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ABSTRACT 

This paper studied the design, implementation and evaluation 

of a MapReduce tool targeting distributed systems, and multi-

core system architectures. MapReduce is a distributed 

programming model originally proposed by Google for the 

ease of development of web search applications on a large 

number of clusters of computers. We addressed the issues of 

limited resource for data optimization for efficiency, 

reliability, scalability and security of data in distributed, 

cluster systems with huge datasets. The study’s experimental 

results predicted that the MapReduce tool developed 

improved data optimization. The system exhibits undesired 

speedup with smaller datasets, but reasonable speedup is 

achieved with a larger enough datasets that complements the 

number of computing nodes reducing the execution time by 

30% as compared to normal data mining and processing. The 

MapReduce tool is able to handle data growth trendily, 

especially with larger number of computing nodes. Scaleup 

gracefully grows as data and number of computing nodes 

increases. Security of data is guaranteed at all computing 

nodes since data is replicated at various nodes on the cluster 

system hence reliable. Our implementation of the MapReduce 

runs on distributed cluster computing environment of a 

national education web portal and is highly scalable.  
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1. INTRODUCTION 
Data and information explosion propelled by the exponential 

growth in digitized data is an unstoppable reality. To be able 

to extract relevant and useful knowledge from this 

voluminous data in order to make well-informed decision is a 

competitive advantage in the current information age. In 

almost all sectors, like education, datasets have grown from 

gigabyte to terabyte, and now headed to petabyte. As a result, 

parallel and distributed computing is often strongly sought 

after to alleviate these challenges. The need for data 

optimization, measuring performance efficiency, reliability, 

scalability and effectiveness of parallel models, cluster and 

grid computing is apparent. 

It is envisioned that there is very huge data warehousing in 

different education databases at various locations and 

networks, in distributed, cluster, computing systems. Data 

access, retrieval, and analysis is expected to be a big challenge 

for educationists. Therefore a MapReduce tool is required to 

easily and effectively optimize the process of delivering the 

required information to the consumers in a reliable and 

scalable environment with concern on the security. 

The objectives of this research were to explore the usability of 

the MapReduce programming technique on a multi-core 

shared memory system and cluster computing; Optimization 

of MapReduce tool developed to improve its performance and 

scalability; Implications of using Java threading library to 

attain parallelism on multi-core systems; and Effective 

handling of failures on parallel execution of tasks. 

The case of a national education portal in Kenya, a teachers’ 

resource center to support research and development, was 

used to test the tool developed.  

2. LITERATURE REVIEW 

2.1 MapReduce in Distributed Systems 
MapReduce is a programming model and an associated 

implementation for processing and generating large datasets 

that is amenable to a broad variety of real-world tasks (Dean 

J. et al, 2004). The MapReduce paradigm of parallel 

programming provides simplicity, while at the same time 

offering load balancing and fault tolerance The Google File 

System (GFS) that typically underlies a MapReduce system 

provides the efficient and reliable distributed data storage 

needed for applications involving large databases (Ghemawat 

S., et al, 2003). The marriage of these systems, is typical in 

their deployment, and represents the necessary confluence of 

data distribution and parallel computation. 

MapReduce is inspired by the map and reduces primitives 

present in functional languages. In its pure form, various 

implementations of the MapReduce interface are possible, 

depending on the desired context. Some currently available 

implementations are: shared-memory multi-core system 

(Ranger, et al., 2007) and (Yoo, et al., 2009), asymmetric 

multi-core processors (Rafique, et al. 2009), graphic 

processors (He, et al., 2008), and cluster of networked 

machines (Dean J., et al., 2008). The most popular 

implementation is probably the one introduced by Google, 

which utilizes large clusters of commodity computers 

connected with switched Ethernet. In essence, the Google’s 

MapReduce technique simplifies the development and lowers 

the cost of large-scale distributed applications on clusters of 

commodity machines. 

