
International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.4, October 2012 

26 

Basic Quantum Algorithms and Applications 

 
Marufa Rahmi 

Lecturer, Dept. of CSE  

Shah Jalal University Of 
Science and Technology 

 

Debakar Shamanta 
Lecturer, Dept. of CSE  

Shah Jalal University Of 
Science and Technology 

 

Ayesha Tasnim 
Lecturer, Dept. of CSE  

Shah Jalal University Of 
Science and Technology 

 

ABSTRACT 

Quantum computation, the ultimate goal of future computing, 

is an interesting field for researchers. The concept of quantum 

computation is based on basics of quantum mechanics. A 

quantum computer is a device for computation that makes 

direct use of quantum mechanical phenomena such as 

superposition and entanglement, to perform operations on 

data. The basic principle behind quantum computation is that 

quantum properties can be used to represent data and perform 

operations on these data. A quantum computer operates by 

manipulating the qubits with a fixed sequence of quantum 

logic gates. The sequence of gates to be applied is called a 

quantum algorithm. The field of quantum computation 

algorithm is fast moving and the scope is vast. Major quantum 

algorithms are summarized in this paper along with their 

applications.   

General Terms 

Quantum Algorithms. 
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1. INTRODUCTION 
Researchers are working continuously with the quantum 

algorithms. Although the above four algorithms are still 

regarded as the primary algorithms, some modifications are 

done upon these algorithms. Though the total working in this 

field is still quite small, there are a number of algorithmic 

research areas where the quantum algorithms are applied and 

great advancements are achieved. There are also such fields 

where applying quantum algorithms will not always 

outperform the classical ones.  

2. QUANTUM ALGORITHMS 
Quantum algorithms are probabilistic algorithms [1]. The 

result obtained is not always correct but there is a high 

probability to get the correct solution. These algorithms are 

mainly based on implementing the quantum gates on qubits 

[2]. The elegance of these algorithms is due to quantum 

parallelism, interference and entanglement. All the 

transformations are used is unitary. They work on the qubits 

in a coherent system and the last stage is measurement which 

is known as decoherence to one of the possible outcomes. The 

basic algorithms are introduced here. 

(1) Peter Shor’s Factorizing Algorithm 

(2) Lov Grover’s Database Search Algorithm 

(3) Simon’s Algorithm for period finding. 

(4) Deutsch-Jozsa Algorithm 

 

3. PETER SHOR’S FACTORIZING 

ALGORITHM 

3.1 Shor’s Algorithm 
This algorithm, first introduced by mathematician Peter Shor, 

is a quantum algorithm for integer factorization [3]. On a 

quantum computer, to factor an integer N, Shor's algorithm 

takes polynomial time in logN, specifically O ((logN) 3). It 

demonstrates that integer factorization is in the complexity 

class BQP. This is exponentially faster than the best-known 

classical factoring algorithm, the general number field sieve 

and works in about                       
 . Peter Shor 

discovered the eponymous algorithm in 1994. It is very 

important because theoretically it can "break" the widely used 

public-key cryptography scheme known as RSA. RSA is 

based on the assumption that factoring large numbers is 

computationally infeasible for classical computers. Shor's 

algorithm shows that factoring is efficient on a quantum 

computer [1], [3]. 

3.2 Procedure of Shor’s Algorithm 
The problem statement is: given a composite number N, find 

an integer p, strictly between 1 and N, that divides N. 

 Shor's algorithm consists of two parts: A reduction of the 

factoring problem to the problem of order-finding, which can 

be done on a classical computer and a quantum algorithm to 

solve the order-finding problem. 

3.2.1 Classical part of Shor’s factorizing 

Algorithm 

 Step 1- Pick a random number N, such that a<N 

 Step 2- Compute gcd (a, N). This may be done 

using the Euclidean algorithm. 

