithm has been proposed which works well 

for all the input cases.  

Also in the future better algorithm can be found out than 

the above one which would further reduce the complexity of 

the algorithm. The algorithm can be implemented using 

suitable simulation tools.  

5.1 Applications 

The tree is fundamental structure in computer science. The 

applications of new proposed algorithm in general are: 

1. The optimality with the simplicity of the algorithm 

makes this method an alternative to other methods for 

temporary storage of a tree in secondary memory. 

Almost all operating systems store files in trees or tree 

like structures. 

2. It may for instance be used on tree structures that are 

expensive to construct, such as optimum search trees and 

multidimensional trees. 

3. Trees are also used in compiler design, text processing 

and searching algorithms. 

4. In Huffman Coding instead of sending the whole tree in 

transmission, redundant sequences of in-order and pre-

order are send from the sender to the receiver. If a wrong 

tree is accidently formed then the whole process of 

compression may go wrong. The modified algorithm 

prevents any wrong tree from forming. 
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