Although the distributed computing is largely simplified with 

the notions of Map and Reduce primitives, the underlying 

infrastructure is non-trivial in order to achieve the desired 

performance. A key infrastructure in Google’s MapReduce is 

the underlying distributed file system to ensure data locality 

and availability. Google’s MapReduce implementation 

leverages and depends heavily on an in-house distributed file 

system known as Google File System (Ghemawat S., et al, 

2003). Combining the MapReduce programming technique 

and an efficient distributed file system, one can easily achieve 

the goal of distributed computing with data parallelism over 

thousands of computing nodes; processing data on terabyte 
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and petabyte scales with improved system performance, 

optimization and reliability. 

2.2 Hadoop Distributed File System 
This research adapted a MapReduce tool in the distributed 

system making use of a popular open source implementation 

called Hadoop. The Hadoop Distributed File system (HDFS) 

was designed to provide high throughput access with reliable 

storage of very large files across machines in a large cluster 

(Apache Hadoop, Online, 2011). It is designed for high 

performance and thus not as general-purpose as the commonly 

used distributed file systems such as Network File System 

(NFS) and Common Internet File System (CIFS). 

Applications that use HDFS are assumed to perform long 

sequential streaming reads from files and databases. HDFS is 

optimized to provide streaming read performance, sacrificing 

the random seek times to arbitrary positions in files. Due to 

the large size of files, and the sequential nature of reads, the 

system does not provide mechanism for local data caching 

because the overhead of caching warrants a re-read from the 

HDFS.  

3. RESEARCH METHODOLOGY 
Using the Agile Methodology a MapReduce tool was 

designed and developed on the Linux platform. Each 

component in the tool was developed iteratively; each 

iteration involved designing, coding, testing and integration. 

The Hadoop MapReduce tool uses a master/slave architecture 

that is similar to the one employed in HDFS. The master, 

called JobTracker, is responsible for:  

(a) Querying the NameNode for the locations of the data 

block involved in the Job,  

(b) Scheduling the computation tasks (with consideration of 

the block locations retrieved from the NameNode) on the 

slaves, called TaskTrackers, and  

(c) Monitoring the success and failures of the tasks.  

Hadoop was designed to have high degree of fault tolerance. 

In comparison to many available parallel/distributed systems, 

it is able to complete the assigned tasks failures in the cluster 

(Pavlo, A. et al, 2009). The primary way that Hadoop 

achieves fault tolerance is through restarting tasks. The slave 

nodes involved in the computation are in constant 

communication with the master node (JobTracker). If a 

TaskTracker failed to communicate with the JobTracker for a 

period of time (by default, 1 minute), the JobTracker assumed 

failure on that TaskTracker. It then assigned another active 

TaskTracker to re-execute all the tasks that were in progress 

on the failed Tasktracker. 

The input for a Hadoop MapReduce task was typically very 

large files residing in the HDFS. The format of these input 

files is arbitrary; it could be formatted text file, binary format 

or any user-defined format. 

MapReduce tool is capable of processing huge datasets on 

certain kind of distributable problems using a large number of 

computers (nodes), collectively referred to as a cluster or as a 

grid. Computational processing can occur on data stored 

either in a file system (unstructured) or within a database 

(structured). 

"Map" step: The master node takes the input, partitions it up 

into smaller sub-problems, and distributes those to worker 

nodes. A worker node may do this leading to a multi-level tree 

structure. The worker node processes that smaller problem, 

and passes the answer back to its master node. 

"Reduce" step: The master node then takes the answers to all 

the sub-problems and combines them in some way to get the 

output — the answer to the problem it was originally trying to 

solve. 

In a logical view, the Map and Reduce functions of 

MapReduce are both defined with respect to data structured in 

(key, value) pairs. Map takes one pair of data with a type in 

one data domain, and returns a list of pairs in a different 

domain: 

Map (k1, v1) → list (k2, v2) 

The Map function is applied in parallel to every item in the 

input dataset. This produces a list of (k2,v2) pairs for each 

call. After that, the MapReduce tool collects all pairs with the 

same key from all lists and groups them together, thus 

creating one group for each one of the different generated 

keys. 

