
International Journal of Computer Applications (0975 – 8887)

Volume 56– No.7, October 2012

39

 Use of MapReduce for Data Mining and Data

Optimization on a Web Portal

Christopher A. Moturi
School of Computing and Informatics

University of Nairobi
Kenya

Silas K. Maiyo
School of Computing and Informatics

University of Nairobi
Kenya

ABSTRACT

This paper studied the design, implementation and evaluation

of a MapReduce tool targeting distributed systems, and multi-

core system architectures. MapReduce is a distributed

programming model originally proposed by Google for the

ease of development of web search applications on a large

number of clusters of computers. We addressed the issues of

limited resource for data optimization for efficiency,

reliability, scalability and security of data in distributed,

cluster systems with huge datasets. The study’s experimental

results predicted that the MapReduce tool developed

improved data optimization. The system exhibits undesired

speedup with smaller datasets, but reasonable speedup is

achieved with a larger enough datasets that complements the

number of computing nodes reducing the execution time by

30% as compared to normal data mining and processing. The

MapReduce tool is able to handle data growth trendily,

especially with larger number of computing nodes. Scaleup

gracefully grows as data and number of computing nodes

increases. Security of data is guaranteed at all computing

nodes since data is replicated at various nodes on the cluster

system hence reliable. Our implementation of the MapReduce

runs on distributed cluster computing environment of a

national education web portal and is highly scalable.

General Terms

Data Mining, Data Optimization, Distributed Cluster

Computing, Multiprocessor Systems

Keywords

MapReduce, Hadoop, Scalability

1. INTRODUCTION
Data and information explosion propelled by the exponential

growth in digitized data is an unstoppable reality. To be able

to extract relevant and useful knowledge from this

voluminous data in order to make well-informed decision is a

competitive advantage in the current information age. In

almost all sectors, like education, datasets have grown from

gigabyte to terabyte, and now headed to petabyte. As a result,

parallel and distributed computing is often strongly sought

after to alleviate these challenges. The need for data

optimization, measuring performance efficiency, reliability,

scalability and effectiveness of parallel models, cluster and

grid computing is apparent.

It is envisioned that there is very huge data warehousing in

different education databases at various locations and

networks, in distributed, cluster, computing systems. Data

access, retrieval, and analysis is expected to be a big challenge

for educationists. Therefore a MapReduce tool is required to

easily and effectively optimize the process of delivering the

required information to the consumers in a reliable and

scalable environment with concern on the security.

The objectives of this research were to explore the usability of

the MapReduce programming technique on a multi-core

shared memory system and cluster computing; Optimization

of MapReduce tool developed to improve its performance and

scalability; Implications of using Java threading library to

attain parallelism on multi-core systems; and Effective

handling of failures on parallel execution of tasks.

The case of a national education portal in Kenya, a teachers’

resource center to support research and development, was

used to test the tool developed.

2. LITERATURE REVIEW

2.1 MapReduce in Distributed Systems
MapReduce is a programming model and an associated

implementation for processing and generating large datasets

that is amenable to a broad variety of real-world tasks (Dean

J. et al, 2004). The MapReduce paradigm of parallel

programming provides simplicity, while at the same time

offering load balancing and fault tolerance The Google File

System (GFS) that typically underlies a MapReduce system

provides the efficient and reliable distributed data storage

needed for applications involving large databases (Ghemawat

S., et al, 2003). The marriage of these systems, is typical in

their deployment, and represents the necessary confluence of

data distribution and parallel computation.

MapReduce is inspired by the map and reduces primitives

present in functional languages. In its pure form, various

implementations of the MapReduce interface are possible,

depending on the desired context. Some currently available

implementations are: shared-memory multi-core system

(Ranger, et al., 2007) and (Yoo, et al., 2009), asymmetric

multi-core processors (Rafique, et al. 2009), graphic

processors (He, et al., 2008), and cluster of networked

machines (Dean J., et al., 2008). The most popular

implementation is probably the one introduced by Google,

which utilizes large clusters of commodity computers

connected with switched Ethernet. In essence, the Google’s

MapReduce technique simplifies the development and lowers

the cost of large-scale distributed applications on clusters of

commodity machines.

