
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.8, October 2012

1

An Image Matching Approach based on String Matching

using Remainder-Prime Method

Ravendra Singh
RKDFIST, Bhopal

Jasvinder Pal Singh
RKDFIST, Bhopal

H.N.Verma

GLA University, Mathura

ABSTRACT

In this paper, we have proposed a method for document image

search based on the code-vectors. The code vector

representation of sub images enable us to use image matching

techniques that make processing faster. The document images

are converted to digital form using image scanner and are

exhibited for public in image format, like jpg, jpeg, png etc.

The adopted method uses a sliding window approach, in this

approach each sub image clipped by narrow window is

converted to code vector and these code vectors are used in

image matching. Our method is based on modified Rabin

Karp method that can reduce the computation cost.

Keywords: - Image matching; Image segmentation; Vector to

code generation; Rabin Karp method.

1. INTRODUCTION

This paper presents a method, which is fast and accurate for

document image matching. In this proposed method code-

vectors are used in image searching. The code vector played a

vital role in document image matching. It is an image

matching technique based on codes. In the recent

development of the digital technology, images can be

converted into digital form using an image scanner and can be

store in form of digital library for public use[1].

The approach, which is adopted for document images, is the

sliding window approach. In this approach, each sub image

clipped by the narrow window are converted into a two

dimensional descriptor, which intern converted to a code

vector using a suitable prime number and modulo division.

These multi dimensional descriptors are also called feature

vectors[2].

In this paper, we have proposed a novel method for

converting multi dimensional descriptor into encoded

representation. A set of integers has retrieved that can be used

as the code for the purpose of sub- image detection and hence

it is called code vector of the sub image.

These code vector representations of sub image enable us to

use image matching techniques that make processing faster

than original vector based method[1]. Our code vectors

consist of four values, which are based on a selected prime

number. The primality testing is the problem of finding large

primes[10].

The density of prime numbers is feasible to test random

integers of the appropriate size until we find a prime. The

prime distribution function π(n) specifies the number of prime

that are less than or equal to n. The prime number theorem

gives useful approximation to π (n)[10].

2. RELATED WORK

Mostly documents image search[3] includes use of

OCR(Optical Character Recognition) [4]. He and Downton[5]

used OCR system for digital libraries of a museum. Drira et

al.[6] worked on the improvement of the accuracy of OCR.

Kluzner et al.[4] gives another OCR method for old books in

old fonts using different techniques.

On the other hand there are some other techniques which do

not use OCR for character recognition. One such method is

LSPC (Locality Sensitive Pseudo Code)[2], which is a kind of

vector that contains discrete values. The LSPC discretize

vectors into a list of integers with less loss of information

compared with usual vector quantization[7]. LSPC is a

technology where vectors can be converted into pseudo-code

expressions without loss of their information. LSPC is a list of

integers with its length smaller than the original vector[1].

Yet another method is the Locality Sensitive Hashing

(LSH)[8] method, which do not uses OCR for character

recognition and is used for indices. It is a famous probabilistic

approximate nearest neighbor method. The nearest neighbor

problem is defined as a collection of n points, build a data

structure which, given any query point, reports the data points

that is closest to the query. These data points are lived in a d-

dimensional Euclidean space[9].

We also avoid character recognition. Instead the encoded

feature vectors are used as a code without character

recognition. The proposed approach uses code vectors that

consist of four values obtained by applying modulo division

using a prime number over each row of the entire small

region[1].

3. PRIMALITY TESTING

A. Outline of Primality Testing

One of the important bases of the proposed method is

primality testing[10-12]. In this section, we consider the

problem of finding large primes[13], and we begin with a

discussion of the density of primes[10]. It is feasible to test

random integers of the appropriate size until a prime number

is not found. The prime distribution function π(n) specifies the

number of primes that are less than or equal to n[10]. For

example, π(10) = 4, since there are four prime numbers less

than or equal to 10, namely, 2, 3, 5 and 7.

B. Composition of Primality Testing

This sub section describes the definition and factorization of

the prime numbers.

Definition: (Prime Number Theorem)

It states that –

π(n)/(n/ln n)=1.

Where limit (n→∞).

The approximation n/ln n gives reasonably accurate estimate

of π(n) even for small n. for example, it is off by less than

60% at n=109 where π(n)=50847534[10], and (n/ln n)=

4825492[10].

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.8, October 2012

2

In the remainder of this section, the problem of determining

whether or not a large odd integer n is prime has considered.

It is assumed that n has the prime factorization

N= p1
e1 p2

e2…..pr
er.