The Reduce function is then applied in parallel to each group, 

which in turn produces a collection of values in the same 

domain: 

Reduce (k2, list (v2)) → list (v3) 

Each Reduce call typically produces either one value v3 or an 

empty return, though one call is allowed to return more than 

one value. The returns of all calls are collected as the desired 

result list. 

Once the MapReduce tool was developed as explained above, 

it was placed at the server where the central data bank of 

education web portal is situated and also at the client 

computers (computing nodes) where the portal could be 

accessed by users. The data mining and data optimization 

executions were observed on the existing massive data in the 

education web portal case where many computing nodes are 

accessed by several users simultaneously, where observations 

were made and analysis gave a true picture of data mining and 

data optimization as explained in the under results section. 

4. RESULTS AND DISCUSSION 

4.1 Results 
The study realized the development, experimenting and 

testing of a MapReduce tool in a distributed cluster computing 

environment. The results realized at the education web portal 

case of study were encouraging in view of the objectives of 

the study. However, there were certain aspects culminating 

from the research that were not in tandem with the inclination 

of the project, that is, being undertaken as a result of data 

optimization. The instruments used which involved a 

procedure were able to capture details that included 

observations below. 

It was observed that the MapReduce tool is much efficient in 

data optimization and very reliable since it reduces the time of 

data access or loading by more than 50%. 

The MapReduce tool could provide availability of jobs, tasks, 

and log history file which then improves the performance of 

the MapReduce tool and data access and processing in 

general. 

Data is distributed to the computing nodes at equally faster 

speed across all the nodes making the process more secured 

and efficient at all levels and nodes, irrespective of external 

challenges. 

http://en.wikipedia.org/wiki/Filesystem
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Tree_(data_structure)
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Attaining scalability was a major breakthrough since growth 

is inevitable at all times. It was found that with MapReduce 

tool you can add extra nodes which are allocated Job IDs and 

linked to Job Tasks at any place and at any time of the 

processing which can be effected on real time basis. This 

therefore provides an efficient way of scaling up the number 

of nodes on the cluster system without losing connections. 

Experiments were conducted to evaluate the computation 

performance of the MapReduce prototype tool. The 

performance evaluation was based on the measurement of 

speedup (to address the efficiency and reliability of the tool), 

scaleup (to address the scalability of the tool), and the sizeup 

(to address the ability of parallelism to handle data growth). 

The experiments were also compared with other researchers’ 

evaluations done earlier on cluster machines such as “Amazon 

Elastic Compute Cloud (EC2)”, which operates a “pay as you 

go” model, allowing flexibility of paying only the required 

computation time. 

The experiments were conducted with a cluster of 1, 2, 4, 8, 

and 16 computing nodes configured as a cluster computing 

with hadoop distributed file system. The initial input dataset 

used contained huge files of different formats and types from 

Kenya education web portal. 

The experiments were obtained from the average of 5 runs. 

Each run executed the entire data mining process, Mapping, 

splitting/shuffle/combine, and Reducing attempts and 

producing the output which was a selected field’s content with 

a computed answer. 

A summary of the experiment results are presented in Table 1. 

The table shows the average execution time (in seconds) of 

one run under each experiment scenario. 

Table 1: Experimental Results 

  Execution Time                    

 (sec) 

 

Data Size  

(count) 

Number of Nodes 

 

1 

 

2 

 

4 

 

8 

 

16 

1x (148) 7 5 4 3 1 

2x (296) 12 8 5.4 5 4.2 

4x (592) 15 9 7 6 5 

8x (1184) 20 11 8 7 7 

16x (2368) 28 15 9 8 8 

32x (4736) 42 20 12 10 9 

   

4.2 Discussions 
Three measurements were used for the evaluations: speedup, 

scaleup, and sizeup. The following sub-sections discuss these 

measurements and the results obtained. 

