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ABSTRACT
The detection of overlapping patterns in unlabeled data sets re-
ferred as overlapping clustering is an important issue in data
mining. In real life applications, overlapping clustering algorithm
should be able to detect clusters with linear and non-linear separa-
tions between clusters. We propose in this paper an overlapping
clustering method based k-means algorithm using positive defi-
nite kernel. The proposed method is well adapted for clustering
multi label data with linear and non linear separations between
clusters. Experiments, performed on overlapping data sets, show
the ability of the proposed method to detect clusters with com-
plex and non linear boundaries. Empirical results obtained with
the proposed method outperforms existing overlapping methods.
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1. INTRODUCTION
Clustering is an important task in data mining. It aims to di-
vide data into groups where similar observations are assigned
to the same group called cluster. It has been applied success-
fully in many fields such as marketing that finds groups of cus-
tomers with similar purchasing behaviors, biology that groups
unlabeled plants or animals into species and document classi-
fication that groups related documents into clusters. Many ap-
plications of clustering require assigning observations to several
clusters. This kind of application is referred as overlapping clus-
tering [1, 7].
Overlapping clustering is based on the assumption that an obser-
vation can really belong to several clusters. In this cluster con-
figuration, an observation may belong to one or several clusters
without any membership coefficient and the resulting clustering
is a cover. The resolution of this problem contributes to solve
many real life problems that require to find overlapping clusters
in order to fit the data set structure. For example, in video classi-
fication, overlapping clustering is a necessary requirement while
video can potentially have multiple genres. In emotion detecting,
overlapping clustering methods should be able to detect several
emotions for a specific piece of music.

Several overlapping clustering methods based on hierarchical
[9, 4], graph-based [10, 11] and partitioning [5, 1] approaches
are proposed in the literature. An overlapping clustering method
based k-means algorithm was proposed in [7] and referred as
Overlapping k-means(OKM). The OKM method introduces op-
timality of overlapping clusters in the objective function which is
optimized iteratively over the learning process. The main draw-
back of this method, as well as k-means based clustering meth-
ods, is its inability to detect clusters with complex and non linear
clusters shapes. This problem can be crucial in real life applica-
tions where shapes of clusters are generally non linear and non
spherical. To detect non linear separations between overlapping
clusters, an existing method (Kernel overlapping k-means)[3] ex-
tends OKM by kernelization of the metric. This method is not
well adapted to discover overlapping clusters since prototypes
are performed in the input space and only distances are per-
formed in the feature space.
We propose in this paper, a kernel based overlapping k-means
method referred as Kernel Overlapping k-means (KOKMφ) able
to produce overlapping clusters with non linear overlapping
boundaries making the method adapted for clustering complex
data. In the proposed KOKMφ method, kernels induce an im-
plicit mapping of the input patterns and the algorithm is applied
in a new space. Therefore, the representative of clusters will be
performed in the induced space as well.
This paper is organized as follows: Section 2 gives a summary
of existing overlapping clustering methods based k-means al-
gorithm and describes advantages of Positive Definite Kernels
(Mercer Kernel) used with clustering method. Section 3 presents
the kernel based overlapping k-means method that we propose.
Experiments on different data sets and using different kernels are
described and discussed in Section 4. Finally, Section 5 presents
conclusion and future works.

2. PRELIMINARIES
2.1 Mercer Kernel
To solve the problem of non spherical and non linear separations
between clusters, many methods have been modified incorpo-
rating kernel such as SVM [8], Kernel PCA [15] and kernel k-
means [13]. These proposed classification methods use Mercer
Kernel to implicitly map data from original space called input
space into a high dimensional space called feature space. Com-
puting a linear partitioning in this feature space results in a non-
linear partitioning in the input space.
A function K : X ×X −→ R is called a Mercer kernel if and
only if K is symmetric and the following equation holds:
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N∑
i=1

N∑
j=1

cicjKij ≥ 0 ∀N ≥ 2, (1)

where cr ∈ R ∀r = 1, ...,N and Kij represents the dot prod-
uct of mapped data in feature space that can be expressed as fol-
lows:

Kij = φ(xi).φ(xj), (2)

where φ : X −→ F performs a mapping from the input space
X to a high dimensional feature space F .
The use of Mercer kernel in clustering methods can be divided
in three categories [12]: methods based on kernelization of the
metric [17, 18] which look for centroids in input space and the
distances between patterns and centroids are computed by means
of kernels, methods based on clustering in feature space [14, 13]
which map data into a higher feature space and then compute
centroids using the Kernel Trick and methods based support vec-
tors [6, 2] which use one class SVM to find a minimum enclosing
sphere in feature space able to enclose almost all data in feature
space.