 Step 3- If gcd(a, N) ≠ 1, then there is a nontrivial 

factor of N, so it is done. Otherwise, use the period-

finding subroutine to find r, the period of the 

following function:              , the 

smallest positive integer r for which f(x + r) = f(x). 

 Step 4- If r is odd, go back to step 1. 

 Step 5- If ar /2 ≡ -1 (mod N), go back to step 1. 

 Step 6- gcd(ar/2 ± 1, N) is a nontrivial factor of N. It 

is done. 

3.2.2 Quantum part of Shor’s factorizing 

Algorithm 
Period-Finding Subroutine: The quantum circuits used for this 

algorithm are custom designed for each choice of N and the 

random a used in f(x) = ax mod N. Given N, find Q = 2q such 

that         , which implies Q / r>N. The input and 

output qubit registers need to hold superpositions of values 
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from 0 to Q − 1, and so have q qubits each. Using what might 

appear to be twice as many qubits as necessary guarantees that 

there are at least N different x which produce the same f(x), 

even as the period r approaches N/2. Proceed as follows: 

 Step1- Initialization of the registers to 

  
  

 ∑   〉  〉   
   Where x runs from 0 to Q − 1. 

This initial state is a superposition of Q states. 

 Step 2- Construction of f(x) as a quantum function 

and applying it to the above state, to 

obtain   
  

 ∑   〉     〉 . This is still a 

superposition of Q states. 

 Step 3- Applying the quantum Fourier Transform to 

the input register. This transform (operating on a 

superposition of power-of-two Q = 2q states) uses a 

Qth root of unity such as ω = e2πi / Q to distribute the 

amplitude of any given   〉 state equally among all 

Q of the   〉states, and to do so in a different way 

for each different x:       〉    
 

 ∑      〉 . 

This leads to the final state 

:   ∑ ∑      〉     〉   

This is a superposition of many more than Q states, 

but many fewer than Q2 states. Although there are 

Q2 terms in the sum, the state  〉      〉  can be 

factored out whenever x0 and x produce the same 

value. Let ω = e2πi / Q be a Qth root of unity, r be the 

period of f, x0 be the smallest of a set of x which 

yield the same given f(x) (here x0<r), and b run from 

0 to ⌊          ⌋ so that x0 + rb<Q. 

 

Then ωry is a unit vector in the complex plane (ω is 

a root of unity and r and y are integers), and the 

coefficient of     〉      〉  in the final state is 

∑     ∑              ∑    

              

 

Each term in this sum represents a different path to the 

same result, and quantum interference occurs 

constructive when the unit vectors ωryb point in nearly the 

same direction in the complex plane, which requires that 
ωry point along the positive real axis. 

 Step 4- A measurement, some outcome y obtained 

in the input register and (x0) in the output register. 

Since f is periodic, the probability of measuring 

some pair y and f(x0) is given by 

    ∑    
            

|
 
 

    ∑          
 |

 
. 

Analysis now shows that this probability is higher, the 

closer unit vector ωry is to the positive real axis, or the 
closer yr/Q is to an integer. 

Turn y/Q into an irreducible fraction, and extract the 

denominator r′, which is a candidate for r. Check if f(x) = 

f(x + r′) ⇔            . If so, it is done. 

Otherwise, more candidates should be obtained for r by 

using values near y, or multiples of r′. If any candidate 

works, it is done. Otherwise, it should start from step 1 of 
the subroutine. 

4. SIMON’S ALGORITHM 
Simon’s algorithm is one of the first quantum algorithms 

discovered which outperforms any known classical algorithm. 

Let                be such that for some         it is 

true for all         ,f(y) = f(z) if and only if y = z or  
    . 

This algorithm provides an exponential improvement in time 

over any known classical algorithm. To find x using a 

classical randomized algorithm Ω (2n / 2) queries of f would be 

required. Using Simon's algorithm it is possible to find a 

solution with high probability using O(n) queries of f. It was 

also the inspiration for Shor's algorithm. 