Although the distributed computing is largely simplified with

the notions of Map and Reduce primitives, the underlying

infrastructure is non-trivial in order to achieve the desired

performance. A key infrastructure in Google’s MapReduce is

the underlying distributed file system to ensure data locality

and availability. Google’s MapReduce implementation

leverages and depends heavily on an in-house distributed file

system known as Google File System (Ghemawat S., et al,

2003). Combining the MapReduce programming technique

and an efficient distributed file system, one can easily achieve

the goal of distributed computing with data parallelism over

thousands of computing nodes; processing data on terabyte

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.7, October 2012

40

and petabyte scales with improved system performance,

optimization and reliability.

2.2 Hadoop Distributed File System
This research adapted a MapReduce tool in the distributed

system making use of a popular open source implementation

called Hadoop. The Hadoop Distributed File system (HDFS)

was designed to provide high throughput access with reliable

storage of very large files across machines in a large cluster

(Apache Hadoop, Online, 2011). It is designed for high

performance and thus not as general-purpose as the commonly

used distributed file systems such as Network File System

(NFS) and Common Internet File System (CIFS).

Applications that use HDFS are assumed to perform long

sequential streaming reads from files and databases. HDFS is

optimized to provide streaming read performance, sacrificing

the random seek times to arbitrary positions in files. Due to

the large size of files, and the sequential nature of reads, the

system does not provide mechanism for local data caching

because the overhead of caching warrants a re-read from the

HDFS.

3. RESEARCH METHODOLOGY
Using the Agile Methodology a MapReduce tool was

designed and developed on the Linux platform. Each

component in the tool was developed iteratively; each

iteration involved designing, coding, testing and integration.

The Hadoop MapReduce tool uses a master/slave architecture

that is similar to the one employed in HDFS. The master,

called JobTracker, is responsible for:

(a) Querying the NameNode for the locations of the data

block involved in the Job,

(b) Scheduling the computation tasks (with consideration of

the block locations retrieved from the NameNode) on the

slaves, called TaskTrackers, and

(c) Monitoring the success and failures of the tasks.

Hadoop was designed to have high degree of fault tolerance.

In comparison to many available parallel/distributed systems,

it is able to complete the assigned tasks failures in the cluster

(Pavlo, A. et al, 2009). The primary way that Hadoop

achieves fault tolerance is through restarting tasks. The slave

nodes involved in the computation are in constant

communication with the master node (JobTracker). If a

TaskTracker failed to communicate with the JobTracker for a

period of time (by default, 1 minute), the JobTracker assumed

failure on that TaskTracker. It then assigned another active

TaskTracker to re-execute all the tasks that were in progress

on the failed Tasktracker.

The input for a Hadoop MapReduce task was typically very

large files residing in the HDFS. The format of these input

files is arbitrary; it could be formatted text file, binary format

or any user-defined format.

MapReduce tool is capable of processing huge datasets on

certain kind of distributable problems using a large number of

computers (nodes), collectively referred to as a cluster or as a

grid. Computational processing can occur on data stored

either in a file system (unstructured) or within a database

(structured).

"Map" step: The master node takes the input, partitions it up

into smaller sub-problems, and distributes those to worker

nodes. A worker node may do this leading to a multi-level tree

structure. The worker node processes that smaller problem,

and passes the answer back to its master node.

"Reduce" step: The master node then takes the answers to all

the sub-problems and combines them in some way to get the

output — the answer to the problem it was originally trying to

solve.

In a logical view, the Map and Reduce functions of

MapReduce are both defined with respect to data structured in

(key, value) pairs. Map takes one pair of data with a type in

one data domain, and returns a list of pairs in a different

domain:

Map (k1, v1) → list (k2, v2)

The Map function is applied in parallel to every item in the

input dataset. This produces a list of (k2,v2) pairs for each

call. After that, the MapReduce tool collects all pairs with the

same key from all lists and groups them together, thus

creating one group for each one of the different generated

keys.

The Reduce function is then applied in parallel to each group,

which in turn produces a collection of values in the same

domain:

Reduce (k2, list (v2)) → list (v3)

Each Reduce call typically produces either one value v3 or an

empty return, though one call is allowed to return more than

one value. The returns of all calls are collected as the desired

result list.

Once the MapReduce tool was developed as explained above,

it was placed at the server where the central data bank of

education web portal is situated and also at the client

computers (computing nodes) where the portal could be

accessed by users. The data mining and data optimization

executions were observed on the existing massive data in the

education web portal case where many computing nodes are

accessed by several users simultaneously, where observations

were made and analysis gave a true picture of data mining and

data optimization as explained in the under results section.