2.2 Kernel K-Means
Kernel k-means is an extension of the standard algorithm k-
means to solve the problem of non-linearly separable clusters.
For a finite data sampleX , the Kernel k-means aims at minimiz-
ing the sum of squared Euclidean errors in feature space given
by :

J(Π) =

N∑
i=1

C∑
c=1

Pic‖φ(xi)−mφ
c ‖2, (3)

where Pic is a binary variable indicating membership of obser-
vation xi to cluster c and mφ

c is the prototype of cluster c in
feature space. The prototype is defined as the gravity center, in
the feature space, of observations that belong to cluster c. This
prototype cannot be computed because the mapping function φ is
generally unknown. However, the clustering error ‖ φ(xi)−mφ

c ‖
can be computed using the Kernel Trick as follows:

‖φ(xi)−mφ
c ‖2 = ‖φ(xi)−

1

Wc

N∑
j=1

Pjcφ(xj)‖2

= Kii −
2

Wc

N∑
j=1

PjcKij +
1

(Wc)2

N∑
j=1

N∑
g=1

PjcPgcKjg, (4)

where Wc =

N∑
j=1

Pjc is the number of observations that belong

to cluster c, Pjc ∈ {0, 1} and Pgc ∈ {0, 1} indicate membership
of observation xj and xg to cluster c. Then, the clustering error
function in kernel k-means can be presented as follows:

J(Π) =

N∑
i=1

C∑
c=1

Pic[Kii −
2

Wc

N∑
j=1

PjcKij +

1

(Wc)2

N∑
j=1

N∑
g=1

PjcPgcKjg]. (5)

To minimize this clustering error function, kernel k-means per-
forms two principal steps: the determination of the nearest clus-
ter from each observation in feature space and the update of
membership matrix of each object. The stopping rule is defined
by the maximal number of iterations and the minimal improve-
ment of the objective function between two iterations.

2.3 Overlapping k-means and Kernelization of the
Metric

Overlapping k-means (OKM) [7]is an extension of the k-means
algorithm and aims to produce overlapping clusters. The min-
imization of the objective function is performed by iterating
two principal steps: 1) computation of clusters prototypes and
2) multi assignment of observations to one or several clusters.
Given a set of data vectors X = {xi}Ni=1 with xi ∈ Rd and N
is the number of data vectors, the aim of OKM is to find a set
Π = {πc}kc=1 of k overlapping clusters such that the following
objective function is minimized:

J(Π) =
∑
xi∈X

‖xi − im(xi)‖2. (6)

This objective function minimizes the sum of squared Euclidean
distances between observation xi and its image im(xi) for all
xi ∈ X . Image im(xi) is defined as the gravity center of clusters
prototypes to which observation xi belongs as shown by eq. 7.

im(xi) =
∑
c∈Ai

mc/|Ai|, (7)

where Ai is the set of clusters to which xi belongs and mc is
the prototype of cluster c. The stopping rule of OKM algorithm
is characterized by two criteria: the maximum number of iter-
ations and the minimum improvement of the objective function
between two iterations. Although the performance of this method
to detect overlapping clusters, OKM method is not appropriate
for clusters that have non linear separations. OKM method fails
when clusters have a complex boundaries or when clusters are
concentric.
A recent proposed method referred as Kernel overlapping k-
means (KOKM) [3], proposes a kernelization of the metric used
in OKM using the kernel induced distance measure. The objec-
tive function of KOKM minimizes the sum of kernel induced
distance between observation xi and its image im(xi) for all
xi ∈ X . The image im(xi) is computed in input space and then
mapped to the feature space using φ(im(xi)).
Unlike Kernel k-means, the KOKM method have the drawbacks
that images and prototypes are performed in input space and
only distances between observations are performed in the fea-
ture space. The KOKM method belongs to the family of meth-
ods based kernelization of the metric where kernels play a role
only in the computation of distances. In fact, Methods based on
kernelization of the metric are less efficient then methods based
clustering in feature space where all the learning process is per-
formed in the feature space

3. KOKMφ : KERNEL OVERLAPPING
K-MEANS IN FEATURE SPACE

We propose in this paper a Kernel based overlapping clustering
method where the whole learning process is performed in a high
dimensional space like kernel k-means.
The main algorithm of KOKMφ method iteratively minimizes
the distance between each observation and its image in the fea-
ture space. The principal function to minimize can be described
by:

J(Π) =
∑
xi∈X

‖φ(xi)− im(φ(xi))‖2. (8)

The image im(φ(xi)) is defined by the gravity center of clusters
prototypes where observation xi belongs. To improve algorithm
efficiency, we consider in KOKMφ that image is also performed
in the feature space and is described by:
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im(φ(xi)) =

C∑
c=1

Pic.m
φ
c

C∑
c=1

Pic

, (9)

where Pic ∈ {0, 1} is a binary variable that indicates member-
ship of observation xi to cluster c and mφ

c is the prototype of
cluster c in the feature space.

3.1 Prototypes Computation in Feature Space
The computation of images in feature space needs the definition
of clusters prototypes in the same induced space. The clusters
centroids are replaced by clusters medoids where each cluster
prototype is defined as the medoid (observation) that minimizes
all distances over all observations included in this cluster. The
prototype is expressed as follows:

mc = min
i∈Nc

(xi)

Nc∑
j=1,j 6=i

wj‖φ(xi)− φ(xj)‖2

Nc.

Nc∑
j=1,j 6=i

wj

, (10)

where Nc is the number of observations that belong to cluster c
and wj = |Aj | is a weight of the distance between observation
xj and observation xi depending on the number of clusters to
which observation xj belongs. This weight is more important if
observation j belongs to more than one cluster to take into ac-
count that overlapping observation xj have a small probability
to be a prototype of the cluster. In this way, the prototype is de-
termined in the feature space F and is member of initial set of
observations.
Using kernel function, the prototype can be determined as fol-
lows:

mc = min
i∈Nc

(xi)

Nc∑
j=1,j 6=i

wj [Kii − 2Kij +Kjj ]

Nc.

Nc∑
j=1,j 6=i

wj

. (11)

3.2 Clustering Algorithm of KOKMφ

Given clusters prototypes in the feature space, the objective func-
tion J can be computed as shown in eq. 12.

J(Π) =
∑
xi∈X

‖φ(xi)− im(φ(xi))‖2

J(Π) =
∑
xi∈X

‖φ(xi)−

C∑
c=1

Pic.φ(mc)

Li
‖2

=
∑
xi∈X

d[φ(xi), im(φ(xi))], (12)

where d[φ(xi), im(φ(xi))] is defined by:

= φ(xi).φ(xi)−
2

Li

C∑
c=1

Pic.φ(mc).φ(xi) +

1

(Li)2

C∑
c=1

C∑
l=1

Pic.Pil.φ(mc).φ(ml)

= Kii −
2

Li

C∑
c=1

Pic.Kimc +
1

(Li)2

C∑
c=1

C∑
l=1

Pic.Pil .Kmcml
,(13)

andLi =

C∑
c=1

Pic. At each iteration, clusters prototypes are com-

puted, observations are assigned to many clusters and the func-
tion J is evaluated. These steps are repeated until improvement
of J is not significative or the maximum number of iterations
is reached. The main algorithm of KOKMφ can be described as
follows:

Algorithm 1 KOKMφ(X, tmax, ε, C)→ {πc}Cc=1

Require: X: set of vector in Rd.
tmax: maximum number of iterations.
ε: minimal improvement in objective function.
C: number of clusters.

Ensure: Π: set of C clusters.
1: Choose the kernel function and its corresponding parame-

ters.
2: Initialize prototypes of clusters with random clusters proto-

types, initialize clusters memberships using ”ASSIGNφ”
and derive value of the objective function Jt=0(Π) in itera-
tion 0 using eq. 12.

3: Compute clusters prototypes using eq. 11.
4: Assign observations to one or several clusters using

”ASSIGNφ”.
5: Compute objective function Jt(Π) using eq. 12.
6: if (t < tmax and Jt−1(Π)− Jt(Π) > ε) then
7: go to step 3.
8: else
9: return the distribution of clusters memberships.

10: end if

3.3 Multi assignment of observation to one or
several clusters

The functionASSIGNφ is used to assign an observation to one
or several clusters in KOKMφ method. This function consists in
assigning an observation iteratively to the closest cluster while
the distance in the feature space between the observation and its
image decreases. The closest cluster from an observation xi in
feature space is defined by:

m?
c = min

{mc}Cc=1

‖φ(xi)− φ(mc)‖2. (14)

This equation can be computed in feature space as follows:

m?
c = min

{mc}Cc=1

φ(xi).φ(xi)− 2φ(xi).φ(mc) + φ(mc).φ(mc)

= min
{mc}Cc=1

Kii − 2Kimc +Kmcmc , (15)

The ASSIGNφ function used in the KOKMφ method to assign
observations to one or many clusters is summarized in Algo-
rithm. 2 .