4.1 Procedure of the Algorithm 
The problem can be stated as a decision problem which goal 

is to decide whether or not there is a period that is whether f is 

2 to 1 or 1 to 1. Simon’s problem is an instance of an oracle 

problem which is classically hard, even for probabilistic 

algorithms, but tractable for quantum computers [4].  

Classically the problem is hard because the probability to find 

two identical elements x and y after 2^(N/4) queries is less 

than 2^(−N/2). Simon’s quantum solution is as the following 

[4]:  

 Start with a state vector 


H|0


)⊗N|0  ⊗N 

 Run the oracle once to make the state vector 

2−N/2∑x|x  |f(x)   

 Measure the second register; if the measurement 

outcome is f(x0), then the state vector of the first 

register will be

)(|
2

1
00  pxx

 

 Applying a Hadamard gate to each of the N 

remaining qubits leads to 
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ypx
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Final measurement of the first register in computational basis, 

will give a value y which is such that y.p= 0 modulo 2.  

Repeating this procedure in order to get N − 1 linearly 

independent vectors y1,…,yN−1 p can be determined from the 

set of equations {yi. p = 0}. To this end there should be a 

procedure to query the oracle O(N) times. 

Hence an exponential speed up is obtained compared to any 

classical algorithm. Simon’s algorithm has much common 

characteristics with Shor’s algorithm; both look for the period 

of a function [4], yield an exponential speed-up and both 

make use of classical algorithms in a post processing step. 

This algorithm was the inspiration of Shor’s work. 
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5. GROVER’S DATABASE SEARCH 

ALGORITHM 

5.1 Grover’s Algorithm 
This is a quantum algorithm for searching an unsorted 

database with N entries in O(N1/2) time and using O(logN) 

storage space [5]. It was invented by Lov Grover in 1996. 

Classically, searching an unsorted database requires a linear 

search, which is O(N) in time. Grover's algorithm, which takes 

O(N1/2) time, is the fastest possible quantum algorithm for 

searching an unsorted database [6]. It provides "only" a 

quadratic speedup, compared to other quantum algorithms, 

which may provide exponential speedup over their classical 

counterparts. The quadratic speedup is considerable when N is 

large. 

Like many other quantum algorithms, Grover's algorithm is 

probabilistic because it gives the correct answer with high 

probability. The probability of failure can be decreased by 

repeating the algorithm [6]. 

Grover's algorithm can be described as "inverting a function" 

[5]. If there is a function y=f(x) that can be evaluated on a 

quantum computer, this algorithm allows us to calculate x 

when given y. Inverting a function is related to the searching 

of a database in the sense there can be a function that 

produces a particular value of y if x matches a desired entry in 

a database, and another value of y for other values of x. 

Grover's algorithm can also be used for estimating the mean 

and median of a set of numbers, and for solving the Collision 

problem. It can also be used to solve NP-complete problems 

by performing exhaustive searches over the set of possible 

solutions [7]. 

5.2 Procedure of Grover’s Algorithm 
Let us consider an unsorted database with N entries. The 

algorithm requires an N-dimensional state space H, which can 

be supplied by log2N qubits. 

Let us number the database entries by 1, 2... N. Choose an 

observable, Ω, acting on H, with N distinct eigenvalues whose 

values are all known. Each of the eigenstates of Ω encodes 

one of the entries in the database, in a described manner. 

Eigenstates are denoted as    〉   〉     〉 (using bra-ket 

notation) and the corresponding eigenvalues 

by            . 

A unitary operator is provided, Uω, which acts as a subroutine 

that compares database entries according to some search 

criterion. The algorithm does not specify how this subroutine 

works, but it must be a quantum subroutine that works with 

superpositions of states. Furthermore, it must act especially on 

one of the eigenstates, |ω>, which corresponds to the database 

entry matching the search criterion. To be precise, it is 

required Uω to have the following effects:      〉  
   〉     〉    〉              

Our goal is to identify this eigenstate |ω>, or equivalently the 

eigenvalue ω, that Uω acts especially upon. Two unitary 

operators are defined as follows:         〉〈   and 

      〉〈    after application of the two operators (Uω 

and Us), the amplitude of the searched-for element increases. 