4. RESULTS AND DISCUSSION

4.1 Results
The study realized the development, experimenting and

testing of a MapReduce tool in a distributed cluster computing

environment. The results realized at the education web portal

case of study were encouraging in view of the objectives of

the study. However, there were certain aspects culminating

from the research that were not in tandem with the inclination

of the project, that is, being undertaken as a result of data

optimization. The instruments used which involved a

procedure were able to capture details that included

observations below.

It was observed that the MapReduce tool is much efficient in

data optimization and very reliable since it reduces the time of

data access or loading by more than 50%.

The MapReduce tool could provide availability of jobs, tasks,

and log history file which then improves the performance of

the MapReduce tool and data access and processing in

general.

Data is distributed to the computing nodes at equally faster

speed across all the nodes making the process more secured

and efficient at all levels and nodes, irrespective of external

challenges.

http://en.wikipedia.org/wiki/Filesystem
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Tree_(data_structure)

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.7, October 2012

41

Attaining scalability was a major breakthrough since growth

is inevitable at all times. It was found that with MapReduce

tool you can add extra nodes which are allocated Job IDs and

linked to Job Tasks at any place and at any time of the

processing which can be effected on real time basis. This

therefore provides an efficient way of scaling up the number

of nodes on the cluster system without losing connections.

Experiments were conducted to evaluate the computation

performance of the MapReduce prototype tool. The

performance evaluation was based on the measurement of

speedup (to address the efficiency and reliability of the tool),

scaleup (to address the scalability of the tool), and the sizeup

(to address the ability of parallelism to handle data growth).

The experiments were also compared with other researchers’

evaluations done earlier on cluster machines such as “Amazon

Elastic Compute Cloud (EC2)”, which operates a “pay as you

go” model, allowing flexibility of paying only the required

computation time.

The experiments were conducted with a cluster of 1, 2, 4, 8,

and 16 computing nodes configured as a cluster computing

with hadoop distributed file system. The initial input dataset

used contained huge files of different formats and types from

Kenya education web portal.

The experiments were obtained from the average of 5 runs.

Each run executed the entire data mining process, Mapping,

splitting/shuffle/combine, and Reducing attempts and

producing the output which was a selected field’s content with

a computed answer.

A summary of the experiment results are presented in Table 1.

The table shows the average execution time (in seconds) of

one run under each experiment scenario.

Table 1: Experimental Results

 Execution Time

 (sec)

Data Size

(count)

Number of Nodes

1

2

4

8

16

1x (148) 7 5 4 3 1

2x (296) 12 8 5.4 5 4.2

4x (592) 15 9 7 6 5

8x (1184) 20 11 8 7 7

16x (2368) 28 15 9 8 8

32x (4736) 42 20 12 10 9

4.2 Discussions
Three measurements were used for the evaluations: speedup,

scaleup, and sizeup. The following sub-sections discuss these

measurements and the results obtained.

4.2.1 Speedup
Speedup tries to evaluate the ability of the parallelism to

improve the execution time. It is defined as the ratio of the

sequential execution time to the parallel execution time. It is

expressed as follows:

Speedup (m) = T(1) / T(m)

Where m is the number of computing node, T(1) is the

execution time of the tasks on 1 computing node, and T(m) is

the execution time of the parallel task with m computing

node. A perfect parallelism demonstrates linear speedup, i.e. a

system with m times the number of computers/nodes yields a

speedup of m. However, linear speedup is difficult to achieve

because the communication cost increases with the number of

computing nodes.

Figure 1: Speedup of the MapReduce Prototype System

From the results obtained, the system exhibits undesired

speedup with smaller datasets, but reasonable speedup is

achieved with a larger enough datasets that complements the

number of computing nodes.

At 32x of initial input size, the speedup achieved with 8

machines is 5.32; but with 16 machines, the speedup achieved

is only 6.36, a rather disappointing result.