4.2.1 Speedup 
Speedup tries to evaluate the ability of the parallelism to 

improve the execution time. It is defined as the ratio of the 

sequential execution time to the parallel execution time. It is 

expressed as follows: 

Speedup (m) = T(1) / T(m) 

Where m is the number of computing node, T(1) is the 

execution time of the tasks on 1 computing node, and T(m) is 

the execution time of the parallel task with m computing 

node. A perfect parallelism demonstrates linear speedup, i.e. a 

system with m times the number of computers/nodes yields a 

speedup of m. However, linear speedup is difficult to achieve 

because the communication cost increases with the number of 

computing nodes.  

 

Figure 1: Speedup of the MapReduce Prototype System 

From the results obtained, the system exhibits undesired 

speedup with smaller datasets, but reasonable speedup is 

achieved with a larger enough datasets that complements the 

number of computing nodes. 

At 32x of initial input size, the speedup achieved with 8 

machines is 5.32; but with 16 machines, the speedup achieved 

is only 6.36, a rather disappointing result.  

Based on the trend shown in Figure 1, we could make two 

observations:  

1 MapReduce tool is most suited for distributed computing 

with huge datasets;  

2 Some rate-limiting factors exist in the system. 

4.2.2 Scaleup 

Scaleup evaluates the ability of parallelism to grow both the 

MapReduce system and the data size, that is, the scalability of 

the MapReduce tool. Scaleup is defined as the ability of an m-

times larger system to perform an m-times larger job in the 

same run-time as the original system. Scaleup can be 

expressed as follows: 

Scaleup (m) = T(1,D) / T(m, mD) 

Where m is the number of computing node, T(1,D) is the 

execution time of the tasks on 1 computing node with data 

size of D, T(m, mD) is the execution time of the parallel tasks 

with m computing nodes with data size m times of D. A 

perfect parallelism demonstrates a constant scaleup with 

increasing number of computing nodes and data size. 

Figure 2 shows the Scaleup of the prototype with the number 

of computing nodes and input data size increasing at a factor 

of 2, i.e. 1, 2, 4, 8 and 16. 
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Figure 2: Scaleup of MapReduce Prototype System 

From the results, we can conclude that the MapReduce tool 

exhibits good scaleup at 0.95, 0.89 and 0.72 with 2, 4 and 8 

computing nodes respectively. With a 16 computing nodes 

cluster, the scaleup is slightly lower, measured at 0.57. The 

reason for such scaleup degradation is due to the increase task 

setup time and communication cost with growing number of 

computing nodes, which is expected scenario in distributed 

computing. Nevertheless, this shows that MapReduce is still 

considerably scalable with growing data and growing number 

of computing nodes, a key consideration for data intensive 

applications. 

4.2.3 Sizeup 
Sizeup evaluates the ability of the parallelism to handle 

growth. It measures how much longer it takes to execute the 

parallel tasks, when the data size is n-times larger than the 

original datasets. Sizeup analysis holds the number of 

computing node constant and grows the size of the datasets by 

the factor n. Sizeup can be expressed as follows: 

Sizeup (m, n) = T(m, nD) / T(m, D) 

Where m is the number of computing node and n is the 

incremental factor of the data size. T(m, D) is the execution 

time of the parallel tasks with m computing node and data size 

D and T(m, D) is the execution time of parallel tasks with m 

computing node and with data size n times of D. 

Figure 3 shows the sizeup of the prototype. Each line 

corresponds to the sizeup behavior of a cluster of m 

computing nodes with increasing data load at a factor of n. 

Figure 3: Sizeup of MapReduce Prototype System 

The results showed that the MapReduce system is able to 

handle data growth at all configurations. The sizeup decreases 

with increasing number of computing nodes. With a 16 nodes 

cluster at 32 times the initial data, the execution time 

increases only by a factor of 3.55. This shows that 

MapReduce is able to handle data growth gracefully, 

especially with larger number of computing nodes. 