Where r ≥1, p1, p2…pr are the prime factors of n, and

e1,e2,e3,….en, are positive integers. The integer n is prime if

and only if r=1 and e1=1.

One simple approach to the problem of testing for primality is

trial division. Trial division works well only if n is very small.

4. PROPOSED METHOD

The proposed work has been partitioned into several distinct

steps:

A) Image Segmentation

B) Vector Extraction

C) Code Generation

D) String Searching of the Code.

E) Image Matching

Among these steps, (A), (B) and (C) are the preprocessing

steps and (D) and (E) are the searching and matching phases

respectively.

In phase (D) vector string is searched into the vector code of

the given image and in phase (E) search image vector is

compared to the corresponding portion of the given image

vector, if phase (D) has found successfully.

(A) Image Segmentation:

First the documented image is converted into a matrix and

then segmentation is done. The segmented image was divided

into small regions, which were used to form vectors, e. g. first

segment contain aij for i=1, 2, 3, 4…m and j=1, 2, 3, 4….n

where aij is the element of original image matrix.

(B) Vector Extraction:

Each segmented image was fed to vector extraction. The

method to obtain vectors is as follows:

A small matrix (segmented image) is used to generate the

vector. The matrix is recomputed by dividing all of its

elements by a prime number(in our case, the prime number is

101) and then taking the remainder, e.g. aij=remainder of aij/p

for i=1, 2, 3, 4…m, and j=1, 2, 3, 4…n. .And p is the prime

number. Now each row of the small matrix will form one

vector.

(C) Code Generation:

In this process, each vector is converted into its relevant code.

To be more exactly, suppose the segmented image was

divided into small regions, the code vector is generated

corresponding to each row of the small region. This code

vector consists of the four values corresponding to the four

rows of the small region. These vector codes are obtained by

taking the remainder of sum of the elements of each row

vector of the small region. i.e. if V=[v1, v2, v3, v4…….Vn] is a

vector then vi= ﴾∑aij﴿/p for i=1, 2, 3, 4…m and j=1, 2, 3,

4…n. Stores these code values into an array so that these code

values can be further used in searching.

(D) String Matching of the Code:

The string matching[14] can be defined as: the text is an array

T[1…n] of length n and the pattern is an array P[1…m] of

length m(≤n). We further assume that the elements of P and T

are the characters drawn from a finite alphabet Σ. For

example, we may have ∑ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} or ∑ =

{a, b, c, d, e, f} etc. The character arrays P and T are often

called strings of characters. All string matching algorithm

scan the text with the help of a window which is equal to the

length of the pattern. The first process is to align the left end

of the pattern with the text window and then compares the

corresponding characters of the window and the pattern. This

process is known as an attempt. After a whole match or a

mismatch of the pattern, the text window is shifted in the

forward direction until the window is positioned at the (n-

m+1) position of the text. This approach is the naive brute-

force algorithm. In brute force algorithm, window is shifted to

the right by one character after an attempt. This is the most

primitive method of sequential scanning, which check all

position in the text T whether an occurrences of the pattern P

starts there or not. This can be implemented in complexity

O((n-m+1)m).

For a large character of text the brute-force algorithm is not

efficient to perform this task. To solve this problem, there are

several well known algorithms in the literature [14-16] so far.

These algorithms have their own advantages and limitation

based on the method they use to calculate the shift value (the

number of characters the window should move forward). The

algorithms vary in the order in which character comparisons

are made and the distance by which the window is shifted on

the text after each attempt. We have used modified Rabin-

Karp[15-16] method for string matching. We implement it

work on our code vectors. Each time the code vector of

searching image is compared against the code vector of a

piece of given image, such that the size of the piece of the

given image is exactly the same as the size of the searching

image. In case of a mismatch we select next piece of given

image whose size is same as the size of the searching image.

In case of a match the control is passes over to next, image

matching, step.

(E) Image Matching:

When the code-vector of the searching image is matched with

the code-vector of a piece of the given image, then the

searching image matrix is compared to the corresponding

portion of the given image matrix, and each pixel of the

searching image is compared with each pixel of the image. If

each pixel is matched, then the portion of the sub-image

found, will contain the searching image.

This step compares the images only if previous step

successfully passed.

5. SOPHISTICATED ALGORITHM

The algorithm makes use of elementary number-theoretic

notations such as the equivalence of two numbers modulo a

third number. In our algorithm each character is a decimal

number, and compute values by modulo p(=101), where p is a

prime number. The values of the image pixels lie between 0 -

255. There are 54 prime numbers between 0 and 255. And the

mid prime number is 103(if lower median is selected). We

selected 101 as the value of p, which is near to mid prime

number. Since n modulo 101 gives a number between 0 to100,

where n is any integer ϵ [0, 255].