Based on the trend shown in Figure 1, we could make two

observations:

1 MapReduce tool is most suited for distributed computing

with huge datasets;

2 Some rate-limiting factors exist in the system.

4.2.2 Scaleup

Scaleup evaluates the ability of parallelism to grow both the

MapReduce system and the data size, that is, the scalability of

the MapReduce tool. Scaleup is defined as the ability of an m-

times larger system to perform an m-times larger job in the

same run-time as the original system. Scaleup can be

expressed as follows:

Scaleup (m) = T(1,D) / T(m, mD)

Where m is the number of computing node, T(1,D) is the

execution time of the tasks on 1 computing node with data

size of D, T(m, mD) is the execution time of the parallel tasks

with m computing nodes with data size m times of D. A

perfect parallelism demonstrates a constant scaleup with

increasing number of computing nodes and data size.

Figure 2 shows the Scaleup of the prototype with the number

of computing nodes and input data size increasing at a factor

of 2, i.e. 1, 2, 4, 8 and 16.

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.7, October 2012

42

Figure 2: Scaleup of MapReduce Prototype System

From the results, we can conclude that the MapReduce tool

exhibits good scaleup at 0.95, 0.89 and 0.72 with 2, 4 and 8

computing nodes respectively. With a 16 computing nodes

cluster, the scaleup is slightly lower, measured at 0.57. The

reason for such scaleup degradation is due to the increase task

setup time and communication cost with growing number of

computing nodes, which is expected scenario in distributed

computing. Nevertheless, this shows that MapReduce is still

considerably scalable with growing data and growing number

of computing nodes, a key consideration for data intensive

applications.

4.2.3 Sizeup
Sizeup evaluates the ability of the parallelism to handle

growth. It measures how much longer it takes to execute the

parallel tasks, when the data size is n-times larger than the

original datasets. Sizeup analysis holds the number of

computing node constant and grows the size of the datasets by

the factor n. Sizeup can be expressed as follows:

Sizeup (m, n) = T(m, nD) / T(m, D)

Where m is the number of computing node and n is the

incremental factor of the data size. T(m, D) is the execution

time of the parallel tasks with m computing node and data size

D and T(m, D) is the execution time of parallel tasks with m

computing node and with data size n times of D.

Figure 3 shows the sizeup of the prototype. Each line

corresponds to the sizeup behavior of a cluster of m

computing nodes with increasing data load at a factor of n.

Figure 3: Sizeup of MapReduce Prototype System

The results showed that the MapReduce system is able to

handle data growth at all configurations. The sizeup decreases

with increasing number of computing nodes. With a 16 nodes

cluster at 32 times the initial data, the execution time

increases only by a factor of 3.55. This shows that

MapReduce is able to handle data growth gracefully,

especially with larger number of computing nodes.

4.2.4 Comparative Results

Our results compares with the various results output during

the experimental study, including the evaluations of the

Speedup, Sizeup and Scaleup ability of the parallelism to

handle growth. Table 2 shows the various levels of

performance computation of measurements at different

quantity of cluster computing nodes.

Table 2: Speedup, Scaleup and Sizeup comparative results

Cluster

Nodes Scaleup Sizeup Speedup

2 0.95 2 2.06

4 0.89 3 3.86

8 0.72 4 5.32

16 0.59 7.86 6.36

Figure 4, shows that the scaleup of a cluster computing using

the MapReduce technique reduces as the sizeup drastically

increases with number of nodes.

Figure 4: Comparative results for Speedup, Scaleup and

Sizeup. Source: Researcher

0

2

4

6

8

10

1 2 3 4A
m

o
u

n
t

o
f

D
at

a
(G

B
)

No. of Nodes

Scaleup

Sizeup

Speedup

International Journal of Computer Applications (0975 – 8887)

Volume 56– No.7, October 2012

43

The speedup increases significantly as the sizeup of the

cluster grows inversely to the scaleup. It is evidently shown

that this is unreliable and inefficient, expensive when the

same computation is done in a cluster without the use of

Hadoop MapReduce technique in a distributed file system as

depicted by the Amazon Elastic Compute Cloud (EC2) system

as studied in literature review.

5. CONCLUSIONS
The study successfully developed and implemented a

MapReduce tool for data mining and data optimization using

cheaply and easily available tools and procedures. The

MapReduce tool was developed particularly for multi-core

shared memory systems, taking advantage of current trends in

parallelism. The efficiency of the tool highly depended on the

granularity of the tasks executed by the worker threads and

the usability of the API by maintaining a simple and restricted

interface. Even if the framework were able to attain a speedup

of 30%, it would still be beneficial to the researcher as it

provides simple and efficient auto-parallelism. It is evident

that the advantages provided by the tool under study, would

clearly outweigh the disadvantages associated with it.