4. EXPERIMENTS AND DISCUSSIONS
Experiments are performed on Iris, Movie1 and Music emotion2

data sets. For each data set, the number of clusters was set by
the number of underlying labels in the labeled data set. Table 1

1cf. http://www.grouplens.org/node/76.
2cf.http://mlkd.csd.auth.gr/multilabel.html
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Algorithm 2 ASSIGNφ(xi, {m0
c}Cc=1, A

old
i )→ Ai

Require: xi: Vector in Rd.
{C1...Cc}: Set of clusters.
Aoldi : Old affectation of observation i.

Ensure: Ai: New affectation of xi.
1: GivenAi = {m?

c}wherem?
c = min

{Cc}Cc=1

‖φ(xi)−φ(mc)‖2,

Compute distance in feature space between observation
φ(xi) and it’s image im(φ(xi)) with affectations Ai using
eq. 13.

2: Look for the next nearest cluster m?
c which is not included

in Ai such that m?
c = min

{Cc}Cc=1/Ai

‖φ(xi) − φ(mc)‖2 and

compute distance between observation φ(xi) and it’s image
im′(φ(xi)) with affectations Ai ∪m?

c

3: if ‖φ(xi)− im′(φ(xi))‖2 < ‖φ(xi)− im(φ(xi))‖2 then
4: Ai ← Ai ∪ {m?

c} and go to step 2.
5: else
6: compute imold with affectation Aoldi .
7: if ‖φ(xi) − φ(im(xi))‖2 ≤ ‖φ(xi) − φ(imold(xi))‖2

then
8: return Ai.
9: else

10: return Aoldi .
11: end if
12: end if

Table 1. Statistics of used data sets
Data set Observation Dimension Labels Overlap
Iris 150 4 3 1
Movie 75 3 3 1.14
Music 548 72 6 1.81

shows the statistics of each data set. ”labels” is the number of
labels on the data set. ”Overlap” is the average number of labels
per observation.

Overlap = 1/|X|
∑
xi∈X

|Πi|, (16)

where |X| is the number of observations and |Πi| is the number
of label assignments of observation xi. The size of overlap influ-
ences the performance of overlapping clustering methods when
evaluated over external validation measures.
Results are compared according to three external validation mea-
sures: Precision, Recall and F-measure [16]. These validation
measures attempt to estimate whether the prediction of cate-
gories is correct with respect to the underlying true categories
in the data. Precision is calculated as the fraction of observation
correctly labeled as belonging to the positive class divided by the
total number of observations labeled as belonging to the positive
class. Recall is the fraction of observations correctly labeled as
belonging to the positive class divided by the total number of ele-
ments that actually belong to the positive class. The F-measure is
the harmonic mean of Precision and Recall. All these measures
are performed separately on each cluster than the average value
of all clusters is reported.

Precision = NCLO/TNLO
Recall = NCLO/TNAC

F-measure = 2*Precision*Recall / Precision+Recall

where NCLO, TNLO and TNAC are respectively the number of
correctly labeled observations, the total number of labeled obser-
vations and the total number of observations that actually belong
to the positive class.
Different widely used Positive Definite Kernels are implemented
within the KOKMφ method such as the Polynomial Kernel, the
Gaussian kernel, the Exponential kernel, the Laplace kernel, the

Table 2. Examples of Positive Definite Kernels
Kernel function Value
Linear Kernel K(xi, xj) = xi.xj
Polynomial Kernel K(xi, xj) = ((xi.xj) + 1)d

Gaussian RBF Kernel K(xi, xj) = exp(
−‖xi−xj‖2

2σ2 )

Exponential RBF Kernel K(xi, xj) = exp(
−‖xi−xj‖

2σ2 )

Laplace Kernel K(xi, xj) = exp(
−‖xi−xj‖

σ )

Quadratic Kernel K(xi, xj) = 1−
‖ xi − xj ‖2

‖ xi − xj ‖2 +c

Inverse Multi quadratic Kernel K(xi, xj) =
1√

‖ xi − xj ‖2 +c2

Fig. 1. Impact of the value of kernel parameter used with the
KOKMφ method in Movie and Music data sets