And this is one Grover iteration r. N=2n, n is number of qubits 
in blank (zero) state. 

    〉    〉  
 

√ 
  〉 And   (  〉  

 

√ 
  〉)  

   

 
  〉  

 

√ 
  〉 

The steps of Grover's algorithm are as follows: 

1. Initialize the system to the state  〉  
 

√ 
∑   〉 

    . 

2. Perform the following "Grover iteration" r(N) times. 

The function r(N) is described below. 

1. Apply the operator         〉〈  . 
2. Apply the operator      〉〈    . 

3. Perform the measurement Ω. The measurement 

result will be λω with probability approaching 1 for 

N>>1. From λω, ω may be obtained. 

5.3 Generalization of Grover’s Algorithm 

for Multiple objects 
There is a generalization of Grover’s search algorithm for the 

data where the number of objects satisfying the search 

criterion is greater than 1 [8]. 

Let a database              , with corresponding 

orthonormal eigenstates {   〉 : i = 1, 2 …N}. Let f be an 

oracle function such that  

 (  )  {
           
               

 

Here the ℓ elements{  |     } are the desired objects of 

search. For simplicity it is assumed that the searched for 

elements are the first ℓ items in the list while in reality it 

would be random. Let H be the Hilbert space generated by the 

orthonormal basis of the discussed database, the linear 

operation in terms of the oracle function f as follows: 

  |  〉          |  〉           Which is equivalent to    

      ∑ |  〉
 
   〈  | since   is linear. 

The overall states are defined as  〉 where  〉  
 

√ 
∑    〉

 
   and the searched for elements are the first ℓ 

elements. Another operation is defined as         〉〈    

This operation is unitary and hence quantum-mechanically 

admissible. This is explicitly known and constructible with 

the Walsh–Hadamard transformation. 

The generalized Grover Search Mechanism for multiple 

objects searching is constructed as       . 

The total number of iterations needed depends on the number 

ℓ. The complexity of original Grover’s Search is        and 

the presence of multiple object satisfying the search criteria 

speeds up the algorithm and it becomes             [6], [8]. 
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6. DEUTSCH’S ALGORITHM 

6.1 Original Deutsch’s Algorithm  
The Deutsch algorithm is an elementary quantum algorithm 

which is proposed by David Deutsch [9]. Although it is of 

little practical use, it is one of the first examples of a quantum 

algorithm that is more efficient than any possible classical 

algorithm. It uses the power of quantum computing such as 

quantum parallelism, interference and entanglement. 

6.2 Procedure of Deutsch’s Algorithm  
In the Deutsch problem, A black box quantum computer 

known as an oracle is given, that implements the 

function             . 

Now the condition          needs to be checked. It is 

equivalent to check          (where   is addition modulo 

2), if zero, then f is constant, otherwise f is not constant. It is 

not concerned to find the value or outcome of f(x) itself. 

To find the answer classically, one needs to query for both 

    and   , hence two queries are required [8]. Quantum 

mechanically this can be solved in just one query. The figure 

represents the circuit for Deutsch’s Algorithm.  

 

 

 

 

 
Fig: Circuit diagram of Deutsch’s algorithm 

Here, given a function             , two qubits     〉 are 

used and transferred them into         〉. Two qubits are 

used to preserve reversibility, to keep the value of input x 

after the oracle performs. The second qubit y acts as a result 

register. Let Uf be the unitary transform that implements the 

function and maps  〉  〉 to  〉       〉. 

The procedure begins with the two qubits in the state  〉  〉 
and then a Hadamard transform applied to each qubit. This 

yield 
 

 
   〉    〉    〉    〉   

After applying the function to the current state: 

 

 
   〉        〉         〉    〉        〉

        〉   

 
 

 
           〉   〉    〉            〉   〉    〉   

          

 
(| 〉               | 〉)   〉    〉 . 