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.8, October 2012

3

6. RESULT ANALYSIS

The size of the Source image is m-by-n pixels and let the size

of the searching image be x-by-y pixels. The Pre-Processing

time and the Matching time of the proposed algorithm are

calculated for the variable size of the search image and the

size of the source image is fixed (size=15) in case of the

source image. The spurious hits are also calculated for the

proposed algorithm, to obtain the accuracy of the proposed

algorithm. The spurious hits are fake code values of the search

image that matches with the code values of the source image,

but in actual the search image is not matched within the

source image.

 Our pre-processing phase includes finding the code vectors

for source image and searching image. These processes have

complexities Θ(mn) and Θ(xy) respectively. Since usually the

size of source image is greater than the size of searching

image i.e., mn>xy, collectively we can say the pre-processing

phase has complexity Θ(mn).

The complexity of matching phase is O(mnxy), more exactly

it is Θ(mn*O(4+xy)/4).

The experimental results of the proposed algorithm is shown

with the help of the tables, the first table have the

experimental entries for the pre-processing and matching time

of the fixed size of source image and the variable size of the

search image.

The two analysis graphs for the pre-processing and matching

time of the proposed algorithm is also shown in which x-axis

related to size of the search image and y-axis related to the

preprocessing and matching time. The first graph shows the

preprocessing time of the proposed algorithm and the second

graph shows the matching time of the proposed algorithm.

Table1: Experimental result of the variable size search

image of the proposed algorithm.

Size of

the

Source

image

Size of

the

Search

image

Pre-

processing

Time

Matching

Time

No. of

Spurious

Hit

15 1 0.052099 1.546639 0

15 2 0.003034 0.086410 3

15 3 0.000256 0.000064 0

15 4 0.004205 0.439811 0

15 5 0.001782 0.052241 0

15 6 0.001093 0.043761 0

15 7 0.001229 0.000195 0

15 8 0.000926 0.000153 0

15 9 0.000773 0.000130 0

15 10 0.000551 0.000084 0

15 11 0.000447 0.000058 0

15 12 0.000220 0.000043 0

15 13 0.000214 0.000044 0

15 14 0.000159 0.000044 0

15 15 0.000093 0.448092 0

Figure 1: Analysis graph for the Pre-Processing time of

the proposed algorithm.

Figure 2: Analysis graph for the matching time of the

proposed algorithm.

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20

P
re

-p
ro

ce
ss

in
g

Ti
m

e

SearchImage size

Pre-
processin
g Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 10 20

m
at

ch
in

g
ti

m
e

size of the search image

Matching
Time

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.8, October 2012

4

Experimental Results of the variable size of the source and

search images of the Proposed Algorithm:

Here the more results are shown in the table, which contains

the experimental results of the variable size of both the images

i.e. source image and search image. The table contains two

entries in each column except the column for the size of the

source image, the first entry in the column of the size of the

search image shows the minimum size of the search image

and the second entry shows the maximum size of the search

image;

 The first entry in the column of the preprocessing time shows

the minimum preprocessing time and the second entry shows

the maximum preprocessing time;

The first entry in the column of the matching time shows the

minimum matching time and the second entry shows the

maximum matching time.

The first entry in the column of the spurious hits shows the

number of fake hits in case of the minimum size of the search

image and the second entry shows the number of fake hits in

case of the maximum size of the search image.

Table2: Experimental Results of the variable size of the

source and search images of the Proposed Algorithm.

Size of

the

Source

image

Size of

the

Search

image

Pre-

processing

Time

Matching

Time

No. of

Spurious

Hit

15

1×1

15×15

0.039289

0.001762

1.064649

0.066549

0

0

14

1×1

14×14

0.000794

0.002361

0.000417

0.435763

0

0

13

1×1

13×13

0.001483

0.002279

0.00517

0.439762

0

0

12

1×1

12×12

0.000725

0.003093

0.022267

0.428895

1

0

11

1×1

11×11

0.000588

0.002647

0.21817

0.423166

0

0

10

1×1

10×10

0.000498

0.002661

0.021753

0.436696

0

0

9

1×1

9×9

0.000447

0.002804

0.023392

0.434369

0

0

8

1×1

8×8

0.000335

0.002282

0.023016

0.433000

0

0

7

1×1

7×7

0.000265

0.002248

0.3336284

0.442265

0

0

6

1×1

6×6

0.000232

0.002678

0.043597

0.429108

0

0

5

1×1

5×5

0.000163

0.002672

0.041591

0.431304

0

0

4

1×1

4×4

0.000121

0.002249

0.050273

0.432182

0

0

3

1×1

3×3

0.002477

0.002441

0.431166

0.436649

0

0

2 1×1 0.002486 0.431546 0

1 1×1 0.002346 0.431144 0

Note: Size of the image is taken in a square image form.