Quadratic and the Inverse Multi Quadratic kernel as described in
Table 2.
To visualize structures of patterns detected by the proposed
method with respect to the type of kernel, we build Voronoı̈ cells
(for 3 clusters) obtained with KOKMφ method using different
kernels with different parameters. Figure 2 proves the ability of
KOKMφ method used with the Polynomial and the Linear Ker-
nel to detect overlapping clusters with linear boundaries. Figure
3 to Figure 7 prove the ability of KOKMφ to detect overlapping
clusters with non linear and non spherical separations. Some ker-
nels have a similar behavior and can detect the same patterns : for
example the Laplace kernel (with σ = 100) and the Quadratic
kernel (with c=5500) build identical clusters shapes as shown in
Figure 5 and Figure 6.
In Addition, the builded Voronoı̈ cells show that overlapping
boundaries between clusters become more smaller as well as the
value of the kernel parameter increases. This result is also proved
in real overlapping data sets as described in Figure 1 where the
size of overlap builded by KOKMφ method in both Movie and
Music data sets decreases when the value of the Kernel parame-
ter becomes larger.
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Table 3. Comparison between KOKMφ and existing methods in Iris, Movie and Music
data sets

Dataset Method Precision Recall F-measure Overlap

Iris

k-means 0.897 ± 0.02 0.886 ± 0.02 0.891 ± 0.02 1.0 ± 0.00
kernel k-means 0.927 ± 0.01 0.928 ± 0.02 0.927 ± 0.01 1.0 ± 0.00
OKM 0.707 ± 0.06 0.900 ± 0.07 0.815 ± 0.06 1.34 ± 0.08
KOKM with RBF kernel 0.712 ± 0.05 0.894 ± 0.08 0.821 ± 0.07 1.29 ± 0.11
KOKMφ with RBF kernel 0.830 ± 0.09 0.971 ± 0.05 0.895 ± 0.07 1.22 ± 0.10

Movie

k-means 0.731 ± 0.04 0.544 ± 0.04 0.623 ± 0.04 1.0 ± 0.00
kernel k-means 0.777 ± 0.03 0.605 ± 0.04 0.680 ± 0.03 1.0 ± 0.00
OKM 0.520 ± 0.08 0.802 ± 0.09 0.643 ± 0.08 1.60 ± 0.10
KOKM with RBF kernel 0.590 ± 0.04 0.791 ± 0.09 0.671 ± 0.05 1.55 ± 0.08
KOKMφ with RBF kernel 0.703 ± 0.15 0.687 ± 0.14 0.692 ± 0.10 1.24 ± 0.02

Music

k-means 0.501 ± 0.02 0.233± 0.02 0.288 ± 0.02 1.00 ± 0.00
kernel k-means 0.586 ± 0.04 0.213 ± 0.06 0.313± 0.05 1.00 ± 0.00
OKM 0.397 ± 0.11 0.332 ± 0.05 0.362 ± 0.08 2.45 ± 0.12
KOKM with RBF kernel 0.401 ± 0.09 0.341 ± 0.01 0.372 ± 0.05 2.40 ± 0.13
KOKMφ with RBF kernel 0.570 ± 0.07 0.356 ± 0.01 0.438 ± 0.01 1.98 ± 0.01

Table 4. Results on Movie Data set using KOKMφ methods with Different types of
kernels

Kernel Value Precision Recall F-measure Overlap
Linear 0.707 ± 0.15 0.680 ± 0.13 0.691 ± 0.10 1.22 ± 0.05

Polynomial kernel

d = 2 0.705 ± 0.06 0.674 ± 0.14 0.684 ± 0.09 1.25 ± 0.11
d = 3 0.725 ± 0.05 0.687 ± 0.16 0.701 ± 0.09 1.22 ± 0.11
d = 4 0.723 ± 0.06 0.681 ± 0.01 0.697 ± 0.10 1.22 ± 0.10
d = 5 0.704 ± 0.03 0.615 ± 0.13 0.655± 0.07 1.22 ± 0.13

Gaussian
σ = 1 0.646 ± 0.14 0.697± 0.12 0.668 ± 0.09 1.36 ± 0.13
σ = 10 0.703 ± 0.15 0.687 ± 0.14 0.692 ± 0.10 1.24 ± 0.02
σ = 20 0.703 ± 0.15 0.687 ± 0.14 0.692 ± 0.10 1.24 ± 0.02