The last bit is ignored and the global phase and therefore have 

the state 

 

√ 
 | 〉               | 〉 . 

Applying a Hadamard transform to this state: 

 

 
 | 〉  | 〉               | 〉               | 〉  

 
 

 
                    〉                    〉 . 

If the result of measurement is a Zero,            . 

Therefore the function is constant and otherwise it is 

balanced. 

Here Uf is applied to 0 and 1 simultaneously. This is known as 
quantum parallelism. 

The solution is to use another quantum mechanical property 

named interference. 

Deutsch’s algorithm like all known quantum algorithms 

which provide exponential speedup over classical systems, 

answers a question about a global property of a solution space 

[10]. These are often called promise problems, where the 

structure of the solution space is promised to be of some form 

and by carefully using superposition, entanglement and 

interference the information about that structure can be 

extracted. Exponential improvement is possible for quantum 

parallelism. Quantum computers can only provide square-root 
improvement to the query-based problems [6]. 

7. DEUTSCH-JOZSA ALGORITHM 
The Deutsch-Jozsa algorithm is a quantum algorithm, 

proposed by David Deutsch and Richard Jozsa in 1992 with 

improvements by R. Cleve, A. Ekert, C. Macchiavello, and M. 

Mosca in 1998. This algorithm has a little practical use but it 

is one of the first examples of a quantum algorithm that is 

more efficient than any possible classical algorithm [11], [12]. 

7.1 The Algorithm 
In the Deutsch-Jozsa problem, A black box quantum 

computer known as an oracle is given that implements the 

function,               . It is said that the function is either 

constant (0 on all inputs or 1 on all inputs) or balanced 

(returns 1 for half of the input domain and 0 for the other 

half); the task then is to determine if fis constant or balanced 

by using the oracle. 

7.2 Procedure of Deutsch-Jozsa Algorithm 
For a conventional deterministic algorithm,        

evaluations of f will be required in the worst case (and in best 

case need only 2 queries, if the function is balanced), where n 

is number of bits/qubits. For a conventional randomized 

algorithm, constant k evaluations of the function are enough to 

produce the correct answer with a high probability. If a 

correct answer is wanted always,          evaluations 

are required. The Deutsch-Jozsa quantum algorithm produces 

an answer that is always correct with a single evaluation of f. 

 

 

 

 

Fig: Classical solution of Oracle 

H H 

H 

x x 

y y      
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  〉 

  〉 

      〉 
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y y      

Uf 

    



International Journal of Computer Applications (0975 – 8887) 

Volume 56– No.4, October 2012 

30 

The Deutsch-Jozsa Algorithm is the multi qubit generalization 

of the Deutsch’s Algorithm. The procedure begins with the 

n+1 bit state  〉    〉. The first n bits are each in the state  〉 
and the final bit is  〉. After applying a Hadamard 

transformation to each bit, the state is then, 

 

√    
∑   〉    

      〉    〉 . 

The function f is implemented as quantum oracle which maps 

the state   〉  〉to   〉       〉. After applying that, the state 

is,  

 

√    
∑   〉    

         〉         〉 . 

The two possibilities for f(x), that is          and     
     reduces to  

 

√    
∑           〉    

      〉    〉 . 

Ignoring the last qubit and applying a Hadamard 

transformation to each bit, the probability of 

measuring  〉
  

,|
 

  
∑             

   |
 
which evaluates to 1 if 

f(x) is constant and 0 if f(x) is balanced. 

 

 

 

 

 

 

 

 

Figure: Circuit for the Deutsch-Jozsa Algorithm 

8. NOTABLE APPLICATIONS OF 

QUANTUM ALGORITHMS 
Researchers are working continuously with the quantum 

algorithms. Although the above four algorithms are still 

regarded as the primary algorithms, some modifications are 

done upon these algorithms. Though the total working in this 

field is still quite small, there are a number of algorithmic 

research areas where the quantum algorithms are applied and 

great advancements are achieved. There are also such fields 

where applying quantum algorithms will not always 

outperform the classical ones. Below some applications of 

quantum algorithms which are done in recent years are noted. 