4.2.4 Comparative Results 

Our results compares with the various results output during 

the experimental study, including the evaluations of the 

Speedup, Sizeup and Scaleup ability of the parallelism to 

handle growth. Table 2 shows the various levels of 

performance computation of measurements at different 

quantity of cluster computing nodes. 

Table 2: Speedup, Scaleup and Sizeup comparative results 

Cluster 

Nodes Scaleup  Sizeup  Speedup 

2 0.95 2 2.06 

4 0.89 3 3.86 

8 0.72 4 5.32 

16 0.59 7.86 6.36 

 

Figure 4, shows that the scaleup of a cluster computing using 

the MapReduce technique reduces as the sizeup drastically 

increases with number of nodes. 

 

Figure 4: Comparative results for Speedup, Scaleup and 

Sizeup. Source: Researcher 

 

0

2

4

6

8

10

1 2 3 4A
m

o
u

n
t 

o
f 

D
at

a 
(G

B
) 

 

No. of Nodes 

Scaleup

Sizeup

Speedup



International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.7, October 2012 

43 

The speedup increases significantly as the sizeup of the 

cluster grows inversely to the scaleup. It is evidently shown 

that this is unreliable and inefficient, expensive when the 

same computation is done in a cluster without the use of 

Hadoop MapReduce technique in a distributed file system as 

depicted by the Amazon Elastic Compute Cloud (EC2) system 

as studied in literature review. 

5. CONCLUSIONS 
The study successfully developed and implemented a 

MapReduce tool for data mining and data optimization using 

cheaply and easily available tools and procedures. The 

MapReduce tool was developed particularly for multi-core 

shared memory systems, taking advantage of current trends in 

parallelism. The efficiency of the tool highly depended on the 

granularity of the tasks executed by the worker threads and 

the usability of the API by maintaining a simple and restricted 

interface. Even if the framework were able to attain a speedup 

of 30%, it would still be beneficial to the researcher as it 

provides simple and efficient auto-parallelism. It is evident 

that the advantages provided by the tool under study, would 

clearly outweigh the disadvantages associated with it. 

Achievement of scalability in the clustering environment was 

a major milestone. This was attested to be easily achieved and 

sustainable since additional nodes could easily be added on 

the cluster without negatively affecting the performance of 

other nodes on the cluster hence the cluster could easily grow 

and increase resource utilization. 

The security of data is confident than usual operations since 

data is replicated across on all the nodes equally and in the 

event of destruction of one node, data can be recovered from 

other working nodes. 

The evaluation results show that the prototype exhibits 

satisfactory performance in the parameters such as speedup, 

good scaleup, and reasonable sizeup. A key observation made 

in the evaluation was that the input data size is an important 

factor in achieving reasonable speedup. This is due to the fact 

that for optimal parallelism, one has to ensure the effects of 

overheads (such as inter-machines communications) in the 

parallelism is minimized by the computation time; and in 

most cases, large input size maximizes the computation time. 

The unexpected speedup performance leads to a detailed 

analysis of the results and it suggests that, although inter-

machines communications and input size are factors in 

limiting ideal parallelism, the non-parallelizable portion in the 

individual computation task also plays a paramount role in 

limiting speedup. The evaluation also shows that Hadoop 

MapReduce exhibits good scalability with growth in both data 

size and number of computing nodes. 

There is still need for continuous research in this field to 

develop more enhanced tools, systems and frameworks of 

MapReduce techniques implemented on Hadoop distributed 

file system in distributed systems. 

Further work on improving this methodology should be 

considered by making use of latest tools, procedures and 

technologies such as in the Cloud Computing to solve issues 

of data optimization, reliability, scalability and data security, 

among other issues fault tolerance in cluster computing. 

The study should be expanded to research on the impact of 

performance overheads and how to conquer them for better 

performance. 
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