RBF kernel
σ = 100 0.703 ± 0.15 0.687 ± 0.14 0.692 ± 0.10 1.24 ± 0.02
σ = 10000 0.703 ± 0.15 0.687 ± 0.14 0.692 ± 0.10 1.24 ± 0.02

Exponential
σ = 1 0.588 ± 0.09 0.746 ± 0.14 0.654 ± 0.06 1.71 ± 0.13
σ = 10 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.39 ± 0.13
σ = 20 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.39 ± 0.13

RBF kernel
σ = 100 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.39 ± 0.13
σ = 10000 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.39 ± 0.13

Laplace
σ = 1 0.568 ± 0.08 0.715 ± 0.14 0.627 ± 0.09 1.78 ± 0.03
σ = 20 0.649 ± 0.12 0.736 ± 0.11 0.686 ± 0.07 1.41 ± 0.13

kernel
σ = 100 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.40 ± 0.13
σ = 10000 0.655 ± 0.13 0.736 ± 0.11 0.689 ± 0.08 1.40 ± 0.13

Quadratic
c = 1 0.613 ± 0.11 0.738 ± 0.15 0.663 ± 0.06 1.54 ± 0.00
c = 10 0.685 ± 0.11 0.675 ± 0.15 0.677 ± 0.14 1.27 ± 0.10
c = 20 0.663 ± 0.13 0.0.672 ± 0.13 0.663 ± 0.13 1.24 ± 0.16

kernel
c = 100 0.672 ± 0.12 0.674 ± 0.14 0.669 ± 0.13 1.27 ± 0.10
c = 1000 0.707 ± 0.15 0.685 ± 0.14 0.693 ± 0.11 1.23 ± 0.02

Inverse multi
c = 1 0.640 ± 0.13 0.707 ± 0.11 0.667 ± 0.08 1.38 ± 0.22
c = 10 0.672 ± 0.13 0.670 ± 0.15 0.667 ± 0.14 1.27 ± 0.10
c = 20 0.713 ± 0.16 0.687 ± 0.14 0.697 ± 0.11 1.23 ± 0.02

Quadratic kernel
c = 100 0.644 ± 0.14 0.625 ± 0.17 0.630 ± 0.16 1.24 ± 0.08
c = 1000 0.644 ± 0.14 0.625 ± 0.17 0.630 ± 0.16 1.24 ± 0.08

Table 3 presents results obtained with KOKMφmethod versus k-
means, kernel k-means, OKM and KOKM methods in terms of
precision, recall and F-measure for the data sets described in Ta-
ble 1. Each reported result is an average over twenty runs of each
algorithm with the same initialization on each run. For all kernel
based methods, we use the Gaussian RBF Kernel with the best
parameter value (determined empirically through different tests).
The F-measure obtained with KOKMφ method outperforms the
F-measure obtained with existing methods. The improvement of
F-measure using KOKMφ compared to OKM and KOKM meth-
ods, is induced by the improvement of the Precision and the Re-
call. This result proves the theoretical finding that looking for

separations between clusters in the feature space is better than
looking for separations in the original space.
The choice of the kernel function and its parameters influences
the performance of the proposed method and influences shapes
of the detected boundaries. Table 4 and Table 5 summarize re-
sults obtained with KOKMφmethod using Positive Definite Ker-
nels where excessive experiments with different values of the
kernel parameter are reported. We note the variation of obtained
results as well as the kernel and its parameter are modified. For
some Kernels, the variation of the parameter becomes without
influence in some intervals : for example obtained results using
the Gaussian Kernel when σ ∈ [20..+∞] are identical on both
Music and Movie data sets.
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Table 5. Results on Music Data set using KOKMφ methods with Different types of
kernels

Kernel Value Precision Recall F-measure Overlap
Linear 0.492 ± 0.01 0.301 ± 0.02 0.374 ± 0.02 1.42 ± 0.05

Polynomial kernel

d = 2 0.480 ± 0.02 0.286 ± 0.02 0.358 ± 0.01 1.40 ± 0.05
d = 3 0.486 ± 0.01 0.300 ± 0.01 0.370 ± 0.01 1.45 ± 0.01
d = 4 0.482 ± 0.02 0.289 ± 0.01 0.364 ± 0.01 1.41 ± 0.05
d = 5 0.486 ± 0.01 0.284 ± 0.01 0.363 ± 0.01 1.43 ± 0.03