The values in the column of the spurious hit are mostly zeros;

it means fake code match is approximately near to zero. So

the proposed algorithm is fast and accurate on the basis of the

experimental shown in the above tables.

7. CONCLUSION

A fast image searching method for document images has

proposed. The source and searching image are successfully

read and stored. Segmentation is done successfully and each

segment is also converted into code vectors. Modified Rabin-

Karp string search method is applied successfully and finally

image is compared. The proposed method increases the search

speed with exact matching. The work also includes

developing an efficient algorithm to realize exact matching for

the document image in varying font sizes. With such an

advanced algorithm, it would be possible to develop a fast

algorithm, which is applicable to more difficult problems such

as string matching of hand written documents.

8. REFERENCES

[1] Kengo Terasawa, Takahiro Shima and Toshio

Kawashima, “A Fast Appearance-Based Full Text Search

Method for Historical Newspaper Images,” ICDAR,

1520-5363, 2011.

[2] K. Terasawa and Y. Tanaka, “Locality Sensitive Pseudo-

Code for Document Image,” Proc. ICRDAR2007, vol. 1,

pp. 73-77, 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.8, October 2012

5

[3] C. L. Tan, W. Huang, Z. Yu, Y. Xu, “Imaged Document

Text Retrieval Without OCR”, IEEE Trans. On PAMI,

vol. 24, no. 6, pp. 838-844, 2002.

[4] V. Kluzner, A. Tzadok, Y. Shimony, E. Walach, A.

Antonacopoulos, “Word Based Adaptive OCR for

Historical Books”, Proc. ICDAR2009, pp. 501-505,

2009.

[5] J. He and A. Downton, “Evaluation of a User-Assisted

Archive Construction System for Online Natural History

Archives”, Proc. ICDAR2005, pp 442-446, 2005.

 [6] F. Drira, F. LeBourgeois, H. Emptoz, “Document Images

Restoration by a New Tensor Based Diffusion Process:

Application to the Recognition of Old Printed

Documents”, Proc. ICDAR2009, pp 321-325, 2009.

[7] Messing, D. S, Van Beek. P, Errico. J. H., “The MPEG-7

Colour structure descriptor: Image description using

colour at Local Spatial Information; International

Conference on Image Processing”, Thessaloniki, Greece,

2001, ISBN: 0-7803-6725-1.

[8] A. Gionis, P. Indyk, R. Motwani, “Similarity Search In

High Dimension via Hashing”, Proc. VLDB 1999, pp.

518-529, 1999.

[9] Alexandr Andoni, Piotr Indyk, “Near –Optimal Hashing

Algorithm for Approximate Nearest Neighbor in High

Dimensions”, Proc. Symposium on Foundations of

Computer Science, FOCS’06 pp.459-468, 2006.

[10] H. Cohen and H. W. Lenstra, Jr. “Primality Testing and

Jacobi Sums”, Mathematics of Computation, 42(165), pp

297-330, 1984.

[11] Gary L. Miller, “Riemann’s Hypothesis and Tests for

Primality”, Journal of Computer and System Sciences,

13(3), pp 300-317, 1976.

[12] Michael O. Rabin, “Probabilistic Algorithm for Testing

Primality”, Journal of Number Theory, 12(1), pp 128-

138, 1980.

[13] Leonard M. Adleman, Carl Pomerance and Robert S.

Rumely, “On distinguishing prime numbers from

composite numbers”, Annals of Mathematics, 117, pp

173-206, 1983.

[14] H. N. Verma, Ravendra Singh, “A Fast String Matching

Algorithm”, International Journal of Computer

Technology and Applications, Vol. 2(6), pp. 1877-1883,

2011.

[15] Richard M. Karp and Michael O. Rabin, “Efficient

randomized pattern-matching algorithms”, IBM Journal

of Research and Development, 31(2), pp 249-260, 1987.

[16] Karp-Rabin, “An analysis of the Karp-Rabin String

Matching Algorithm”, 0020-0190/90/©1990-Elsevier

Science Publisher B.V.(North-Holland).