8.1 Primality Test with Quantum 

Factorization 
Some researchers suggest a probabilistic quantum 

implementation for a specific Primality test method using 

Shor's algorithm. There O (log3 N log log N log loglog N) 

elementary q-bit operations are required to determine the 

primality of a number N. This can be thought of as 

(asymptotically) the fastest known Primality test. The 

potential power of quantum mechanical computers is once 

again revealed by this way [3], [13]. 

8.2 Factoring Number and Finding 

Divisors 
Peter Shor’s Algorithm is generalized to find the prime factors 

of an integer. Special quantum circuit design is proposed to 

find the divisors of a number. Wiring diagrams are given for a 

quantum algorithm processor in CMOS to compute, in 

parallel, all divisors of an n-bit integer. The lines required in a 

wiring diagram are proportional to n and the execution time is 

proportional to the square of n [3], [8], [13]. 

8.3 Sorting by Quantum Algorithms: 

Time-Space trade off 
In general a quantum algorithm based on only comparisons 

outperforms the classical sorting algorithms by only a 

constant factor in time complexity. A quantum sort is any 

sorting algorithm that runs on a quantum computer. Any 

comparison-based quantum sorting algorithm would take at 

least Ω(nlogn) steps, which is already achievable by classical 

algorithms. It is different in a space bounded setting. For all 

storage bounds n/log n ≥ S ≥ log3n, one can devise a quantum 

algorithm that sorts n numbers (comparisons comparison 

based) in time T=O(n3/2 log3/2 n/√S) [14].  

8.4 Quantum Searching 
Grover’s algorithm offers searching in the unsorted database 

in less complexity. Any quantum algorithm searching an 

ordered list of n elements needs to examine at least log n/12-

O(1) of them [14][15]. Classically, log n queries are both 

necessary and sufficient. This reveals that quantum algorithms 

can achieve only a constant speedup for this problem. 

8.5 Application in NP-Complete Problems 
NP complete problems need an exhaustive search over the 

total range of possibilities.  Quantum search is used to 

perform the search operation faster. Solutions of some np 

complete problems such as traveling salesman problem, 

finding all solution of n-queen, Hamiltonian path/cycle 

finding etc are the field of ongoing research.  

The Hamiltonian cycle problem is to determine whether a 

given graph has a Hamiltonian cycle or not. Some researchers 

used undirected graphs with varied number of vertices and 

showed how to determine the existence of a Hamiltonian 

cycle in a given graph [7]. They illustrated how quantum 

search can be applied to obtain the solution of the Hamilton 

cycle problem much faster than the classical approach. 

8.6 Application in Graph Theories 
Graph theory is the vast field where quantum approach can be 

applied to outperform the classical algorithms [7]. By using 

the quantum search as subroutines in the existing algorithms 

for finding shortest path, minimum spanning tree, least 

weighted cycle etc, it is found to perform better. 

8.7 Other Works 
Between other works finding modal value of data, generating 

random number, finding the solution of Pell’s equation, 

pattern matching, different type of satisfiability (SAT) 

problems etc are noteworthy[16].  

H 

H 

H 

H 

H 

H 

 ̂     

  〉 

  〉 

  〉 

   〉    〉    〉    〉 

  〉    〉

√ 
   〉    〉

√ 
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9. CONCLUSION 
Quantum algorithms are a field of growing interest within the 

theoretical computer science and the physics community. A 

lot of research works are going on this field. Within a few 

decades our classical computing is going to be replaced by 

faster (possibly) quantum counterparts. The field of quantum 

computing algorithms are very fast moving and coming up 

with innovative features. We are feeling elevated for getting 

mixed with it. 
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