Gaussian
σ = 1 0.570 ± 0.07 0.356 ± 0.01 0.438 ± 0.01 1.98 ± 0.01
σ = 10 0.481 ± 0.02 0.318 ± 0.02 0.383 ± 0.02 1.55 ± 0.04
σ = 20 0.490 ± 0.01 0.291 ± 0.03 0.365 ± 0.03 1.43 ± 0.08

RBF kernel
σ = 100 0.494 ± 0.02 0.302 ± 0.02 0.375 ± 0.02 1.43 ± 0.05
σ = 10000 0.493 ± 0.02 0.302 ± 0.02 0.375 ± 0.02 1.43 ± 0.05

Exponential
σ = 1 0.476 ± 0.03 0.375 ± 0.05 0.420 ± 0.04 1.99 ± 0.01
σ = 10 0.480 ± 0.02 0.319 ± 0.02 0.383 ± 0.02 1.55 ± 0.05
σ = 20 0.480 ± 0.02 0.317 ± 0.02 0.382 ± 0.01 1.54 ± 0.05

RBF kernel
σ = 100 0.480 ± 0.02 0.317 ± 0.02 0.382 ± 0.01 1.54 ± 0.05
σ = 10000 0.480 ± 0.02 0.317 ± 0.02 0.382 ± 0.01 1.54 ± 0.05

Laplace
σ = 1 0.472 ± 0.04 0.365 ± 0.03 0.412 ± 0.04 1.98 ± 0.01
σ = 20 0.476 ± 0.02 0.342 ± 0.02 0.398 ± 0.02 1.81 ± 0.01

kernel
σ = 100 0.478 ± 0.02 0.320 ± 0.01 0.383 ± 0.01 1.56 ± 0.05
σ = 10000 0.480 ± 0.02 0.317 ± 0.02 0.382 ± 0.01 1.54 ± 0.05

Quadratic
c = 1 0.476 ± 0.03 0.374 ± 0.05 0.419 ± 0.04 1.98 ± 0.01
c = 10 0.476 ± 0.03 0.371 ± 0.04 0.417 ± 0.04 1.97 ± 0.01
c = 20 0.476 ± 0.03 0.355 ± 0.05 0.407 ± 0.04 1.92 ± 0.01

kernel
c = 100 0.476 ± 0.02 0.325 ± 0.027 0.386 ± 0.02 1.70 ± 0.06
c = 1000 0.486 ± 0.02 0.298 ± 0.04 0.369 ± 0.03 1.47 ± 0.06

Inverse multi
c = 1 0.476 ± 0.03 0.373 ± 0.05 0.418 ± 0.04 1.98 ± 0.01
c = 10 0.477 ± 0.01 0.317 ± 0.02 0.381 ± 0.02 1.59 ± 0.04
c = 20 0.486 ± 0.03 0.308 ± 0.02 0.377 ± 0.02 1.45 ± 0.09

Quadratic kernel
c = 100 0.495 ± 0.01 0.302 ± 0.02 0.375 ± 0.02 1.43 ± 0.07
c = 1000 0.494 ± 0.01 0.296 ± 0.01 0.370 ± 0.01 1.42 ± 0.05

Fig. 2. Voronoi cells obtained with Linear and Polynomial kernel
using KOKMφ method

In fact, the Kernel contains all information about structures of
patterns in the feature space through the Kernel Matrix. By vary-
ing values of the kernel parameter, two extreme situations may
be reached : the overfitting or the underfitting. Geometrically,
the overfitting corresponds to patterns being mapped to orthogo-

Fig. 3. Voronoi cells obtained with Gaussian RBF kernel using
KOKMφ method

nal points in the feature space, while in the second situation all
points are merged into the same feature mapping. Numerically,
the overfitting situation is reached when the off-diagonal entries
of the Kernel Matrix become very small and the diagonal en-
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Fig. 4. Voronoi cells obtained with Exponential kernel using
KOKMφ method

Fig. 5. Voronoi cells obtained with Laplace kernel using KOKMφ
method

tries are close to 1. However, if a Kernel Matrix is completely
uniform, the underfitting situation is reached.

5. CONCLUSION
We proposed in this paper a kernel based overlapping k-means
method to detect overlapping patterns in unlabeled data sets. The
proposed method performs all the learning process in a high di-
mensional feature space where data are explicitly mapped using
Positive Definite Kernels. Experiments prove the efficiency of
KOKMφ to detect clusters with linear and non linear boundaries
making the method adapted for real life applications of overlap-
ping clustering where separations between clusters are complex.