Achievement of scalability in the clustering environment was

a major milestone. This was attested to be easily achieved and

sustainable since additional nodes could easily be added on

the cluster without negatively affecting the performance of

other nodes on the cluster hence the cluster could easily grow

and increase resource utilization.

The security of data is confident than usual operations since

data is replicated across on all the nodes equally and in the

event of destruction of one node, data can be recovered from

other working nodes.

The evaluation results show that the prototype exhibits

satisfactory performance in the parameters such as speedup,

good scaleup, and reasonable sizeup. A key observation made

in the evaluation was that the input data size is an important

factor in achieving reasonable speedup. This is due to the fact

that for optimal parallelism, one has to ensure the effects of

overheads (such as inter-machines communications) in the

parallelism is minimized by the computation time; and in

most cases, large input size maximizes the computation time.

The unexpected speedup performance leads to a detailed

analysis of the results and it suggests that, although inter-

machines communications and input size are factors in

limiting ideal parallelism, the non-parallelizable portion in the

individual computation task also plays a paramount role in

limiting speedup. The evaluation also shows that Hadoop

MapReduce exhibits good scalability with growth in both data

size and number of computing nodes.

There is still need for continuous research in this field to

develop more enhanced tools, systems and frameworks of

MapReduce techniques implemented on Hadoop distributed

file system in distributed systems.

Further work on improving this methodology should be

considered by making use of latest tools, procedures and

technologies such as in the Cloud Computing to solve issues

of data optimization, reliability, scalability and data security,

among other issues fault tolerance in cluster computing.

The study should be expanded to research on the impact of

performance overheads and how to conquer them for better

performance.

6. ACKNOWLEDGMENTS
Sincere acknowledgement to Lawrence Muchemi, Peter

Wagacha, Dan Orwa and Joseph Ogutu, all from the School of

Computing and Informatics, University of Nairobi, Kenya,

who have contributed towards this paper.

Also to VVOB Kenya, National ICT Innovations and

Integration Centre (NI3C) for allowing us to use their data

among other resources.

7. REFERENCES
[1] Apache Hadoop. [Online] [Cited: 07 05, 2011.]

http://hadoop.apache.org/

[2] Dean J. and Ghemawat S. 2004. “Mapreduce: Simplified

Data Processing On Large Clusters,” In Proceedings of

OSDI’04: 6th Symposium on Operating System Design

and Implementation.

[3] Dean J. and Ghemawat S. 2008. “MapReduce:

Simplified Data Processing on Large Clusters”.

Communications of the ACM. Vol. 51, 1, pp. 107-113.

[4] Ghemawat S., Gobioff H., and Leung S.T. 2003. “The

Google File System”. Proceedings of 19th ACM

Symposium on Operating Systems Principles, pp 29-43

[5] Google and IBM Announce University Initiative to

Address Internet-Scale Computing Challenges. Google

Press Center. [Online] 10 08, 2007. [Cited: 07 05, 2011.]

[6] He, B., Fang, W., Luo, Q., Govindaraju, N. K., Wang, T.

2008. “Mars: A MapReduce Framework on Graphics

Processors”. Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques, pp. 260-269.

[7] Pavlo, A et al. 2009. “A Comparison of Approaches to

Large-Scale Data Analysis”. Proceedings of the 35th

SIGMOD International Conference on Management of

Data, pp. 165-178

[8] Rafique, Mustafa. M. 2009. “Supporting MapReduce on

Large-Scale Asymmetric Multi-Core Clusters”. ACM

SIGOPS Operating Systems Review, Vol. 43, 2, pp. 25-

34.

[9] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G.,

Kozyrakis, C. 2007. “Evaluating MapReduce for Multi-

core and Multiprocessor Systems”. Proceedings of the

2007 IEEE 13th International Symposium on High

Performance Computer Architecture, pp. 13-24.

[10] Yoo, R. M., Romano, A.K. and Kozyrakis, C. 2009.

Phoenix Rebirth: “Scalable MapReduce on a Large-Scale

Shared-Memory System”. Proceedings of the 2009 IEEE

International Symposium on Workload Characterization,

pp. 198-207.

http://hadoop.apache.org/