Fig. 6. Voronoi cells obtained with Quadratic kernel using
KOKMφ method

Fig. 7. Voronoi cells obtained with Inverse Multi Quadratic kernel
using KOKMφ method

This proposed method can be applied for many other application
domains where observations needs to be assigned to more than
one cluster and where patterns cannot be described by explicit
feature vectors such as images and texts. For such data sets, we
plan to conduct experiments on structured non vectorial data us-
ing a specific designed kernels such as Strings and Histograms.

6. REFERENCES
[1] Arindam Banerjee, Chase Krumpelman, Sugato Basu, Raymond J.

Mooney, and Joydeep Ghosh. Model based overlapping clustering.
In International Conference on Knowledge Discovery and Data
Mining, Chicago, USA, 2005. SciTePress.

[2] Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vap-
nik. Support vector clustering. Journal Of Machine Learning Re-

7



International Journal of Computer Applications (0975 - 8887)
Volume 56 - No. 09, October 2012

search, 2:125–137, 2001.
[3] Chiheb BenN’Cir, Nadia Essoussi, and Patrice Bertrand. Kernel

overlapping k-means for clustering in feature space. In Interna-
tional Conference on Knowledge discovery and Information Re-
trieval KDIR, pages 250–256, Valencia, SPA, 2010. SciTePress
Digital Library.

[4] P. Bertrand and M. F. Janowitz. The k-weak hierarchical represen-
tations: an extension of the indexed closed weak hierarchies. Dis-
crete Applied Mathematics, 127(2):199–220, 2003.

[5] James C. Bezdek, Robert Ehrlich, and William Full. Fcm: The
fuzzy c-means clustering algorithm. Computers amp; Geosciences,
10(23):191 – 203, 1984.

[6] Francesco Camastra and Alessandro Verri. A novel kernel method
for clustering. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27:801–804, 2005.

[7] Guillaume Cleuziou. An extended version of the k-means method
for overlapping clustering. In International Conference on Pattern
Recognition ICPR, pages 1–4, Florida, USA, 2008. IEEE.

[8] Corinna Cortes and Vladimir Vapnik. Support vector networks.
Machine Learning, 20:273–297, 1995.

[9] E. Diday. Orders and overlapping clusters by pyramids. Technical
Report 730, INRIA, France, 1984.

[10] Walter Didimo, Francesco Giordano, and Giuseppe Liotta. Over-
lapping cluster planarity. In Proceedings of the six International
Asia-Pacific Symposium on Visualization, pages 73–80, 2007.

[11] Michael R. Fellows, Jiong Guo, Christian Komusiewicz, Rolf Nie-
dermeier, and Johannes Uhlmann. Graph-based data clustering
with overlaps. Discrete Optimization, 8(1):2–17, 2011.

[12] Maurizio Filippone, Francesco Camastra, Francesco Masulli, and
Stefano Rovetta. A survey of kernel and spectral methods for clus-
tering. Pattern Recognition, 41(1):176 – 190, 2008.

[13] Mark Girolami. Mercer kernel-based clustering in feature space.
IEEE Transactions on Neural Networks, 13(13):780–784, 2002.

[14] A. K. Qinand and P. N. Suganthan. Kernel neural gas algorithms
with application to cluster analysis. International Conference on
Pattern Recognition, 4:617–620, 2004.

[15] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller.
Nonlinear component analysis as a kernel eigenvalue problem.
Neural Computation, 10(5):1299–1319, 1998.

[16] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Min-
ing Multi-label Data. In Data Mining and Knowledge Discovery
Handbook, chapter 34, pages 667–685. Boston, MA, 2010.

[17] Daoqiang Zhang and Songcan Chen. Kernel-based fuzzy and pos-
sibilistic c-means clustering. In International Conference on Ar-
tificial Neural Networks (ICANN03), pages 122–125, Istanbul,
Turkey, 2003.

[18] Daoqiang Zhang and Songcan Chen. A novel kernelized fuzzy c-
means algorithm with application in medical image segmentation.
Artificial Intelligence in Medicine, 32(1):37–50, 2004.

8


	Introduction
	Preliminaries
	Mercer Kernel
	Kernel K-Means
	Overlapping k-means and Kernelization of the Metric

	KOKM : Kernel Overlapping K-means in Feature Space
	Prototypes Computation in Feature Space
	Clustering Algorithm of KOKM
	Multi assignment of observation to one or several clusters

	Experiments and discussions
	Conclusion
	References

